blob: d606c7a50b719a96bce39c835f5c7974b99f3a7d [file] [log] [blame]
Matias Bjørlingae1519e2015-10-28 19:54:57 +01001/*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17#include "rrpc.h"
18
19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20static DECLARE_RWSEM(rrpc_lock);
21
22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25#define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30{
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48}
49
50static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52{
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63}
64
65static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67{
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82}
83
84static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85{
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91}
92
93static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94{
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112}
113
114static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115{
116 return (rblk->next_page == rrpc->dev->pgs_per_blk);
117}
118
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100119static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100120{
121 struct nvm_block *blk = rblk->parent;
122
123 return blk->id * rrpc->dev->pgs_per_blk;
124}
125
Matias Bjørling7386af22015-11-16 15:34:44 +0100126static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 struct ppa_addr r)
128{
129 struct ppa_addr l;
130 int secs, pgs, blks, luns;
131 sector_t ppa = r.ppa;
132
133 l.ppa = 0;
134
135 div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 l.g.sec = secs;
137
138 sector_div(ppa, dev->sec_per_pg);
139 div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 l.g.pg = pgs;
141
142 sector_div(ppa, dev->pgs_per_blk);
143 div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 l.g.blk = blks;
145
146 sector_div(ppa, dev->blks_per_lun);
147 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 l.g.lun = luns;
149
150 sector_div(ppa, dev->luns_per_chnl);
151 l.g.ch = ppa;
152
153 return l;
154}
155
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100156static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100157{
158 struct ppa_addr paddr;
159
160 paddr.ppa = addr;
Matias Bjørling7386af22015-11-16 15:34:44 +0100161 return linear_to_generic_addr(dev, paddr);
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100162}
163
164/* requires lun->lock taken */
165static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166{
167 struct rrpc *rrpc = rlun->rrpc;
168
169 BUG_ON(!rblk);
170
171 if (rlun->cur) {
172 spin_lock(&rlun->cur->lock);
173 WARN_ON(!block_is_full(rrpc, rlun->cur));
174 spin_unlock(&rlun->cur->lock);
175 }
176 rlun->cur = rblk;
177}
178
179static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 unsigned long flags)
181{
182 struct nvm_block *blk;
183 struct rrpc_block *rblk;
184
Wenwei Taof27a6292015-12-06 11:25:43 +0100185 blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100186 if (!blk)
187 return NULL;
188
189 rblk = &rlun->blocks[blk->id];
190 blk->priv = rblk;
191
192 bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193 rblk->next_page = 0;
194 rblk->nr_invalid_pages = 0;
195 atomic_set(&rblk->data_cmnt_size, 0);
196
197 return rblk;
198}
199
200static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201{
202 nvm_put_blk(rrpc->dev, rblk->parent);
203}
204
205static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
206{
207 int next = atomic_inc_return(&rrpc->next_lun);
208
209 return &rrpc->luns[next % rrpc->nr_luns];
210}
211
212static void rrpc_gc_kick(struct rrpc *rrpc)
213{
214 struct rrpc_lun *rlun;
215 unsigned int i;
216
217 for (i = 0; i < rrpc->nr_luns; i++) {
218 rlun = &rrpc->luns[i];
219 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
220 }
221}
222
223/*
224 * timed GC every interval.
225 */
226static void rrpc_gc_timer(unsigned long data)
227{
228 struct rrpc *rrpc = (struct rrpc *)data;
229
230 rrpc_gc_kick(rrpc);
231 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
232}
233
234static void rrpc_end_sync_bio(struct bio *bio)
235{
236 struct completion *waiting = bio->bi_private;
237
238 if (bio->bi_error)
239 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
240
241 complete(waiting);
242}
243
244/*
245 * rrpc_move_valid_pages -- migrate live data off the block
246 * @rrpc: the 'rrpc' structure
247 * @block: the block from which to migrate live pages
248 *
249 * Description:
250 * GC algorithms may call this function to migrate remaining live
251 * pages off the block prior to erasing it. This function blocks
252 * further execution until the operation is complete.
253 */
254static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
255{
256 struct request_queue *q = rrpc->dev->q;
257 struct rrpc_rev_addr *rev;
258 struct nvm_rq *rqd;
259 struct bio *bio;
260 struct page *page;
261 int slot;
262 int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100263 u64 phys_addr;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100264 DECLARE_COMPLETION_ONSTACK(wait);
265
266 if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
267 return 0;
268
269 bio = bio_alloc(GFP_NOIO, 1);
270 if (!bio) {
271 pr_err("nvm: could not alloc bio to gc\n");
272 return -ENOMEM;
273 }
274
275 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
276
277 while ((slot = find_first_zero_bit(rblk->invalid_pages,
278 nr_pgs_per_blk)) < nr_pgs_per_blk) {
279
280 /* Lock laddr */
281 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
282
283try:
284 spin_lock(&rrpc->rev_lock);
285 /* Get logical address from physical to logical table */
286 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
287 /* already updated by previous regular write */
288 if (rev->addr == ADDR_EMPTY) {
289 spin_unlock(&rrpc->rev_lock);
290 continue;
291 }
292
293 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
294 if (IS_ERR_OR_NULL(rqd)) {
295 spin_unlock(&rrpc->rev_lock);
296 schedule();
297 goto try;
298 }
299
300 spin_unlock(&rrpc->rev_lock);
301
302 /* Perform read to do GC */
303 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
304 bio->bi_rw = READ;
305 bio->bi_private = &wait;
306 bio->bi_end_io = rrpc_end_sync_bio;
307
308 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
309 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
310
311 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
312 pr_err("rrpc: gc read failed.\n");
313 rrpc_inflight_laddr_release(rrpc, rqd);
314 goto finished;
315 }
316 wait_for_completion_io(&wait);
317
318 bio_reset(bio);
319 reinit_completion(&wait);
320
321 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
322 bio->bi_rw = WRITE;
323 bio->bi_private = &wait;
324 bio->bi_end_io = rrpc_end_sync_bio;
325
326 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
327
328 /* turn the command around and write the data back to a new
329 * address
330 */
331 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
332 pr_err("rrpc: gc write failed.\n");
333 rrpc_inflight_laddr_release(rrpc, rqd);
334 goto finished;
335 }
336 wait_for_completion_io(&wait);
337
338 rrpc_inflight_laddr_release(rrpc, rqd);
339
340 bio_reset(bio);
341 }
342
343finished:
344 mempool_free(page, rrpc->page_pool);
345 bio_put(bio);
346
347 if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
348 pr_err("nvm: failed to garbage collect block\n");
349 return -EIO;
350 }
351
352 return 0;
353}
354
355static void rrpc_block_gc(struct work_struct *work)
356{
357 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
358 ws_gc);
359 struct rrpc *rrpc = gcb->rrpc;
360 struct rrpc_block *rblk = gcb->rblk;
361 struct nvm_dev *dev = rrpc->dev;
362
363 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
364
365 if (rrpc_move_valid_pages(rrpc, rblk))
366 goto done;
367
368 nvm_erase_blk(dev, rblk->parent);
369 rrpc_put_blk(rrpc, rblk);
370done:
371 mempool_free(gcb, rrpc->gcb_pool);
372}
373
374/* the block with highest number of invalid pages, will be in the beginning
375 * of the list
376 */
377static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
378 struct rrpc_block *rb)
379{
380 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
381 return ra;
382
383 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
384}
385
386/* linearly find the block with highest number of invalid pages
387 * requires lun->lock
388 */
389static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
390{
391 struct list_head *prio_list = &rlun->prio_list;
392 struct rrpc_block *rblock, *max;
393
394 BUG_ON(list_empty(prio_list));
395
396 max = list_first_entry(prio_list, struct rrpc_block, prio);
397 list_for_each_entry(rblock, prio_list, prio)
398 max = rblock_max_invalid(max, rblock);
399
400 return max;
401}
402
403static void rrpc_lun_gc(struct work_struct *work)
404{
405 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
406 struct rrpc *rrpc = rlun->rrpc;
407 struct nvm_lun *lun = rlun->parent;
408 struct rrpc_block_gc *gcb;
409 unsigned int nr_blocks_need;
410
411 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
412
413 if (nr_blocks_need < rrpc->nr_luns)
414 nr_blocks_need = rrpc->nr_luns;
415
416 spin_lock(&lun->lock);
417 while (nr_blocks_need > lun->nr_free_blocks &&
418 !list_empty(&rlun->prio_list)) {
419 struct rrpc_block *rblock = block_prio_find_max(rlun);
420 struct nvm_block *block = rblock->parent;
421
422 if (!rblock->nr_invalid_pages)
423 break;
424
425 list_del_init(&rblock->prio);
426
427 BUG_ON(!block_is_full(rrpc, rblock));
428
429 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
430
431 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
432 if (!gcb)
433 break;
434
435 gcb->rrpc = rrpc;
436 gcb->rblk = rblock;
437 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
438
439 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
440
441 nr_blocks_need--;
442 }
443 spin_unlock(&lun->lock);
444
445 /* TODO: Hint that request queue can be started again */
446}
447
448static void rrpc_gc_queue(struct work_struct *work)
449{
450 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
451 ws_gc);
452 struct rrpc *rrpc = gcb->rrpc;
453 struct rrpc_block *rblk = gcb->rblk;
454 struct nvm_lun *lun = rblk->parent->lun;
455 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
456
457 spin_lock(&rlun->lock);
458 list_add_tail(&rblk->prio, &rlun->prio_list);
459 spin_unlock(&rlun->lock);
460
461 mempool_free(gcb, rrpc->gcb_pool);
462 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
463 rblk->parent->id);
464}
465
466static const struct block_device_operations rrpc_fops = {
467 .owner = THIS_MODULE,
468};
469
470static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
471{
472 unsigned int i;
473 struct rrpc_lun *rlun, *max_free;
474
475 if (!is_gc)
476 return get_next_lun(rrpc);
477
478 /* during GC, we don't care about RR, instead we want to make
479 * sure that we maintain evenness between the block luns.
480 */
481 max_free = &rrpc->luns[0];
482 /* prevent GC-ing lun from devouring pages of a lun with
483 * little free blocks. We don't take the lock as we only need an
484 * estimate.
485 */
486 rrpc_for_each_lun(rrpc, rlun, i) {
487 if (rlun->parent->nr_free_blocks >
488 max_free->parent->nr_free_blocks)
489 max_free = rlun;
490 }
491
492 return max_free;
493}
494
495static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100496 struct rrpc_block *rblk, u64 paddr)
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100497{
498 struct rrpc_addr *gp;
499 struct rrpc_rev_addr *rev;
500
501 BUG_ON(laddr >= rrpc->nr_pages);
502
503 gp = &rrpc->trans_map[laddr];
504 spin_lock(&rrpc->rev_lock);
505 if (gp->rblk)
506 rrpc_page_invalidate(rrpc, gp);
507
508 gp->addr = paddr;
509 gp->rblk = rblk;
510
511 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
512 rev->addr = laddr;
513 spin_unlock(&rrpc->rev_lock);
514
515 return gp;
516}
517
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100518static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100519{
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100520 u64 addr = ADDR_EMPTY;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100521
522 spin_lock(&rblk->lock);
523 if (block_is_full(rrpc, rblk))
524 goto out;
525
526 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
527
528 rblk->next_page++;
529out:
530 spin_unlock(&rblk->lock);
531 return addr;
532}
533
534/* Simple round-robin Logical to physical address translation.
535 *
536 * Retrieve the mapping using the active append point. Then update the ap for
537 * the next write to the disk.
538 *
539 * Returns rrpc_addr with the physical address and block. Remember to return to
540 * rrpc->addr_cache when request is finished.
541 */
542static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
543 int is_gc)
544{
545 struct rrpc_lun *rlun;
546 struct rrpc_block *rblk;
547 struct nvm_lun *lun;
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +0100548 u64 paddr;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100549
550 rlun = rrpc_get_lun_rr(rrpc, is_gc);
551 lun = rlun->parent;
552
553 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
554 return NULL;
555
556 spin_lock(&rlun->lock);
557
558 rblk = rlun->cur;
559retry:
560 paddr = rrpc_alloc_addr(rrpc, rblk);
561
562 if (paddr == ADDR_EMPTY) {
563 rblk = rrpc_get_blk(rrpc, rlun, 0);
564 if (rblk) {
565 rrpc_set_lun_cur(rlun, rblk);
566 goto retry;
567 }
568
569 if (is_gc) {
570 /* retry from emergency gc block */
571 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
572 if (paddr == ADDR_EMPTY) {
573 rblk = rrpc_get_blk(rrpc, rlun, 1);
574 if (!rblk) {
575 pr_err("rrpc: no more blocks");
576 goto err;
577 }
578
579 rlun->gc_cur = rblk;
580 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
581 }
582 rblk = rlun->gc_cur;
583 }
584 }
585
586 spin_unlock(&rlun->lock);
587 return rrpc_update_map(rrpc, laddr, rblk, paddr);
588err:
589 spin_unlock(&rlun->lock);
590 return NULL;
591}
592
593static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
594{
595 struct rrpc_block_gc *gcb;
596
597 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
598 if (!gcb) {
599 pr_err("rrpc: unable to queue block for gc.");
600 return;
601 }
602
603 gcb->rrpc = rrpc;
604 gcb->rblk = rblk;
605
606 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
607 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
608}
609
610static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
611 sector_t laddr, uint8_t npages)
612{
613 struct rrpc_addr *p;
614 struct rrpc_block *rblk;
615 struct nvm_lun *lun;
616 int cmnt_size, i;
617
618 for (i = 0; i < npages; i++) {
619 p = &rrpc->trans_map[laddr + i];
620 rblk = p->rblk;
621 lun = rblk->parent->lun;
622
623 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
624 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
625 rrpc_run_gc(rrpc, rblk);
626 }
627}
628
629static int rrpc_end_io(struct nvm_rq *rqd, int error)
630{
631 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
632 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
633 uint8_t npages = rqd->nr_pages;
634 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
635
636 if (bio_data_dir(rqd->bio) == WRITE)
637 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
638
639 if (rrqd->flags & NVM_IOTYPE_GC)
640 return 0;
641
642 rrpc_unlock_rq(rrpc, rqd);
643 bio_put(rqd->bio);
644
645 if (npages > 1)
646 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
647 if (rqd->metadata)
648 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
649
650 mempool_free(rqd, rrpc->rq_pool);
651
652 return 0;
653}
654
655static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
656 struct nvm_rq *rqd, unsigned long flags, int npages)
657{
658 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
659 struct rrpc_addr *gp;
660 sector_t laddr = rrpc_get_laddr(bio);
661 int is_gc = flags & NVM_IOTYPE_GC;
662 int i;
663
664 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
665 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
666 return NVM_IO_REQUEUE;
667 }
668
669 for (i = 0; i < npages; i++) {
670 /* We assume that mapping occurs at 4KB granularity */
671 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
672 gp = &rrpc->trans_map[laddr + i];
673
674 if (gp->rblk) {
675 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
676 gp->addr);
677 } else {
678 BUG_ON(is_gc);
679 rrpc_unlock_laddr(rrpc, r);
680 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
681 rqd->dma_ppa_list);
682 return NVM_IO_DONE;
683 }
684 }
685
686 rqd->opcode = NVM_OP_HBREAD;
687
688 return NVM_IO_OK;
689}
690
691static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
692 unsigned long flags)
693{
694 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
695 int is_gc = flags & NVM_IOTYPE_GC;
696 sector_t laddr = rrpc_get_laddr(bio);
697 struct rrpc_addr *gp;
698
699 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
700 return NVM_IO_REQUEUE;
701
702 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
703 gp = &rrpc->trans_map[laddr];
704
705 if (gp->rblk) {
706 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
707 } else {
708 BUG_ON(is_gc);
709 rrpc_unlock_rq(rrpc, rqd);
710 return NVM_IO_DONE;
711 }
712
713 rqd->opcode = NVM_OP_HBREAD;
714 rrqd->addr = gp;
715
716 return NVM_IO_OK;
717}
718
719static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
720 struct nvm_rq *rqd, unsigned long flags, int npages)
721{
722 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
723 struct rrpc_addr *p;
724 sector_t laddr = rrpc_get_laddr(bio);
725 int is_gc = flags & NVM_IOTYPE_GC;
726 int i;
727
728 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
729 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
730 return NVM_IO_REQUEUE;
731 }
732
733 for (i = 0; i < npages; i++) {
734 /* We assume that mapping occurs at 4KB granularity */
735 p = rrpc_map_page(rrpc, laddr + i, is_gc);
736 if (!p) {
737 BUG_ON(is_gc);
738 rrpc_unlock_laddr(rrpc, r);
739 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
740 rqd->dma_ppa_list);
741 rrpc_gc_kick(rrpc);
742 return NVM_IO_REQUEUE;
743 }
744
745 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
746 p->addr);
747 }
748
749 rqd->opcode = NVM_OP_HBWRITE;
750
751 return NVM_IO_OK;
752}
753
754static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
755 struct nvm_rq *rqd, unsigned long flags)
756{
757 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
758 struct rrpc_addr *p;
759 int is_gc = flags & NVM_IOTYPE_GC;
760 sector_t laddr = rrpc_get_laddr(bio);
761
762 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
763 return NVM_IO_REQUEUE;
764
765 p = rrpc_map_page(rrpc, laddr, is_gc);
766 if (!p) {
767 BUG_ON(is_gc);
768 rrpc_unlock_rq(rrpc, rqd);
769 rrpc_gc_kick(rrpc);
770 return NVM_IO_REQUEUE;
771 }
772
773 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
774 rqd->opcode = NVM_OP_HBWRITE;
775 rrqd->addr = p;
776
777 return NVM_IO_OK;
778}
779
780static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
781 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
782{
783 if (npages > 1) {
784 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
785 &rqd->dma_ppa_list);
786 if (!rqd->ppa_list) {
787 pr_err("rrpc: not able to allocate ppa list\n");
788 return NVM_IO_ERR;
789 }
790
791 if (bio_rw(bio) == WRITE)
792 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
793 npages);
794
795 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
796 }
797
798 if (bio_rw(bio) == WRITE)
799 return rrpc_write_rq(rrpc, bio, rqd, flags);
800
801 return rrpc_read_rq(rrpc, bio, rqd, flags);
802}
803
804static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
805 struct nvm_rq *rqd, unsigned long flags)
806{
807 int err;
808 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
809 uint8_t nr_pages = rrpc_get_pages(bio);
810 int bio_size = bio_sectors(bio) << 9;
811
812 if (bio_size < rrpc->dev->sec_size)
813 return NVM_IO_ERR;
814 else if (bio_size > rrpc->dev->max_rq_size)
815 return NVM_IO_ERR;
816
817 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
818 if (err)
819 return err;
820
821 bio_get(bio);
822 rqd->bio = bio;
823 rqd->ins = &rrpc->instance;
824 rqd->nr_pages = nr_pages;
825 rrq->flags = flags;
826
827 err = nvm_submit_io(rrpc->dev, rqd);
828 if (err) {
829 pr_err("rrpc: I/O submission failed: %d\n", err);
830 return NVM_IO_ERR;
831 }
832
833 return NVM_IO_OK;
834}
835
Jens Axboedece1632015-11-05 10:41:16 -0700836static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100837{
838 struct rrpc *rrpc = q->queuedata;
839 struct nvm_rq *rqd;
840 int err;
841
842 if (bio->bi_rw & REQ_DISCARD) {
843 rrpc_discard(rrpc, bio);
Jens Axboedece1632015-11-05 10:41:16 -0700844 return BLK_QC_T_NONE;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100845 }
846
847 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
848 if (!rqd) {
849 pr_err_ratelimited("rrpc: not able to queue bio.");
850 bio_io_error(bio);
Jens Axboedece1632015-11-05 10:41:16 -0700851 return BLK_QC_T_NONE;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100852 }
853 memset(rqd, 0, sizeof(struct nvm_rq));
854
855 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
856 switch (err) {
857 case NVM_IO_OK:
Jens Axboedece1632015-11-05 10:41:16 -0700858 return BLK_QC_T_NONE;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100859 case NVM_IO_ERR:
860 bio_io_error(bio);
861 break;
862 case NVM_IO_DONE:
863 bio_endio(bio);
864 break;
865 case NVM_IO_REQUEUE:
866 spin_lock(&rrpc->bio_lock);
867 bio_list_add(&rrpc->requeue_bios, bio);
868 spin_unlock(&rrpc->bio_lock);
869 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
870 break;
871 }
872
873 mempool_free(rqd, rrpc->rq_pool);
Jens Axboedece1632015-11-05 10:41:16 -0700874 return BLK_QC_T_NONE;
Matias Bjørlingae1519e2015-10-28 19:54:57 +0100875}
876
877static void rrpc_requeue(struct work_struct *work)
878{
879 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
880 struct bio_list bios;
881 struct bio *bio;
882
883 bio_list_init(&bios);
884
885 spin_lock(&rrpc->bio_lock);
886 bio_list_merge(&bios, &rrpc->requeue_bios);
887 bio_list_init(&rrpc->requeue_bios);
888 spin_unlock(&rrpc->bio_lock);
889
890 while ((bio = bio_list_pop(&bios)))
891 rrpc_make_rq(rrpc->disk->queue, bio);
892}
893
894static void rrpc_gc_free(struct rrpc *rrpc)
895{
896 struct rrpc_lun *rlun;
897 int i;
898
899 if (rrpc->krqd_wq)
900 destroy_workqueue(rrpc->krqd_wq);
901
902 if (rrpc->kgc_wq)
903 destroy_workqueue(rrpc->kgc_wq);
904
905 if (!rrpc->luns)
906 return;
907
908 for (i = 0; i < rrpc->nr_luns; i++) {
909 rlun = &rrpc->luns[i];
910
911 if (!rlun->blocks)
912 break;
913 vfree(rlun->blocks);
914 }
915}
916
917static int rrpc_gc_init(struct rrpc *rrpc)
918{
919 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
920 rrpc->nr_luns);
921 if (!rrpc->krqd_wq)
922 return -ENOMEM;
923
924 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
925 if (!rrpc->kgc_wq)
926 return -ENOMEM;
927
928 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
929
930 return 0;
931}
932
933static void rrpc_map_free(struct rrpc *rrpc)
934{
935 vfree(rrpc->rev_trans_map);
936 vfree(rrpc->trans_map);
937}
938
939static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
940{
941 struct rrpc *rrpc = (struct rrpc *)private;
942 struct nvm_dev *dev = rrpc->dev;
943 struct rrpc_addr *addr = rrpc->trans_map + slba;
944 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
945 sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
946 u64 elba = slba + nlb;
947 u64 i;
948
949 if (unlikely(elba > dev->total_pages)) {
950 pr_err("nvm: L2P data from device is out of bounds!\n");
951 return -EINVAL;
952 }
953
954 for (i = 0; i < nlb; i++) {
955 u64 pba = le64_to_cpu(entries[i]);
956 /* LNVM treats address-spaces as silos, LBA and PBA are
957 * equally large and zero-indexed.
958 */
959 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
960 pr_err("nvm: L2P data entry is out of bounds!\n");
961 return -EINVAL;
962 }
963
964 /* Address zero is a special one. The first page on a disk is
965 * protected. As it often holds internal device boot
966 * information.
967 */
968 if (!pba)
969 continue;
970
971 addr[i].addr = pba;
972 raddr[pba].addr = slba + i;
973 }
974
975 return 0;
976}
977
978static int rrpc_map_init(struct rrpc *rrpc)
979{
980 struct nvm_dev *dev = rrpc->dev;
981 sector_t i;
982 int ret;
983
984 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
985 if (!rrpc->trans_map)
986 return -ENOMEM;
987
988 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
989 * rrpc->nr_pages);
990 if (!rrpc->rev_trans_map)
991 return -ENOMEM;
992
993 for (i = 0; i < rrpc->nr_pages; i++) {
994 struct rrpc_addr *p = &rrpc->trans_map[i];
995 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
996
997 p->addr = ADDR_EMPTY;
998 r->addr = ADDR_EMPTY;
999 }
1000
1001 if (!dev->ops->get_l2p_tbl)
1002 return 0;
1003
1004 /* Bring up the mapping table from device */
1005 ret = dev->ops->get_l2p_tbl(dev->q, 0, dev->total_pages,
1006 rrpc_l2p_update, rrpc);
1007 if (ret) {
1008 pr_err("nvm: rrpc: could not read L2P table.\n");
1009 return -EINVAL;
1010 }
1011
1012 return 0;
1013}
1014
1015
1016/* Minimum pages needed within a lun */
1017#define PAGE_POOL_SIZE 16
1018#define ADDR_POOL_SIZE 64
1019
1020static int rrpc_core_init(struct rrpc *rrpc)
1021{
1022 down_write(&rrpc_lock);
1023 if (!rrpc_gcb_cache) {
1024 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1025 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1026 if (!rrpc_gcb_cache) {
1027 up_write(&rrpc_lock);
1028 return -ENOMEM;
1029 }
1030
1031 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1032 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1033 0, 0, NULL);
1034 if (!rrpc_rq_cache) {
1035 kmem_cache_destroy(rrpc_gcb_cache);
1036 up_write(&rrpc_lock);
1037 return -ENOMEM;
1038 }
1039 }
1040 up_write(&rrpc_lock);
1041
1042 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1043 if (!rrpc->page_pool)
1044 return -ENOMEM;
1045
1046 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1047 rrpc_gcb_cache);
1048 if (!rrpc->gcb_pool)
1049 return -ENOMEM;
1050
1051 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1052 if (!rrpc->rq_pool)
1053 return -ENOMEM;
1054
1055 spin_lock_init(&rrpc->inflights.lock);
1056 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1057
1058 return 0;
1059}
1060
1061static void rrpc_core_free(struct rrpc *rrpc)
1062{
1063 mempool_destroy(rrpc->page_pool);
1064 mempool_destroy(rrpc->gcb_pool);
1065 mempool_destroy(rrpc->rq_pool);
1066}
1067
1068static void rrpc_luns_free(struct rrpc *rrpc)
1069{
1070 kfree(rrpc->luns);
1071}
1072
1073static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1074{
1075 struct nvm_dev *dev = rrpc->dev;
1076 struct rrpc_lun *rlun;
1077 int i, j;
1078
1079 spin_lock_init(&rrpc->rev_lock);
1080
1081 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1082 GFP_KERNEL);
1083 if (!rrpc->luns)
1084 return -ENOMEM;
1085
1086 /* 1:1 mapping */
1087 for (i = 0; i < rrpc->nr_luns; i++) {
1088 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1089
1090 if (dev->pgs_per_blk >
1091 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1092 pr_err("rrpc: number of pages per block too high.");
1093 goto err;
1094 }
1095
1096 rlun = &rrpc->luns[i];
1097 rlun->rrpc = rrpc;
1098 rlun->parent = lun;
1099 INIT_LIST_HEAD(&rlun->prio_list);
1100 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1101 spin_lock_init(&rlun->lock);
1102
1103 rrpc->total_blocks += dev->blks_per_lun;
1104 rrpc->nr_pages += dev->sec_per_lun;
1105
1106 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1107 rrpc->dev->blks_per_lun);
1108 if (!rlun->blocks)
1109 goto err;
1110
1111 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1112 struct rrpc_block *rblk = &rlun->blocks[j];
1113 struct nvm_block *blk = &lun->blocks[j];
1114
1115 rblk->parent = blk;
1116 INIT_LIST_HEAD(&rblk->prio);
1117 spin_lock_init(&rblk->lock);
1118 }
1119 }
1120
1121 return 0;
1122err:
1123 return -ENOMEM;
1124}
1125
1126static void rrpc_free(struct rrpc *rrpc)
1127{
1128 rrpc_gc_free(rrpc);
1129 rrpc_map_free(rrpc);
1130 rrpc_core_free(rrpc);
1131 rrpc_luns_free(rrpc);
1132
1133 kfree(rrpc);
1134}
1135
1136static void rrpc_exit(void *private)
1137{
1138 struct rrpc *rrpc = private;
1139
1140 del_timer(&rrpc->gc_timer);
1141
1142 flush_workqueue(rrpc->krqd_wq);
1143 flush_workqueue(rrpc->kgc_wq);
1144
1145 rrpc_free(rrpc);
1146}
1147
1148static sector_t rrpc_capacity(void *private)
1149{
1150 struct rrpc *rrpc = private;
1151 struct nvm_dev *dev = rrpc->dev;
1152 sector_t reserved, provisioned;
1153
1154 /* cur, gc, and two emergency blocks for each lun */
1155 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1156 provisioned = rrpc->nr_pages - reserved;
1157
1158 if (reserved > rrpc->nr_pages) {
1159 pr_err("rrpc: not enough space available to expose storage.\n");
1160 return 0;
1161 }
1162
1163 sector_div(provisioned, 10);
1164 return provisioned * 9 * NR_PHY_IN_LOG;
1165}
1166
1167/*
1168 * Looks up the logical address from reverse trans map and check if its valid by
1169 * comparing the logical to physical address with the physical address.
1170 * Returns 0 on free, otherwise 1 if in use
1171 */
1172static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1173{
1174 struct nvm_dev *dev = rrpc->dev;
1175 int offset;
1176 struct rrpc_addr *laddr;
Matias Bjørlingb7ceb7d2015-11-02 17:12:27 +01001177 u64 paddr, pladdr;
Matias Bjørlingae1519e2015-10-28 19:54:57 +01001178
1179 for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1180 paddr = block_to_addr(rrpc, rblk) + offset;
1181
1182 pladdr = rrpc->rev_trans_map[paddr].addr;
1183 if (pladdr == ADDR_EMPTY)
1184 continue;
1185
1186 laddr = &rrpc->trans_map[pladdr];
1187
1188 if (paddr == laddr->addr) {
1189 laddr->rblk = rblk;
1190 } else {
1191 set_bit(offset, rblk->invalid_pages);
1192 rblk->nr_invalid_pages++;
1193 }
1194 }
1195}
1196
1197static int rrpc_blocks_init(struct rrpc *rrpc)
1198{
1199 struct rrpc_lun *rlun;
1200 struct rrpc_block *rblk;
1201 int lun_iter, blk_iter;
1202
1203 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1204 rlun = &rrpc->luns[lun_iter];
1205
1206 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1207 blk_iter++) {
1208 rblk = &rlun->blocks[blk_iter];
1209 rrpc_block_map_update(rrpc, rblk);
1210 }
1211 }
1212
1213 return 0;
1214}
1215
1216static int rrpc_luns_configure(struct rrpc *rrpc)
1217{
1218 struct rrpc_lun *rlun;
1219 struct rrpc_block *rblk;
1220 int i;
1221
1222 for (i = 0; i < rrpc->nr_luns; i++) {
1223 rlun = &rrpc->luns[i];
1224
1225 rblk = rrpc_get_blk(rrpc, rlun, 0);
1226 if (!rblk)
1227 return -EINVAL;
1228
1229 rrpc_set_lun_cur(rlun, rblk);
1230
1231 /* Emergency gc block */
1232 rblk = rrpc_get_blk(rrpc, rlun, 1);
1233 if (!rblk)
1234 return -EINVAL;
1235 rlun->gc_cur = rblk;
1236 }
1237
1238 return 0;
1239}
1240
1241static struct nvm_tgt_type tt_rrpc;
1242
1243static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1244 int lun_begin, int lun_end)
1245{
1246 struct request_queue *bqueue = dev->q;
1247 struct request_queue *tqueue = tdisk->queue;
1248 struct rrpc *rrpc;
1249 int ret;
1250
1251 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1252 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1253 dev->identity.dom);
1254 return ERR_PTR(-EINVAL);
1255 }
1256
1257 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1258 if (!rrpc)
1259 return ERR_PTR(-ENOMEM);
1260
1261 rrpc->instance.tt = &tt_rrpc;
1262 rrpc->dev = dev;
1263 rrpc->disk = tdisk;
1264
1265 bio_list_init(&rrpc->requeue_bios);
1266 spin_lock_init(&rrpc->bio_lock);
1267 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1268
1269 rrpc->nr_luns = lun_end - lun_begin + 1;
1270
1271 /* simple round-robin strategy */
1272 atomic_set(&rrpc->next_lun, -1);
1273
1274 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1275 if (ret) {
1276 pr_err("nvm: rrpc: could not initialize luns\n");
1277 goto err;
1278 }
1279
1280 rrpc->poffset = dev->sec_per_lun * lun_begin;
1281 rrpc->lun_offset = lun_begin;
1282
1283 ret = rrpc_core_init(rrpc);
1284 if (ret) {
1285 pr_err("nvm: rrpc: could not initialize core\n");
1286 goto err;
1287 }
1288
1289 ret = rrpc_map_init(rrpc);
1290 if (ret) {
1291 pr_err("nvm: rrpc: could not initialize maps\n");
1292 goto err;
1293 }
1294
1295 ret = rrpc_blocks_init(rrpc);
1296 if (ret) {
1297 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1298 goto err;
1299 }
1300
1301 ret = rrpc_luns_configure(rrpc);
1302 if (ret) {
1303 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1304 goto err;
1305 }
1306
1307 ret = rrpc_gc_init(rrpc);
1308 if (ret) {
1309 pr_err("nvm: rrpc: could not initialize gc\n");
1310 goto err;
1311 }
1312
1313 /* inherit the size from the underlying device */
1314 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1315 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1316
1317 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1318 rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1319
1320 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1321
1322 return rrpc;
1323err:
1324 rrpc_free(rrpc);
1325 return ERR_PTR(ret);
1326}
1327
1328/* round robin, page-based FTL, and cost-based GC */
1329static struct nvm_tgt_type tt_rrpc = {
1330 .name = "rrpc",
1331 .version = {1, 0, 0},
1332
1333 .make_rq = rrpc_make_rq,
1334 .capacity = rrpc_capacity,
1335 .end_io = rrpc_end_io,
1336
1337 .init = rrpc_init,
1338 .exit = rrpc_exit,
1339};
1340
1341static int __init rrpc_module_init(void)
1342{
1343 return nvm_register_target(&tt_rrpc);
1344}
1345
1346static void rrpc_module_exit(void)
1347{
1348 nvm_unregister_target(&tt_rrpc);
1349}
1350
1351module_init(rrpc_module_init);
1352module_exit(rrpc_module_exit);
1353MODULE_LICENSE("GPL v2");
1354MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");