blob: 15caf93e4a4379df3d1072bb82d286cb70a06a80 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
Ingo Molnar0771dfe2006-03-27 01:16:22 -080011 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
Ingo Molnarc87e2832006-06-27 02:54:58 -070015 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070019 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
22 *
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40#include <linux/slab.h>
41#include <linux/poll.h>
42#include <linux/fs.h>
43#include <linux/file.h>
44#include <linux/jhash.h>
45#include <linux/init.h>
46#include <linux/futex.h>
47#include <linux/mount.h>
48#include <linux/pagemap.h>
49#include <linux/syscalls.h>
Jesper Juhl7ed20e12005-05-01 08:59:14 -070050#include <linux/signal.h>
Jakub Jelinek4732efb2005-09-06 15:16:25 -070051#include <asm/futex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070052
Ingo Molnarc87e2832006-06-27 02:54:58 -070053#include "rtmutex_common.h"
54
Linus Torvalds1da177e2005-04-16 15:20:36 -070055#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
56
57/*
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
61 *
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
64 */
65union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
Ingo Molnare2970f22006-06-27 02:54:47 -070072 unsigned long address;
Linus Torvalds1da177e2005-04-16 15:20:36 -070073 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
81};
82
83/*
Ingo Molnarc87e2832006-06-27 02:54:58 -070084 * Priority Inheritance state:
85 */
86struct futex_pi_state {
87 /*
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
90 */
91 struct list_head list;
92
93 /*
94 * The PI object:
95 */
96 struct rt_mutex pi_mutex;
97
98 struct task_struct *owner;
99 atomic_t refcount;
100
101 union futex_key key;
102};
103
104/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
107 *
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
112 */
113struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
116
Ingo Molnare2970f22006-06-27 02:54:47 -0700117 /* Which hash list lock to use: */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118 spinlock_t *lock_ptr;
119
Ingo Molnare2970f22006-06-27 02:54:47 -0700120 /* Key which the futex is hashed on: */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121 union futex_key key;
122
Ingo Molnare2970f22006-06-27 02:54:47 -0700123 /* For fd, sigio sent using these: */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124 int fd;
125 struct file *filp;
Ingo Molnarc87e2832006-06-27 02:54:58 -0700126
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130};
131
132/*
133 * Split the global futex_lock into every hash list lock.
134 */
135struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
138};
139
140static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
141
142/* Futex-fs vfsmount entry: */
143static struct vfsmount *futex_mnt;
144
145/*
146 * We hash on the keys returned from get_futex_key (see below).
147 */
148static struct futex_hash_bucket *hash_futex(union futex_key *key)
149{
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154}
155
156/*
157 * Return 1 if two futex_keys are equal, 0 otherwise.
158 */
159static inline int match_futex(union futex_key *key1, union futex_key *key2)
160{
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
164}
165
166/*
167 * Get parameters which are the keys for a futex.
168 *
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
172 *
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
175 *
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
177 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700178static int get_futex_key(u32 __user *uaddr, union futex_key *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179{
Ingo Molnare2970f22006-06-27 02:54:47 -0700180 unsigned long address = (unsigned long)uaddr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
185
186 /*
187 * The futex address must be "naturally" aligned.
188 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700189 key->both.offset = address % PAGE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
Ingo Molnare2970f22006-06-27 02:54:47 -0700192 address -= key->both.offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193
194 /*
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
197 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700198 vma = find_extend_vma(mm, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199 if (unlikely(!vma))
200 return -EFAULT;
201
202 /*
203 * Permissions.
204 */
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
207
208 /*
209 * Private mappings are handled in a simple way.
210 *
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
216 */
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
Ingo Molnare2970f22006-06-27 02:54:47 -0700219 key->private.address = address;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220 return 0;
221 }
222
223 /*
224 * Linear file mappings are also simple.
225 */
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
Ingo Molnare2970f22006-06-27 02:54:47 -0700229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230 + vma->vm_pgoff);
231 return 0;
232 }
233
234 /*
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
239 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
246 }
247 return err;
248}
249
250/*
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
253 *
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
256 */
257static inline void get_key_refs(union futex_key *key)
258{
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
264 }
265}
266
267/*
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
270 */
271static void drop_key_refs(union futex_key *key)
272{
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
278 }
279}
280
Ingo Molnare2970f22006-06-27 02:54:47 -0700281static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282{
283 int ret;
284
285 inc_preempt_count();
Ingo Molnare2970f22006-06-27 02:54:47 -0700286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287 dec_preempt_count();
288
289 return ret ? -EFAULT : 0;
290}
291
292/*
Ingo Molnarc87e2832006-06-27 02:54:58 -0700293 * Fault handling. Called with current->mm->mmap_sem held.
294 */
295static int futex_handle_fault(unsigned long address, int attempt)
296{
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
299
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
303
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
313 }
314 return 0;
315}
316
317/*
318 * PI code:
319 */
320static int refill_pi_state_cache(void)
321{
322 struct futex_pi_state *pi_state;
323
324 if (likely(current->pi_state_cache))
325 return 0;
326
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
328
329 if (!pi_state)
330 return -ENOMEM;
331
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
337
338 current->pi_state_cache = pi_state;
339
340 return 0;
341}
342
343static struct futex_pi_state * alloc_pi_state(void)
344{
345 struct futex_pi_state *pi_state = current->pi_state_cache;
346
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
349
350 return pi_state;
351}
352
353static void free_pi_state(struct futex_pi_state *pi_state)
354{
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
357
358 /*
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
361 */
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
366
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
368 }
369
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
373 /*
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
377 */
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
381 }
382}
383
384/*
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
387 */
388static struct task_struct * futex_find_get_task(pid_t pid)
389{
390 struct task_struct *p;
391
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
399 }
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
403 }
404 get_task_struct(p);
405out_unlock:
406 read_unlock(&tasklist_lock);
407
408 return p;
409}
410
411/*
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
415 */
416void exit_pi_state_list(struct task_struct *curr)
417{
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
422
423 /*
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
427 */
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
430
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
435
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
438
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
443 }
444
445 list_del_init(&pi_state->list);
446
447 WARN_ON(pi_state->owner != curr);
448
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
451
452 rt_mutex_unlock(&pi_state->pi_mutex);
453
454 spin_unlock(&hb->lock);
455
456 spin_lock_irq(&curr->pi_lock);
457 }
458 spin_unlock_irq(&curr->pi_lock);
459}
460
461static int
462lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
463{
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
469
470 head = &hb->chain;
471
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
474 /*
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
477 */
478 pi_state = this->pi_state;
479 atomic_inc(&pi_state->refcount);
480 me->pi_state = pi_state;
481
482 return 0;
483 }
484 }
485
486 /*
487 * We are the first waiter - try to look up the real owner and
488 * attach the new pi_state to it:
489 */
490 pid = uval & FUTEX_TID_MASK;
491 p = futex_find_get_task(pid);
492 if (!p)
493 return -ESRCH;
494
495 pi_state = alloc_pi_state();
496
497 /*
498 * Initialize the pi_mutex in locked state and make 'p'
499 * the owner of it:
500 */
501 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
502
503 /* Store the key for possible exit cleanups: */
504 pi_state->key = me->key;
505
506 spin_lock_irq(&p->pi_lock);
507 list_add(&pi_state->list, &p->pi_state_list);
508 pi_state->owner = p;
509 spin_unlock_irq(&p->pi_lock);
510
511 put_task_struct(p);
512
513 me->pi_state = pi_state;
514
515 return 0;
516}
517
518/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 * The hash bucket lock must be held when this is called.
520 * Afterwards, the futex_q must not be accessed.
521 */
522static void wake_futex(struct futex_q *q)
523{
524 list_del_init(&q->list);
525 if (q->filp)
526 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
527 /*
528 * The lock in wake_up_all() is a crucial memory barrier after the
529 * list_del_init() and also before assigning to q->lock_ptr.
530 */
531 wake_up_all(&q->waiters);
532 /*
533 * The waiting task can free the futex_q as soon as this is written,
534 * without taking any locks. This must come last.
Andrew Morton8e311082005-12-23 19:54:46 -0800535 *
536 * A memory barrier is required here to prevent the following store
537 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538 * at the end of wake_up_all() does not prevent this store from
539 * moving.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540 */
Andrew Morton8e311082005-12-23 19:54:46 -0800541 wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542 q->lock_ptr = NULL;
543}
544
Ingo Molnarc87e2832006-06-27 02:54:58 -0700545static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
546{
547 struct task_struct *new_owner;
548 struct futex_pi_state *pi_state = this->pi_state;
549 u32 curval, newval;
550
551 if (!pi_state)
552 return -EINVAL;
553
554 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
555
556 /*
557 * This happens when we have stolen the lock and the original
558 * pending owner did not enqueue itself back on the rt_mutex.
559 * Thats not a tragedy. We know that way, that a lock waiter
560 * is on the fly. We make the futex_q waiter the pending owner.
561 */
562 if (!new_owner)
563 new_owner = this->task;
564
565 /*
566 * We pass it to the next owner. (The WAITERS bit is always
567 * kept enabled while there is PI state around. We must also
568 * preserve the owner died bit.)
569 */
570 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
571
572 inc_preempt_count();
573 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574 dec_preempt_count();
575
576 if (curval == -EFAULT)
577 return -EFAULT;
578 if (curval != uval)
579 return -EINVAL;
580
581 list_del_init(&pi_state->owner->pi_state_list);
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 rt_mutex_unlock(&pi_state->pi_mutex);
585
586 return 0;
587}
588
589static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
590{
591 u32 oldval;
592
593 /*
594 * There is no waiter, so we unlock the futex. The owner died
595 * bit has not to be preserved here. We are the owner:
596 */
597 inc_preempt_count();
598 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599 dec_preempt_count();
600
601 if (oldval == -EFAULT)
602 return oldval;
603 if (oldval != uval)
604 return -EAGAIN;
605
606 return 0;
607}
608
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609/*
610 * Wake up all waiters hashed on the physical page that is mapped
611 * to this virtual address:
612 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700613static int futex_wake(u32 __user *uaddr, int nr_wake)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614{
Ingo Molnare2970f22006-06-27 02:54:47 -0700615 struct futex_hash_bucket *hb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700616 struct futex_q *this, *next;
Ingo Molnare2970f22006-06-27 02:54:47 -0700617 struct list_head *head;
618 union futex_key key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619 int ret;
620
621 down_read(&current->mm->mmap_sem);
622
623 ret = get_futex_key(uaddr, &key);
624 if (unlikely(ret != 0))
625 goto out;
626
Ingo Molnare2970f22006-06-27 02:54:47 -0700627 hb = hash_futex(&key);
628 spin_lock(&hb->lock);
629 head = &hb->chain;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630
631 list_for_each_entry_safe(this, next, head, list) {
632 if (match_futex (&this->key, &key)) {
Ingo Molnared6f7b12006-07-01 04:35:46 -0700633 if (this->pi_state) {
634 ret = -EINVAL;
635 break;
636 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 wake_futex(this);
638 if (++ret >= nr_wake)
639 break;
640 }
641 }
642
Ingo Molnare2970f22006-06-27 02:54:47 -0700643 spin_unlock(&hb->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644out:
645 up_read(&current->mm->mmap_sem);
646 return ret;
647}
648
649/*
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700650 * Wake up all waiters hashed on the physical page that is mapped
651 * to this virtual address:
652 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700653static int
654futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
655 int nr_wake, int nr_wake2, int op)
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700656{
657 union futex_key key1, key2;
Ingo Molnare2970f22006-06-27 02:54:47 -0700658 struct futex_hash_bucket *hb1, *hb2;
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700659 struct list_head *head;
660 struct futex_q *this, *next;
661 int ret, op_ret, attempt = 0;
662
663retryfull:
664 down_read(&current->mm->mmap_sem);
665
666 ret = get_futex_key(uaddr1, &key1);
667 if (unlikely(ret != 0))
668 goto out;
669 ret = get_futex_key(uaddr2, &key2);
670 if (unlikely(ret != 0))
671 goto out;
672
Ingo Molnare2970f22006-06-27 02:54:47 -0700673 hb1 = hash_futex(&key1);
674 hb2 = hash_futex(&key2);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700675
676retry:
Ingo Molnare2970f22006-06-27 02:54:47 -0700677 if (hb1 < hb2)
678 spin_lock(&hb1->lock);
679 spin_lock(&hb2->lock);
680 if (hb1 > hb2)
681 spin_lock(&hb1->lock);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700682
Ingo Molnare2970f22006-06-27 02:54:47 -0700683 op_ret = futex_atomic_op_inuser(op, uaddr2);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700684 if (unlikely(op_ret < 0)) {
Ingo Molnare2970f22006-06-27 02:54:47 -0700685 u32 dummy;
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700686
Ingo Molnare2970f22006-06-27 02:54:47 -0700687 spin_unlock(&hb1->lock);
688 if (hb1 != hb2)
689 spin_unlock(&hb2->lock);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700690
David Howells7ee1dd32006-01-06 00:11:44 -0800691#ifndef CONFIG_MMU
Ingo Molnare2970f22006-06-27 02:54:47 -0700692 /*
693 * we don't get EFAULT from MMU faults if we don't have an MMU,
694 * but we might get them from range checking
695 */
David Howells7ee1dd32006-01-06 00:11:44 -0800696 ret = op_ret;
697 goto out;
698#endif
699
David Gibson796f8d92005-11-07 00:59:33 -0800700 if (unlikely(op_ret != -EFAULT)) {
701 ret = op_ret;
702 goto out;
703 }
704
Ingo Molnare2970f22006-06-27 02:54:47 -0700705 /*
706 * futex_atomic_op_inuser needs to both read and write
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700707 * *(int __user *)uaddr2, but we can't modify it
708 * non-atomically. Therefore, if get_user below is not
709 * enough, we need to handle the fault ourselves, while
Ingo Molnare2970f22006-06-27 02:54:47 -0700710 * still holding the mmap_sem.
711 */
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700712 if (attempt++) {
Ingo Molnarc87e2832006-06-27 02:54:58 -0700713 if (futex_handle_fault((unsigned long)uaddr2,
714 attempt))
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700715 goto out;
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700716 goto retry;
717 }
718
Ingo Molnare2970f22006-06-27 02:54:47 -0700719 /*
720 * If we would have faulted, release mmap_sem,
721 * fault it in and start all over again.
722 */
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700723 up_read(&current->mm->mmap_sem);
724
Ingo Molnare2970f22006-06-27 02:54:47 -0700725 ret = get_user(dummy, uaddr2);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700726 if (ret)
727 return ret;
728
729 goto retryfull;
730 }
731
Ingo Molnare2970f22006-06-27 02:54:47 -0700732 head = &hb1->chain;
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700733
734 list_for_each_entry_safe(this, next, head, list) {
735 if (match_futex (&this->key, &key1)) {
736 wake_futex(this);
737 if (++ret >= nr_wake)
738 break;
739 }
740 }
741
742 if (op_ret > 0) {
Ingo Molnare2970f22006-06-27 02:54:47 -0700743 head = &hb2->chain;
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700744
745 op_ret = 0;
746 list_for_each_entry_safe(this, next, head, list) {
747 if (match_futex (&this->key, &key2)) {
748 wake_futex(this);
749 if (++op_ret >= nr_wake2)
750 break;
751 }
752 }
753 ret += op_ret;
754 }
755
Ingo Molnare2970f22006-06-27 02:54:47 -0700756 spin_unlock(&hb1->lock);
757 if (hb1 != hb2)
758 spin_unlock(&hb2->lock);
Jakub Jelinek4732efb2005-09-06 15:16:25 -0700759out:
760 up_read(&current->mm->mmap_sem);
761 return ret;
762}
763
764/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765 * Requeue all waiters hashed on one physical page to another
766 * physical page.
767 */
Ingo Molnare2970f22006-06-27 02:54:47 -0700768static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
769 int nr_wake, int nr_requeue, u32 *cmpval)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770{
771 union futex_key key1, key2;
Ingo Molnare2970f22006-06-27 02:54:47 -0700772 struct futex_hash_bucket *hb1, *hb2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773 struct list_head *head1;
774 struct futex_q *this, *next;
775 int ret, drop_count = 0;
776
777 retry:
778 down_read(&current->mm->mmap_sem);
779
780 ret = get_futex_key(uaddr1, &key1);
781 if (unlikely(ret != 0))
782 goto out;
783 ret = get_futex_key(uaddr2, &key2);
784 if (unlikely(ret != 0))
785 goto out;
786
Ingo Molnare2970f22006-06-27 02:54:47 -0700787 hb1 = hash_futex(&key1);
788 hb2 = hash_futex(&key2);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789
Ingo Molnare2970f22006-06-27 02:54:47 -0700790 if (hb1 < hb2)
791 spin_lock(&hb1->lock);
792 spin_lock(&hb2->lock);
793 if (hb1 > hb2)
794 spin_lock(&hb1->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795
Ingo Molnare2970f22006-06-27 02:54:47 -0700796 if (likely(cmpval != NULL)) {
797 u32 curval;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798
Ingo Molnare2970f22006-06-27 02:54:47 -0700799 ret = get_futex_value_locked(&curval, uaddr1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800
801 if (unlikely(ret)) {
Ingo Molnare2970f22006-06-27 02:54:47 -0700802 spin_unlock(&hb1->lock);
803 if (hb1 != hb2)
804 spin_unlock(&hb2->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805
Ingo Molnare2970f22006-06-27 02:54:47 -0700806 /*
807 * If we would have faulted, release mmap_sem, fault
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808 * it in and start all over again.
809 */
810 up_read(&current->mm->mmap_sem);
811
Ingo Molnare2970f22006-06-27 02:54:47 -0700812 ret = get_user(curval, uaddr1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813
814 if (!ret)
815 goto retry;
816
817 return ret;
818 }
Ingo Molnare2970f22006-06-27 02:54:47 -0700819 if (curval != *cmpval) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820 ret = -EAGAIN;
821 goto out_unlock;
822 }
823 }
824
Ingo Molnare2970f22006-06-27 02:54:47 -0700825 head1 = &hb1->chain;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 list_for_each_entry_safe(this, next, head1, list) {
827 if (!match_futex (&this->key, &key1))
828 continue;
829 if (++ret <= nr_wake) {
830 wake_futex(this);
831 } else {
Sebastien Dugue59e0e0a2006-06-27 02:55:03 -0700832 /*
833 * If key1 and key2 hash to the same bucket, no need to
834 * requeue.
835 */
836 if (likely(head1 != &hb2->chain)) {
837 list_move_tail(&this->list, &hb2->chain);
838 this->lock_ptr = &hb2->lock;
839 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840 this->key = key2;
841 get_key_refs(&key2);
842 drop_count++;
843
844 if (ret - nr_wake >= nr_requeue)
845 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846 }
847 }
848
849out_unlock:
Ingo Molnare2970f22006-06-27 02:54:47 -0700850 spin_unlock(&hb1->lock);
851 if (hb1 != hb2)
852 spin_unlock(&hb2->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853
854 /* drop_key_refs() must be called outside the spinlocks. */
855 while (--drop_count >= 0)
856 drop_key_refs(&key1);
857
858out:
859 up_read(&current->mm->mmap_sem);
860 return ret;
861}
862
863/* The key must be already stored in q->key. */
864static inline struct futex_hash_bucket *
865queue_lock(struct futex_q *q, int fd, struct file *filp)
866{
Ingo Molnare2970f22006-06-27 02:54:47 -0700867 struct futex_hash_bucket *hb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700868
869 q->fd = fd;
870 q->filp = filp;
871
872 init_waitqueue_head(&q->waiters);
873
874 get_key_refs(&q->key);
Ingo Molnare2970f22006-06-27 02:54:47 -0700875 hb = hash_futex(&q->key);
876 q->lock_ptr = &hb->lock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877
Ingo Molnare2970f22006-06-27 02:54:47 -0700878 spin_lock(&hb->lock);
879 return hb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880}
881
Ingo Molnare2970f22006-06-27 02:54:47 -0700882static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883{
Ingo Molnare2970f22006-06-27 02:54:47 -0700884 list_add_tail(&q->list, &hb->chain);
Ingo Molnarc87e2832006-06-27 02:54:58 -0700885 q->task = current;
Ingo Molnare2970f22006-06-27 02:54:47 -0700886 spin_unlock(&hb->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700887}
888
889static inline void
Ingo Molnare2970f22006-06-27 02:54:47 -0700890queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891{
Ingo Molnare2970f22006-06-27 02:54:47 -0700892 spin_unlock(&hb->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 drop_key_refs(&q->key);
894}
895
896/*
897 * queue_me and unqueue_me must be called as a pair, each
898 * exactly once. They are called with the hashed spinlock held.
899 */
900
901/* The key must be already stored in q->key. */
902static void queue_me(struct futex_q *q, int fd, struct file *filp)
903{
Ingo Molnare2970f22006-06-27 02:54:47 -0700904 struct futex_hash_bucket *hb;
905
906 hb = queue_lock(q, fd, filp);
907 __queue_me(q, hb);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908}
909
910/* Return 1 if we were still queued (ie. 0 means we were woken) */
911static int unqueue_me(struct futex_q *q)
912{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913 spinlock_t *lock_ptr;
Ingo Molnare2970f22006-06-27 02:54:47 -0700914 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915
916 /* In the common case we don't take the spinlock, which is nice. */
917 retry:
918 lock_ptr = q->lock_ptr;
919 if (lock_ptr != 0) {
920 spin_lock(lock_ptr);
921 /*
922 * q->lock_ptr can change between reading it and
923 * spin_lock(), causing us to take the wrong lock. This
924 * corrects the race condition.
925 *
926 * Reasoning goes like this: if we have the wrong lock,
927 * q->lock_ptr must have changed (maybe several times)
928 * between reading it and the spin_lock(). It can
929 * change again after the spin_lock() but only if it was
930 * already changed before the spin_lock(). It cannot,
931 * however, change back to the original value. Therefore
932 * we can detect whether we acquired the correct lock.
933 */
934 if (unlikely(lock_ptr != q->lock_ptr)) {
935 spin_unlock(lock_ptr);
936 goto retry;
937 }
938 WARN_ON(list_empty(&q->list));
939 list_del(&q->list);
Ingo Molnarc87e2832006-06-27 02:54:58 -0700940
941 BUG_ON(q->pi_state);
942
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943 spin_unlock(lock_ptr);
944 ret = 1;
945 }
946
947 drop_key_refs(&q->key);
948 return ret;
949}
950
Ingo Molnarc87e2832006-06-27 02:54:58 -0700951/*
952 * PI futexes can not be requeued and must remove themself from the
953 * hash bucket. The hash bucket lock is held on entry and dropped here.
954 */
955static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
956{
957 WARN_ON(list_empty(&q->list));
958 list_del(&q->list);
959
960 BUG_ON(!q->pi_state);
961 free_pi_state(q->pi_state);
962 q->pi_state = NULL;
963
964 spin_unlock(&hb->lock);
965
966 drop_key_refs(&q->key);
967}
968
Ingo Molnare2970f22006-06-27 02:54:47 -0700969static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970{
Ingo Molnarc87e2832006-06-27 02:54:58 -0700971 struct task_struct *curr = current;
972 DECLARE_WAITQUEUE(wait, curr);
Ingo Molnare2970f22006-06-27 02:54:47 -0700973 struct futex_hash_bucket *hb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974 struct futex_q q;
Ingo Molnare2970f22006-06-27 02:54:47 -0700975 u32 uval;
976 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977
Ingo Molnarc87e2832006-06-27 02:54:58 -0700978 q.pi_state = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700979 retry:
Ingo Molnarc87e2832006-06-27 02:54:58 -0700980 down_read(&curr->mm->mmap_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981
982 ret = get_futex_key(uaddr, &q.key);
983 if (unlikely(ret != 0))
984 goto out_release_sem;
985
Ingo Molnare2970f22006-06-27 02:54:47 -0700986 hb = queue_lock(&q, -1, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987
988 /*
989 * Access the page AFTER the futex is queued.
990 * Order is important:
991 *
992 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
993 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
994 *
995 * The basic logical guarantee of a futex is that it blocks ONLY
996 * if cond(var) is known to be true at the time of blocking, for
997 * any cond. If we queued after testing *uaddr, that would open
998 * a race condition where we could block indefinitely with
999 * cond(var) false, which would violate the guarantee.
1000 *
1001 * A consequence is that futex_wait() can return zero and absorb
1002 * a wakeup when *uaddr != val on entry to the syscall. This is
1003 * rare, but normal.
1004 *
1005 * We hold the mmap semaphore, so the mapping cannot have changed
1006 * since we looked it up in get_futex_key.
1007 */
Ingo Molnare2970f22006-06-27 02:54:47 -07001008 ret = get_futex_value_locked(&uval, uaddr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009
1010 if (unlikely(ret)) {
Ingo Molnare2970f22006-06-27 02:54:47 -07001011 queue_unlock(&q, hb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012
Ingo Molnare2970f22006-06-27 02:54:47 -07001013 /*
1014 * If we would have faulted, release mmap_sem, fault it in and
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015 * start all over again.
1016 */
Ingo Molnarc87e2832006-06-27 02:54:58 -07001017 up_read(&curr->mm->mmap_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018
Ingo Molnare2970f22006-06-27 02:54:47 -07001019 ret = get_user(uval, uaddr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020
1021 if (!ret)
1022 goto retry;
1023 return ret;
1024 }
Ingo Molnarc87e2832006-06-27 02:54:58 -07001025 ret = -EWOULDBLOCK;
1026 if (uval != val)
1027 goto out_unlock_release_sem;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028
1029 /* Only actually queue if *uaddr contained val. */
Ingo Molnare2970f22006-06-27 02:54:47 -07001030 __queue_me(&q, hb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031
1032 /*
1033 * Now the futex is queued and we have checked the data, we
1034 * don't want to hold mmap_sem while we sleep.
Ingo Molnarc87e2832006-06-27 02:54:58 -07001035 */
1036 up_read(&curr->mm->mmap_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037
1038 /*
1039 * There might have been scheduling since the queue_me(), as we
1040 * cannot hold a spinlock across the get_user() in case it
1041 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1042 * queueing ourselves into the futex hash. This code thus has to
1043 * rely on the futex_wake() code removing us from hash when it
1044 * wakes us up.
1045 */
1046
1047 /* add_wait_queue is the barrier after __set_current_state. */
1048 __set_current_state(TASK_INTERRUPTIBLE);
1049 add_wait_queue(&q.waiters, &wait);
1050 /*
1051 * !list_empty() is safe here without any lock.
1052 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1053 */
1054 if (likely(!list_empty(&q.list)))
1055 time = schedule_timeout(time);
1056 __set_current_state(TASK_RUNNING);
1057
1058 /*
1059 * NOTE: we don't remove ourselves from the waitqueue because
1060 * we are the only user of it.
1061 */
1062
1063 /* If we were woken (and unqueued), we succeeded, whatever. */
1064 if (!unqueue_me(&q))
1065 return 0;
1066 if (time == 0)
1067 return -ETIMEDOUT;
Ingo Molnare2970f22006-06-27 02:54:47 -07001068 /*
1069 * We expect signal_pending(current), but another thread may
1070 * have handled it for us already.
1071 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072 return -EINTR;
1073
Ingo Molnarc87e2832006-06-27 02:54:58 -07001074 out_unlock_release_sem:
1075 queue_unlock(&q, hb);
1076
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077 out_release_sem:
Ingo Molnarc87e2832006-06-27 02:54:58 -07001078 up_read(&curr->mm->mmap_sem);
1079 return ret;
1080}
1081
1082/*
1083 * Userspace tried a 0 -> TID atomic transition of the futex value
1084 * and failed. The kernel side here does the whole locking operation:
1085 * if there are waiters then it will block, it does PI, etc. (Due to
1086 * races the kernel might see a 0 value of the futex too.)
1087 */
1088static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1089 struct hrtimer_sleeper *to)
1090{
1091 struct task_struct *curr = current;
1092 struct futex_hash_bucket *hb;
1093 u32 uval, newval, curval;
1094 struct futex_q q;
1095 int ret, attempt = 0;
1096
1097 if (refill_pi_state_cache())
1098 return -ENOMEM;
1099
1100 q.pi_state = NULL;
1101 retry:
1102 down_read(&curr->mm->mmap_sem);
1103
1104 ret = get_futex_key(uaddr, &q.key);
1105 if (unlikely(ret != 0))
1106 goto out_release_sem;
1107
1108 hb = queue_lock(&q, -1, NULL);
1109
1110 retry_locked:
1111 /*
1112 * To avoid races, we attempt to take the lock here again
1113 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1114 * the locks. It will most likely not succeed.
1115 */
1116 newval = current->pid;
1117
1118 inc_preempt_count();
1119 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1120 dec_preempt_count();
1121
1122 if (unlikely(curval == -EFAULT))
1123 goto uaddr_faulted;
1124
1125 /* We own the lock already */
1126 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1127 if (!detect && 0)
1128 force_sig(SIGKILL, current);
1129 ret = -EDEADLK;
1130 goto out_unlock_release_sem;
1131 }
1132
1133 /*
1134 * Surprise - we got the lock. Just return
1135 * to userspace:
1136 */
1137 if (unlikely(!curval))
1138 goto out_unlock_release_sem;
1139
1140 uval = curval;
1141 newval = uval | FUTEX_WAITERS;
1142
1143 inc_preempt_count();
1144 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1145 dec_preempt_count();
1146
1147 if (unlikely(curval == -EFAULT))
1148 goto uaddr_faulted;
1149 if (unlikely(curval != uval))
1150 goto retry_locked;
1151
1152 /*
1153 * We dont have the lock. Look up the PI state (or create it if
1154 * we are the first waiter):
1155 */
1156 ret = lookup_pi_state(uval, hb, &q);
1157
1158 if (unlikely(ret)) {
1159 /*
1160 * There were no waiters and the owner task lookup
1161 * failed. When the OWNER_DIED bit is set, then we
1162 * know that this is a robust futex and we actually
1163 * take the lock. This is safe as we are protected by
1164 * the hash bucket lock. We also set the waiters bit
1165 * unconditionally here, to simplify glibc handling of
1166 * multiple tasks racing to acquire the lock and
1167 * cleanup the problems which were left by the dead
1168 * owner.
1169 */
1170 if (curval & FUTEX_OWNER_DIED) {
1171 uval = newval;
1172 newval = current->pid |
1173 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1174
1175 inc_preempt_count();
1176 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1177 uval, newval);
1178 dec_preempt_count();
1179
1180 if (unlikely(curval == -EFAULT))
1181 goto uaddr_faulted;
1182 if (unlikely(curval != uval))
1183 goto retry_locked;
1184 ret = 0;
1185 }
1186 goto out_unlock_release_sem;
1187 }
1188
1189 /*
1190 * Only actually queue now that the atomic ops are done:
1191 */
1192 __queue_me(&q, hb);
1193
1194 /*
1195 * Now the futex is queued and we have checked the data, we
1196 * don't want to hold mmap_sem while we sleep.
1197 */
1198 up_read(&curr->mm->mmap_sem);
1199
1200 WARN_ON(!q.pi_state);
1201 /*
1202 * Block on the PI mutex:
1203 */
1204 if (!trylock)
1205 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1206 else {
1207 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1208 /* Fixup the trylock return value: */
1209 ret = ret ? 0 : -EWOULDBLOCK;
1210 }
1211
1212 down_read(&curr->mm->mmap_sem);
Vernon Mauerya99e4e42006-07-01 04:35:42 -07001213 spin_lock(q.lock_ptr);
Ingo Molnarc87e2832006-06-27 02:54:58 -07001214
1215 /*
1216 * Got the lock. We might not be the anticipated owner if we
1217 * did a lock-steal - fix up the PI-state in that case.
1218 */
1219 if (!ret && q.pi_state->owner != curr) {
1220 u32 newtid = current->pid | FUTEX_WAITERS;
1221
1222 /* Owner died? */
1223 if (q.pi_state->owner != NULL) {
1224 spin_lock_irq(&q.pi_state->owner->pi_lock);
1225 list_del_init(&q.pi_state->list);
1226 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1227 } else
1228 newtid |= FUTEX_OWNER_DIED;
1229
1230 q.pi_state->owner = current;
1231
1232 spin_lock_irq(&current->pi_lock);
1233 list_add(&q.pi_state->list, &current->pi_state_list);
1234 spin_unlock_irq(&current->pi_lock);
1235
1236 /* Unqueue and drop the lock */
1237 unqueue_me_pi(&q, hb);
1238 up_read(&curr->mm->mmap_sem);
1239 /*
1240 * We own it, so we have to replace the pending owner
1241 * TID. This must be atomic as we have preserve the
1242 * owner died bit here.
1243 */
1244 ret = get_user(uval, uaddr);
1245 while (!ret) {
1246 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1247 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1248 uval, newval);
1249 if (curval == -EFAULT)
1250 ret = -EFAULT;
1251 if (curval == uval)
1252 break;
1253 uval = curval;
1254 }
1255 } else {
1256 /*
1257 * Catch the rare case, where the lock was released
1258 * when we were on the way back before we locked
1259 * the hash bucket.
1260 */
1261 if (ret && q.pi_state->owner == curr) {
1262 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1263 ret = 0;
1264 }
1265 /* Unqueue and drop the lock */
1266 unqueue_me_pi(&q, hb);
1267 up_read(&curr->mm->mmap_sem);
1268 }
1269
1270 if (!detect && ret == -EDEADLK && 0)
1271 force_sig(SIGKILL, current);
1272
1273 return ret;
1274
1275 out_unlock_release_sem:
1276 queue_unlock(&q, hb);
1277
1278 out_release_sem:
1279 up_read(&curr->mm->mmap_sem);
1280 return ret;
1281
1282 uaddr_faulted:
1283 /*
1284 * We have to r/w *(int __user *)uaddr, but we can't modify it
1285 * non-atomically. Therefore, if get_user below is not
1286 * enough, we need to handle the fault ourselves, while
1287 * still holding the mmap_sem.
1288 */
1289 if (attempt++) {
1290 if (futex_handle_fault((unsigned long)uaddr, attempt))
1291 goto out_unlock_release_sem;
1292
1293 goto retry_locked;
1294 }
1295
1296 queue_unlock(&q, hb);
1297 up_read(&curr->mm->mmap_sem);
1298
1299 ret = get_user(uval, uaddr);
1300 if (!ret && (uval != -EFAULT))
1301 goto retry;
1302
1303 return ret;
1304}
1305
1306/*
1307 * Restart handler
1308 */
1309static long futex_lock_pi_restart(struct restart_block *restart)
1310{
1311 struct hrtimer_sleeper timeout, *to = NULL;
1312 int ret;
1313
1314 restart->fn = do_no_restart_syscall;
1315
1316 if (restart->arg2 || restart->arg3) {
1317 to = &timeout;
1318 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1319 hrtimer_init_sleeper(to, current);
1320 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1321 (u64) restart->arg0;
1322 }
1323
1324 pr_debug("lock_pi restart: %p, %d (%d)\n",
1325 (u32 __user *)restart->arg0, current->pid);
1326
1327 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1328 0, to);
1329
1330 if (ret != -EINTR)
1331 return ret;
1332
1333 restart->fn = futex_lock_pi_restart;
1334
1335 /* The other values are filled in */
1336 return -ERESTART_RESTARTBLOCK;
1337}
1338
1339/*
1340 * Called from the syscall entry below.
1341 */
1342static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1343 long nsec, int trylock)
1344{
1345 struct hrtimer_sleeper timeout, *to = NULL;
1346 struct restart_block *restart;
1347 int ret;
1348
1349 if (sec != MAX_SCHEDULE_TIMEOUT) {
1350 to = &timeout;
1351 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1352 hrtimer_init_sleeper(to, current);
1353 to->timer.expires = ktime_set(sec, nsec);
1354 }
1355
1356 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1357
1358 if (ret != -EINTR)
1359 return ret;
1360
1361 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1362
1363 restart = &current_thread_info()->restart_block;
1364 restart->fn = futex_lock_pi_restart;
1365 restart->arg0 = (unsigned long) uaddr;
1366 restart->arg1 = detect;
1367 if (to) {
1368 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1369 restart->arg3 = to->timer.expires.tv64 >> 32;
1370 } else
1371 restart->arg2 = restart->arg3 = 0;
1372
1373 return -ERESTART_RESTARTBLOCK;
1374}
1375
1376/*
1377 * Userspace attempted a TID -> 0 atomic transition, and failed.
1378 * This is the in-kernel slowpath: we look up the PI state (if any),
1379 * and do the rt-mutex unlock.
1380 */
1381static int futex_unlock_pi(u32 __user *uaddr)
1382{
1383 struct futex_hash_bucket *hb;
1384 struct futex_q *this, *next;
1385 u32 uval;
1386 struct list_head *head;
1387 union futex_key key;
1388 int ret, attempt = 0;
1389
1390retry:
1391 if (get_user(uval, uaddr))
1392 return -EFAULT;
1393 /*
1394 * We release only a lock we actually own:
1395 */
1396 if ((uval & FUTEX_TID_MASK) != current->pid)
1397 return -EPERM;
1398 /*
1399 * First take all the futex related locks:
1400 */
1401 down_read(&current->mm->mmap_sem);
1402
1403 ret = get_futex_key(uaddr, &key);
1404 if (unlikely(ret != 0))
1405 goto out;
1406
1407 hb = hash_futex(&key);
1408 spin_lock(&hb->lock);
1409
1410retry_locked:
1411 /*
1412 * To avoid races, try to do the TID -> 0 atomic transition
1413 * again. If it succeeds then we can return without waking
1414 * anyone else up:
1415 */
1416 inc_preempt_count();
1417 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1418 dec_preempt_count();
1419
1420 if (unlikely(uval == -EFAULT))
1421 goto pi_faulted;
1422 /*
1423 * Rare case: we managed to release the lock atomically,
1424 * no need to wake anyone else up:
1425 */
1426 if (unlikely(uval == current->pid))
1427 goto out_unlock;
1428
1429 /*
1430 * Ok, other tasks may need to be woken up - check waiters
1431 * and do the wakeup if necessary:
1432 */
1433 head = &hb->chain;
1434
1435 list_for_each_entry_safe(this, next, head, list) {
1436 if (!match_futex (&this->key, &key))
1437 continue;
1438 ret = wake_futex_pi(uaddr, uval, this);
1439 /*
1440 * The atomic access to the futex value
1441 * generated a pagefault, so retry the
1442 * user-access and the wakeup:
1443 */
1444 if (ret == -EFAULT)
1445 goto pi_faulted;
1446 goto out_unlock;
1447 }
1448 /*
1449 * No waiters - kernel unlocks the futex:
1450 */
1451 ret = unlock_futex_pi(uaddr, uval);
1452 if (ret == -EFAULT)
1453 goto pi_faulted;
1454
1455out_unlock:
1456 spin_unlock(&hb->lock);
1457out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 up_read(&current->mm->mmap_sem);
Ingo Molnarc87e2832006-06-27 02:54:58 -07001459
1460 return ret;
1461
1462pi_faulted:
1463 /*
1464 * We have to r/w *(int __user *)uaddr, but we can't modify it
1465 * non-atomically. Therefore, if get_user below is not
1466 * enough, we need to handle the fault ourselves, while
1467 * still holding the mmap_sem.
1468 */
1469 if (attempt++) {
1470 if (futex_handle_fault((unsigned long)uaddr, attempt))
1471 goto out_unlock;
1472
1473 goto retry_locked;
1474 }
1475
1476 spin_unlock(&hb->lock);
1477 up_read(&current->mm->mmap_sem);
1478
1479 ret = get_user(uval, uaddr);
1480 if (!ret && (uval != -EFAULT))
1481 goto retry;
1482
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483 return ret;
1484}
1485
1486static int futex_close(struct inode *inode, struct file *filp)
1487{
1488 struct futex_q *q = filp->private_data;
1489
1490 unqueue_me(q);
1491 kfree(q);
Ingo Molnare2970f22006-06-27 02:54:47 -07001492
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 return 0;
1494}
1495
1496/* This is one-shot: once it's gone off you need a new fd */
1497static unsigned int futex_poll(struct file *filp,
1498 struct poll_table_struct *wait)
1499{
1500 struct futex_q *q = filp->private_data;
1501 int ret = 0;
1502
1503 poll_wait(filp, &q->waiters, wait);
1504
1505 /*
1506 * list_empty() is safe here without any lock.
1507 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1508 */
1509 if (list_empty(&q->list))
1510 ret = POLLIN | POLLRDNORM;
1511
1512 return ret;
1513}
1514
1515static struct file_operations futex_fops = {
1516 .release = futex_close,
1517 .poll = futex_poll,
1518};
1519
1520/*
1521 * Signal allows caller to avoid the race which would occur if they
1522 * set the sigio stuff up afterwards.
1523 */
Ingo Molnare2970f22006-06-27 02:54:47 -07001524static int futex_fd(u32 __user *uaddr, int signal)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525{
1526 struct futex_q *q;
1527 struct file *filp;
1528 int ret, err;
1529
1530 ret = -EINVAL;
Jesper Juhl7ed20e12005-05-01 08:59:14 -07001531 if (!valid_signal(signal))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 goto out;
1533
1534 ret = get_unused_fd();
1535 if (ret < 0)
1536 goto out;
1537 filp = get_empty_filp();
1538 if (!filp) {
1539 put_unused_fd(ret);
1540 ret = -ENFILE;
1541 goto out;
1542 }
1543 filp->f_op = &futex_fops;
1544 filp->f_vfsmnt = mntget(futex_mnt);
1545 filp->f_dentry = dget(futex_mnt->mnt_root);
1546 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1547
1548 if (signal) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 err = f_setown(filp, current->pid, 1);
1550 if (err < 0) {
Pekka Enberg39ed3fd2005-09-06 15:17:44 -07001551 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552 }
1553 filp->f_owner.signum = signal;
1554 }
1555
1556 q = kmalloc(sizeof(*q), GFP_KERNEL);
1557 if (!q) {
Pekka Enberg39ed3fd2005-09-06 15:17:44 -07001558 err = -ENOMEM;
1559 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560 }
Ingo Molnarc87e2832006-06-27 02:54:58 -07001561 q->pi_state = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562
1563 down_read(&current->mm->mmap_sem);
1564 err = get_futex_key(uaddr, &q->key);
1565
1566 if (unlikely(err != 0)) {
1567 up_read(&current->mm->mmap_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568 kfree(q);
Pekka Enberg39ed3fd2005-09-06 15:17:44 -07001569 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 }
1571
1572 /*
1573 * queue_me() must be called before releasing mmap_sem, because
1574 * key->shared.inode needs to be referenced while holding it.
1575 */
1576 filp->private_data = q;
1577
1578 queue_me(q, ret, filp);
1579 up_read(&current->mm->mmap_sem);
1580
1581 /* Now we map fd to filp, so userspace can access it */
1582 fd_install(ret, filp);
1583out:
1584 return ret;
Pekka Enberg39ed3fd2005-09-06 15:17:44 -07001585error:
1586 put_unused_fd(ret);
1587 put_filp(filp);
1588 ret = err;
1589 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590}
1591
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001592/*
1593 * Support for robust futexes: the kernel cleans up held futexes at
1594 * thread exit time.
1595 *
1596 * Implementation: user-space maintains a per-thread list of locks it
1597 * is holding. Upon do_exit(), the kernel carefully walks this list,
1598 * and marks all locks that are owned by this thread with the
Ingo Molnarc87e2832006-06-27 02:54:58 -07001599 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001600 * always manipulated with the lock held, so the list is private and
1601 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1602 * field, to allow the kernel to clean up if the thread dies after
1603 * acquiring the lock, but just before it could have added itself to
1604 * the list. There can only be one such pending lock.
1605 */
1606
1607/**
1608 * sys_set_robust_list - set the robust-futex list head of a task
1609 * @head: pointer to the list-head
1610 * @len: length of the list-head, as userspace expects
1611 */
1612asmlinkage long
1613sys_set_robust_list(struct robust_list_head __user *head,
1614 size_t len)
1615{
1616 /*
1617 * The kernel knows only one size for now:
1618 */
1619 if (unlikely(len != sizeof(*head)))
1620 return -EINVAL;
1621
1622 current->robust_list = head;
1623
1624 return 0;
1625}
1626
1627/**
1628 * sys_get_robust_list - get the robust-futex list head of a task
1629 * @pid: pid of the process [zero for current task]
1630 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1631 * @len_ptr: pointer to a length field, the kernel fills in the header size
1632 */
1633asmlinkage long
1634sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1635 size_t __user *len_ptr)
1636{
1637 struct robust_list_head *head;
1638 unsigned long ret;
1639
1640 if (!pid)
1641 head = current->robust_list;
1642 else {
1643 struct task_struct *p;
1644
1645 ret = -ESRCH;
1646 read_lock(&tasklist_lock);
1647 p = find_task_by_pid(pid);
1648 if (!p)
1649 goto err_unlock;
1650 ret = -EPERM;
1651 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1652 !capable(CAP_SYS_PTRACE))
1653 goto err_unlock;
1654 head = p->robust_list;
1655 read_unlock(&tasklist_lock);
1656 }
1657
1658 if (put_user(sizeof(*head), len_ptr))
1659 return -EFAULT;
1660 return put_user(head, head_ptr);
1661
1662err_unlock:
1663 read_unlock(&tasklist_lock);
1664
1665 return ret;
1666}
1667
1668/*
1669 * Process a futex-list entry, check whether it's owned by the
1670 * dying task, and do notification if so:
1671 */
Ingo Molnar8f17d3a2006-03-27 01:16:27 -08001672int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001673{
Ingo Molnarc87e2832006-06-27 02:54:58 -07001674 u32 uval, nval;
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001675
Ingo Molnar8f17d3a2006-03-27 01:16:27 -08001676retry:
1677 if (get_user(uval, uaddr))
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001678 return -1;
1679
Ingo Molnar8f17d3a2006-03-27 01:16:27 -08001680 if ((uval & FUTEX_TID_MASK) == curr->pid) {
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001681 /*
1682 * Ok, this dying thread is truly holding a futex
1683 * of interest. Set the OWNER_DIED bit atomically
1684 * via cmpxchg, and if the value had FUTEX_WAITERS
1685 * set, wake up a waiter (if any). (We have to do a
1686 * futex_wake() even if OWNER_DIED is already set -
1687 * to handle the rare but possible case of recursive
1688 * thread-death.) The rest of the cleanup is done in
1689 * userspace.
1690 */
Ingo Molnarc87e2832006-06-27 02:54:58 -07001691 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1692 uval | FUTEX_OWNER_DIED);
1693 if (nval == -EFAULT)
1694 return -1;
1695
1696 if (nval != uval)
Ingo Molnar8f17d3a2006-03-27 01:16:27 -08001697 goto retry;
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001698
Ingo Molnar8f17d3a2006-03-27 01:16:27 -08001699 if (uval & FUTEX_WAITERS)
Ingo Molnare2970f22006-06-27 02:54:47 -07001700 futex_wake(uaddr, 1);
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001701 }
1702 return 0;
1703}
1704
1705/*
1706 * Walk curr->robust_list (very carefully, it's a userspace list!)
1707 * and mark any locks found there dead, and notify any waiters.
1708 *
1709 * We silently return on any sign of list-walking problem.
1710 */
1711void exit_robust_list(struct task_struct *curr)
1712{
1713 struct robust_list_head __user *head = curr->robust_list;
1714 struct robust_list __user *entry, *pending;
1715 unsigned int limit = ROBUST_LIST_LIMIT;
1716 unsigned long futex_offset;
1717
1718 /*
1719 * Fetch the list head (which was registered earlier, via
1720 * sys_set_robust_list()):
1721 */
1722 if (get_user(entry, &head->list.next))
1723 return;
1724 /*
1725 * Fetch the relative futex offset:
1726 */
1727 if (get_user(futex_offset, &head->futex_offset))
1728 return;
1729 /*
1730 * Fetch any possibly pending lock-add first, and handle it
1731 * if it exists:
1732 */
1733 if (get_user(pending, &head->list_op_pending))
1734 return;
1735 if (pending)
1736 handle_futex_death((void *)pending + futex_offset, curr);
1737
1738 while (entry != &head->list) {
1739 /*
1740 * A pending lock might already be on the list, so
Ingo Molnarc87e2832006-06-27 02:54:58 -07001741 * don't process it twice:
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001742 */
1743 if (entry != pending)
1744 if (handle_futex_death((void *)entry + futex_offset,
1745 curr))
1746 return;
Ingo Molnar0771dfe2006-03-27 01:16:22 -08001747 /*
1748 * Fetch the next entry in the list:
1749 */
1750 if (get_user(entry, &entry->next))
1751 return;
1752 /*
1753 * Avoid excessively long or circular lists:
1754 */
1755 if (!--limit)
1756 break;
1757
1758 cond_resched();
1759 }
1760}
1761
Ingo Molnare2970f22006-06-27 02:54:47 -07001762long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1763 u32 __user *uaddr2, u32 val2, u32 val3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764{
1765 int ret;
1766
1767 switch (op) {
1768 case FUTEX_WAIT:
1769 ret = futex_wait(uaddr, val, timeout);
1770 break;
1771 case FUTEX_WAKE:
1772 ret = futex_wake(uaddr, val);
1773 break;
1774 case FUTEX_FD:
1775 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1776 ret = futex_fd(uaddr, val);
1777 break;
1778 case FUTEX_REQUEUE:
1779 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1780 break;
1781 case FUTEX_CMP_REQUEUE:
1782 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1783 break;
Jakub Jelinek4732efb2005-09-06 15:16:25 -07001784 case FUTEX_WAKE_OP:
1785 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1786 break;
Ingo Molnarc87e2832006-06-27 02:54:58 -07001787 case FUTEX_LOCK_PI:
1788 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1789 break;
1790 case FUTEX_UNLOCK_PI:
1791 ret = futex_unlock_pi(uaddr);
1792 break;
1793 case FUTEX_TRYLOCK_PI:
1794 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1795 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 default:
1797 ret = -ENOSYS;
1798 }
1799 return ret;
1800}
1801
1802
Ingo Molnare2970f22006-06-27 02:54:47 -07001803asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 struct timespec __user *utime, u32 __user *uaddr2,
Ingo Molnare2970f22006-06-27 02:54:47 -07001805 u32 val3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806{
1807 struct timespec t;
1808 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
Ingo Molnare2970f22006-06-27 02:54:47 -07001809 u32 val2 = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810
Ingo Molnarc87e2832006-06-27 02:54:58 -07001811 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1813 return -EFAULT;
Thomas Gleixner9741ef962006-03-31 02:31:32 -08001814 if (!timespec_valid(&t))
1815 return -EINVAL;
Ingo Molnarc87e2832006-06-27 02:54:58 -07001816 if (op == FUTEX_WAIT)
1817 timeout = timespec_to_jiffies(&t) + 1;
1818 else {
1819 timeout = t.tv_sec;
1820 val2 = t.tv_nsec;
1821 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 }
1823 /*
1824 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1825 */
Ingo Molnarc87e2832006-06-27 02:54:58 -07001826 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
Ingo Molnare2970f22006-06-27 02:54:47 -07001827 val2 = (u32) (unsigned long) utime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828
Ingo Molnare2970f22006-06-27 02:54:47 -07001829 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830}
1831
David Howells454e2392006-06-23 02:02:57 -07001832static int futexfs_get_sb(struct file_system_type *fs_type,
1833 int flags, const char *dev_name, void *data,
1834 struct vfsmount *mnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835{
David Howells454e2392006-06-23 02:02:57 -07001836 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001837}
1838
1839static struct file_system_type futex_fs_type = {
1840 .name = "futexfs",
1841 .get_sb = futexfs_get_sb,
1842 .kill_sb = kill_anon_super,
1843};
1844
1845static int __init init(void)
1846{
1847 unsigned int i;
1848
1849 register_filesystem(&futex_fs_type);
1850 futex_mnt = kern_mount(&futex_fs_type);
1851
1852 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1853 INIT_LIST_HEAD(&futex_queues[i].chain);
1854 spin_lock_init(&futex_queues[i].lock);
1855 }
1856 return 0;
1857}
1858__initcall(init);