blob: 43e98c96a5c255b1cf2c07759f328526c3892075 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _M68K_DMA_H
2#define _M68K_DMA_H 1
3
4//#define DMA_DEBUG 1
5
6#include <linux/config.h>
7
8#ifdef CONFIG_COLDFIRE
9/*
10 * ColdFire DMA Model:
11 * ColdFire DMA supports two forms of DMA: Single and Dual address. Single
12 * address mode emits a source address, and expects that the device will either
13 * pick up the data (DMA READ) or source data (DMA WRITE). This implies that
14 * the device will place data on the correct byte(s) of the data bus, as the
15 * memory transactions are always 32 bits. This implies that only 32 bit
16 * devices will find single mode transfers useful. Dual address DMA mode
17 * performs two cycles: source read and destination write. ColdFire will
18 * align the data so that the device will always get the correct bytes, thus
19 * is useful for 8 and 16 bit devices. This is the mode that is supported
20 * below.
21 *
22 * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
23 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
24 *
25 * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
26 * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
27 *
28 * APR/18/2002 : added proper support for MCF5272 DMA controller.
29 * Arthur Shipkowski (art@videon-central.com)
30 */
31
32#include <asm/coldfire.h>
33#include <asm/mcfsim.h>
34#include <asm/mcfdma.h>
35
36/*
37 * Set number of channels of DMA on ColdFire for different implementations.
38 */
39#if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407)
40#define MAX_M68K_DMA_CHANNELS 4
41#elif defined(CONFIG_M5272)
42#define MAX_M68K_DMA_CHANNELS 1
43#else
44#define MAX_M68K_DMA_CHANNELS 2
45#endif
46
47extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
48extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
49
50#if !defined(CONFIG_M5272)
51#define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */
52#define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */
53#define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */
54#define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */
55
56/* I/O to memory, 8 bits, mode */
57#define DMA_MODE_READ 0
58/* memory to I/O, 8 bits, mode */
59#define DMA_MODE_WRITE 1
60/* I/O to memory, 16 bits, mode */
61#define DMA_MODE_READ_WORD 2
62/* memory to I/O, 16 bits, mode */
63#define DMA_MODE_WRITE_WORD 3
64/* I/O to memory, 32 bits, mode */
65#define DMA_MODE_READ_LONG 4
66/* memory to I/O, 32 bits, mode */
67#define DMA_MODE_WRITE_LONG 5
68/* I/O to memory, 8 bits, single-address-mode */
69#define DMA_MODE_READ_SINGLE 8
70/* memory to I/O, 8 bits, single-address-mode */
71#define DMA_MODE_WRITE_SINGLE 9
72/* I/O to memory, 16 bits, single-address-mode */
73#define DMA_MODE_READ_WORD_SINGLE 10
74/* memory to I/O, 16 bits, single-address-mode */
75#define DMA_MODE_WRITE_WORD_SINGLE 11
76/* I/O to memory, 32 bits, single-address-mode */
77#define DMA_MODE_READ_LONG_SINGLE 12
78/* memory to I/O, 32 bits, single-address-mode */
79#define DMA_MODE_WRITE_LONG_SINGLE 13
80
81#else /* CONFIG_M5272 is defined */
82
83/* Source static-address mode */
84#define DMA_MODE_SRC_SA_BIT 0x01
85/* Two bits to select between all four modes */
86#define DMA_MODE_SSIZE_MASK 0x06
87/* Offset to shift bits in */
88#define DMA_MODE_SSIZE_OFF 0x01
89/* Destination static-address mode */
90#define DMA_MODE_DES_SA_BIT 0x10
91/* Two bits to select between all four modes */
92#define DMA_MODE_DSIZE_MASK 0x60
93/* Offset to shift bits in */
94#define DMA_MODE_DSIZE_OFF 0x05
95/* Size modifiers */
96#define DMA_MODE_SIZE_LONG 0x00
97#define DMA_MODE_SIZE_BYTE 0x01
98#define DMA_MODE_SIZE_WORD 0x02
99#define DMA_MODE_SIZE_LINE 0x03
100
101/*
102 * Aliases to help speed quick ports; these may be suboptimal, however. They
103 * do not include the SINGLE mode modifiers since the MCF5272 does not have a
104 * mode where the device is in control of its addressing.
105 */
106
107/* I/O to memory, 8 bits, mode */
108#define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
109/* memory to I/O, 8 bits, mode */
110#define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
111/* I/O to memory, 16 bits, mode */
112#define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
113/* memory to I/O, 16 bits, mode */
114#define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
115/* I/O to memory, 32 bits, mode */
116#define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
117/* memory to I/O, 32 bits, mode */
118#define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
119
120#endif /* !defined(CONFIG_M5272) */
121
122#if !defined(CONFIG_M5272)
123/* enable/disable a specific DMA channel */
124static __inline__ void enable_dma(unsigned int dmanr)
125{
126 volatile unsigned short *dmawp;
127
128#ifdef DMA_DEBUG
129 printk("enable_dma(dmanr=%d)\n", dmanr);
130#endif
131
132 dmawp = (unsigned short *) dma_base_addr[dmanr];
133 dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
134}
135
136static __inline__ void disable_dma(unsigned int dmanr)
137{
138 volatile unsigned short *dmawp;
139 volatile unsigned char *dmapb;
140
141#ifdef DMA_DEBUG
142 printk("disable_dma(dmanr=%d)\n", dmanr);
143#endif
144
145 dmawp = (unsigned short *) dma_base_addr[dmanr];
146 dmapb = (unsigned char *) dma_base_addr[dmanr];
147
148 /* Turn off external requests, and stop any DMA in progress */
149 dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
150 dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
151}
152
153/*
154 * Clear the 'DMA Pointer Flip Flop'.
155 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
156 * Use this once to initialize the FF to a known state.
157 * After that, keep track of it. :-)
158 * --- In order to do that, the DMA routines below should ---
159 * --- only be used while interrupts are disabled! ---
160 *
161 * This is a NOP for ColdFire. Provide a stub for compatibility.
162 */
163static __inline__ void clear_dma_ff(unsigned int dmanr)
164{
165}
166
167/* set mode (above) for a specific DMA channel */
168static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
169{
170
171 volatile unsigned char *dmabp;
172 volatile unsigned short *dmawp;
173
174#ifdef DMA_DEBUG
175 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
176#endif
177
178 dmabp = (unsigned char *) dma_base_addr[dmanr];
179 dmawp = (unsigned short *) dma_base_addr[dmanr];
180
181 // Clear config errors
182 dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
183
184 // Set command register
185 dmawp[MCFDMA_DCR] =
186 MCFDMA_DCR_INT | // Enable completion irq
187 MCFDMA_DCR_CS | // Force one xfer per request
188 MCFDMA_DCR_AA | // Enable auto alignment
189 // single-address-mode
190 ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
191 // sets s_rw (-> r/w) high if Memory to I/0
192 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
193 // Memory to I/O or I/O to Memory
194 ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
195 // 32 bit, 16 bit or 8 bit transfers
196 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD :
197 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
198 MCFDMA_DCR_SSIZE_BYTE)) |
199 ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD :
200 ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
201 MCFDMA_DCR_DSIZE_BYTE));
202
203#ifdef DEBUG_DMA
204 printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
205 dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
206 (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
207#endif
208}
209
210/* Set transfer address for specific DMA channel */
211static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
212{
213 volatile unsigned short *dmawp;
214 volatile unsigned int *dmalp;
215
216#ifdef DMA_DEBUG
217 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
218#endif
219
220 dmawp = (unsigned short *) dma_base_addr[dmanr];
221 dmalp = (unsigned int *) dma_base_addr[dmanr];
222
223 // Determine which address registers are used for memory/device accesses
224 if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
225 // Source incrementing, must be memory
226 dmalp[MCFDMA_SAR] = a;
227 // Set dest address, must be device
228 dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
229 } else {
230 // Destination incrementing, must be memory
231 dmalp[MCFDMA_DAR] = a;
232 // Set source address, must be device
233 dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
234 }
235
236#ifdef DEBUG_DMA
237 printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
238 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
239 (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
240 (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
241#endif
242}
243
244/*
245 * Specific for Coldfire - sets device address.
246 * Should be called after the mode set call, and before set DMA address.
247 */
248static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
249{
250#ifdef DMA_DEBUG
251 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
252#endif
253
254 dma_device_address[dmanr] = a;
255}
256
257/*
258 * NOTE 2: "count" represents _bytes_.
259 */
260static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
261{
262 volatile unsigned short *dmawp;
263
264#ifdef DMA_DEBUG
265 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
266#endif
267
268 dmawp = (unsigned short *) dma_base_addr[dmanr];
269 dmawp[MCFDMA_BCR] = (unsigned short)count;
270}
271
272/*
273 * Get DMA residue count. After a DMA transfer, this
274 * should return zero. Reading this while a DMA transfer is
275 * still in progress will return unpredictable results.
276 * Otherwise, it returns the number of _bytes_ left to transfer.
277 */
278static __inline__ int get_dma_residue(unsigned int dmanr)
279{
280 volatile unsigned short *dmawp;
281 unsigned short count;
282
283#ifdef DMA_DEBUG
284 printk("get_dma_residue(dmanr=%d)\n", dmanr);
285#endif
286
287 dmawp = (unsigned short *) dma_base_addr[dmanr];
288 count = dmawp[MCFDMA_BCR];
289 return((int) count);
290}
291#else /* CONFIG_M5272 is defined */
292
293/*
294 * The MCF5272 DMA controller is very different than the controller defined above
295 * in terms of register mapping. For instance, with the exception of the 16-bit
296 * interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
297 *
298 * The big difference, however, is the lack of device-requested DMA. All modes
299 * are dual address transfer, and there is no 'device' setup or direction bit.
300 * You can DMA between a device and memory, between memory and memory, or even between
301 * two devices directly, with any combination of incrementing and non-incrementing
302 * addresses you choose. This puts a crimp in distinguishing between the 'device
303 * address' set up by set_dma_device_addr.
304 *
305 * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr,
306 * which will act exactly as above in -- it will look to see if the source is set to
307 * autoincrement, and if so it will make the source use the set_dma_addr value and the
308 * destination the set_dma_device_addr value. Otherwise the source will be set to the
309 * set_dma_device_addr value and the destination will get the set_dma_addr value.
310 *
311 * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
312 * and make it explicit. Depending on what you're doing, one of these two should work
313 * for you, but don't mix them in the same transfer setup.
314 */
315
316/* enable/disable a specific DMA channel */
317static __inline__ void enable_dma(unsigned int dmanr)
318{
319 volatile unsigned int *dmalp;
320
321#ifdef DMA_DEBUG
322 printk("enable_dma(dmanr=%d)\n", dmanr);
323#endif
324
325 dmalp = (unsigned int *) dma_base_addr[dmanr];
326 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
327}
328
329static __inline__ void disable_dma(unsigned int dmanr)
330{
331 volatile unsigned int *dmalp;
332
333#ifdef DMA_DEBUG
334 printk("disable_dma(dmanr=%d)\n", dmanr);
335#endif
336
337 dmalp = (unsigned int *) dma_base_addr[dmanr];
338
339 /* Turn off external requests, and stop any DMA in progress */
340 dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
341 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
342}
343
344/*
345 * Clear the 'DMA Pointer Flip Flop'.
346 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
347 * Use this once to initialize the FF to a known state.
348 * After that, keep track of it. :-)
349 * --- In order to do that, the DMA routines below should ---
350 * --- only be used while interrupts are disabled! ---
351 *
352 * This is a NOP for ColdFire. Provide a stub for compatibility.
353 */
354static __inline__ void clear_dma_ff(unsigned int dmanr)
355{
356}
357
358/* set mode (above) for a specific DMA channel */
359static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
360{
361
362 volatile unsigned int *dmalp;
363 volatile unsigned short *dmawp;
364
365#ifdef DMA_DEBUG
366 printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
367#endif
368 dmalp = (unsigned int *) dma_base_addr[dmanr];
369 dmawp = (unsigned short *) dma_base_addr[dmanr];
370
371 // Clear config errors
372 dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
373
374 // Set command register
375 dmalp[MCFDMA_DMR] =
376 MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting
377 MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data.
378 MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data.
379 // source static-address-mode
380 ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
381 // dest static-address-mode
382 ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
383 // burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272
384 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
385 (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
386
387 dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */
388
389#ifdef DEBUG_DMA
390 printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
391 dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
392 (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
393#endif
394}
395
396/* Set transfer address for specific DMA channel */
397static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
398{
399 volatile unsigned int *dmalp;
400
401#ifdef DMA_DEBUG
402 printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
403#endif
404
405 dmalp = (unsigned int *) dma_base_addr[dmanr];
406
407 // Determine which address registers are used for memory/device accesses
408 if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
409 // Source incrementing, must be memory
410 dmalp[MCFDMA_DSAR] = a;
411 // Set dest address, must be device
412 dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
413 } else {
414 // Destination incrementing, must be memory
415 dmalp[MCFDMA_DDAR] = a;
416 // Set source address, must be device
417 dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
418 }
419
420#ifdef DEBUG_DMA
421 printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
422 __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
423 (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
424 (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
425#endif
426}
427
428/*
429 * Specific for Coldfire - sets device address.
430 * Should be called after the mode set call, and before set DMA address.
431 */
432static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
433{
434#ifdef DMA_DEBUG
435 printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
436#endif
437
438 dma_device_address[dmanr] = a;
439}
440
441/*
442 * NOTE 2: "count" represents _bytes_.
443 *
444 * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
445 */
446static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
447{
448 volatile unsigned int *dmalp;
449
450#ifdef DMA_DEBUG
451 printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
452#endif
453
454 dmalp = (unsigned int *) dma_base_addr[dmanr];
455 dmalp[MCFDMA_DBCR] = count;
456}
457
458/*
459 * Get DMA residue count. After a DMA transfer, this
460 * should return zero. Reading this while a DMA transfer is
461 * still in progress will return unpredictable results.
462 * Otherwise, it returns the number of _bytes_ left to transfer.
463 */
464static __inline__ int get_dma_residue(unsigned int dmanr)
465{
466 volatile unsigned int *dmalp;
467 unsigned int count;
468
469#ifdef DMA_DEBUG
470 printk("get_dma_residue(dmanr=%d)\n", dmanr);
471#endif
472
473 dmalp = (unsigned int *) dma_base_addr[dmanr];
474 count = dmalp[MCFDMA_DBCR];
475 return(count);
476}
477
478#endif /* !defined(CONFIG_M5272) */
479#endif /* CONFIG_COLDFIRE */
480
481#define MAX_DMA_CHANNELS 8
482
483/* Don't define MAX_DMA_ADDRESS; it's useless on the m68k/coldfire and any
484 occurrence should be flagged as an error. */
485/* under 2.4 it is actually needed by the new bootmem allocator */
486#define MAX_DMA_ADDRESS PAGE_OFFSET
487
488/* These are in kernel/dma.c: */
489extern int request_dma(unsigned int dmanr, const char *device_id); /* reserve a DMA channel */
490extern void free_dma(unsigned int dmanr); /* release it again */
491
492#endif /* _M68K_DMA_H */