blob: 66678763c24dc87c8f966239af0d8268b361deee [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/config.h>
25
26#ifdef CONFIG_USB_DEBUG
27 #define DEBUG
28#else
29 #undef DEBUG
30#endif
31
32#include <linux/module.h>
33#include <linux/string.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h> /* for in_interrupt() */
37#include <linux/kmod.h>
38#include <linux/init.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/smp_lock.h>
42#include <linux/rwsem.h>
43#include <linux/usb.h>
44
45#include <asm/io.h>
46#include <asm/scatterlist.h>
47#include <linux/mm.h>
48#include <linux/dma-mapping.h>
49
50#include "hcd.h"
51#include "usb.h"
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053
54const char *usbcore_name = "usbcore";
55
56static int nousb; /* Disable USB when built into kernel image */
57 /* Not honored on modular build */
58
59static DECLARE_RWSEM(usb_all_devices_rwsem);
60
61
62static int generic_probe (struct device *dev)
63{
64 return 0;
65}
66static int generic_remove (struct device *dev)
67{
68 return 0;
69}
70
71static struct device_driver usb_generic_driver = {
72 .owner = THIS_MODULE,
73 .name = "usb",
74 .bus = &usb_bus_type,
75 .probe = generic_probe,
76 .remove = generic_remove,
77};
78
79static int usb_generic_driver_data;
80
81/* called from driver core with usb_bus_type.subsys writelock */
82static int usb_probe_interface(struct device *dev)
83{
84 struct usb_interface * intf = to_usb_interface(dev);
85 struct usb_driver * driver = to_usb_driver(dev->driver);
86 const struct usb_device_id *id;
87 int error = -ENODEV;
88
89 dev_dbg(dev, "%s\n", __FUNCTION__);
90
91 if (!driver->probe)
92 return error;
93 /* FIXME we'd much prefer to just resume it ... */
94 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
95 return -EHOSTUNREACH;
96
97 id = usb_match_id (intf, driver->id_table);
98 if (id) {
99 dev_dbg (dev, "%s - got id\n", __FUNCTION__);
100 intf->condition = USB_INTERFACE_BINDING;
101 error = driver->probe (intf, id);
102 intf->condition = error ? USB_INTERFACE_UNBOUND :
103 USB_INTERFACE_BOUND;
104 }
105
106 return error;
107}
108
109/* called from driver core with usb_bus_type.subsys writelock */
110static int usb_unbind_interface(struct device *dev)
111{
112 struct usb_interface *intf = to_usb_interface(dev);
113 struct usb_driver *driver = to_usb_driver(intf->dev.driver);
114
115 intf->condition = USB_INTERFACE_UNBINDING;
116
117 /* release all urbs for this interface */
118 usb_disable_interface(interface_to_usbdev(intf), intf);
119
120 if (driver && driver->disconnect)
121 driver->disconnect(intf);
122
123 /* reset other interface state */
124 usb_set_interface(interface_to_usbdev(intf),
125 intf->altsetting[0].desc.bInterfaceNumber,
126 0);
127 usb_set_intfdata(intf, NULL);
128 intf->condition = USB_INTERFACE_UNBOUND;
129
130 return 0;
131}
132
133/**
134 * usb_register - register a USB driver
135 * @new_driver: USB operations for the driver
136 *
137 * Registers a USB driver with the USB core. The list of unattached
138 * interfaces will be rescanned whenever a new driver is added, allowing
139 * the new driver to attach to any recognized devices.
140 * Returns a negative error code on failure and 0 on success.
141 *
142 * NOTE: if you want your driver to use the USB major number, you must call
143 * usb_register_dev() to enable that functionality. This function no longer
144 * takes care of that.
145 */
146int usb_register(struct usb_driver *new_driver)
147{
148 int retval = 0;
149
150 if (nousb)
151 return -ENODEV;
152
153 new_driver->driver.name = (char *)new_driver->name;
154 new_driver->driver.bus = &usb_bus_type;
155 new_driver->driver.probe = usb_probe_interface;
156 new_driver->driver.remove = usb_unbind_interface;
157 new_driver->driver.owner = new_driver->owner;
158
159 usb_lock_all_devices();
160 retval = driver_register(&new_driver->driver);
161 usb_unlock_all_devices();
162
163 if (!retval) {
164 pr_info("%s: registered new driver %s\n",
165 usbcore_name, new_driver->name);
166 usbfs_update_special();
167 } else {
168 printk(KERN_ERR "%s: error %d registering driver %s\n",
169 usbcore_name, retval, new_driver->name);
170 }
171
172 return retval;
173}
174
175/**
176 * usb_deregister - unregister a USB driver
177 * @driver: USB operations of the driver to unregister
178 * Context: must be able to sleep
179 *
180 * Unlinks the specified driver from the internal USB driver list.
181 *
182 * NOTE: If you called usb_register_dev(), you still need to call
183 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
184 * this * call will no longer do it for you.
185 */
186void usb_deregister(struct usb_driver *driver)
187{
188 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
189
190 usb_lock_all_devices();
191 driver_unregister (&driver->driver);
192 usb_unlock_all_devices();
193
194 usbfs_update_special();
195}
196
197/**
198 * usb_ifnum_to_if - get the interface object with a given interface number
199 * @dev: the device whose current configuration is considered
200 * @ifnum: the desired interface
201 *
202 * This walks the device descriptor for the currently active configuration
203 * and returns a pointer to the interface with that particular interface
204 * number, or null.
205 *
206 * Note that configuration descriptors are not required to assign interface
207 * numbers sequentially, so that it would be incorrect to assume that
208 * the first interface in that descriptor corresponds to interface zero.
209 * This routine helps device drivers avoid such mistakes.
210 * However, you should make sure that you do the right thing with any
211 * alternate settings available for this interfaces.
212 *
213 * Don't call this function unless you are bound to one of the interfaces
214 * on this device or you have locked the device!
215 */
216struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
217{
218 struct usb_host_config *config = dev->actconfig;
219 int i;
220
221 if (!config)
222 return NULL;
223 for (i = 0; i < config->desc.bNumInterfaces; i++)
224 if (config->interface[i]->altsetting[0]
225 .desc.bInterfaceNumber == ifnum)
226 return config->interface[i];
227
228 return NULL;
229}
230
231/**
232 * usb_altnum_to_altsetting - get the altsetting structure with a given
233 * alternate setting number.
234 * @intf: the interface containing the altsetting in question
235 * @altnum: the desired alternate setting number
236 *
237 * This searches the altsetting array of the specified interface for
238 * an entry with the correct bAlternateSetting value and returns a pointer
239 * to that entry, or null.
240 *
241 * Note that altsettings need not be stored sequentially by number, so
242 * it would be incorrect to assume that the first altsetting entry in
243 * the array corresponds to altsetting zero. This routine helps device
244 * drivers avoid such mistakes.
245 *
246 * Don't call this function unless you are bound to the intf interface
247 * or you have locked the device!
248 */
249struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
250 unsigned int altnum)
251{
252 int i;
253
254 for (i = 0; i < intf->num_altsetting; i++) {
255 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
256 return &intf->altsetting[i];
257 }
258 return NULL;
259}
260
261/**
262 * usb_driver_claim_interface - bind a driver to an interface
263 * @driver: the driver to be bound
264 * @iface: the interface to which it will be bound; must be in the
265 * usb device's active configuration
266 * @priv: driver data associated with that interface
267 *
268 * This is used by usb device drivers that need to claim more than one
269 * interface on a device when probing (audio and acm are current examples).
270 * No device driver should directly modify internal usb_interface or
271 * usb_device structure members.
272 *
273 * Few drivers should need to use this routine, since the most natural
274 * way to bind to an interface is to return the private data from
275 * the driver's probe() method.
276 *
277 * Callers must own the device lock and the driver model's usb_bus_type.subsys
278 * writelock. So driver probe() entries don't need extra locking,
279 * but other call contexts may need to explicitly claim those locks.
280 */
281int usb_driver_claim_interface(struct usb_driver *driver,
282 struct usb_interface *iface, void* priv)
283{
284 struct device *dev = &iface->dev;
285
286 if (dev->driver)
287 return -EBUSY;
288
289 dev->driver = &driver->driver;
290 usb_set_intfdata(iface, priv);
291 iface->condition = USB_INTERFACE_BOUND;
292
293 /* if interface was already added, bind now; else let
294 * the future device_add() bind it, bypassing probe()
295 */
Patrick Mochel273971b2005-06-20 15:15:28 -0700296 if (klist_node_attached(&dev->knode_bus))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 device_bind_driver(dev);
298
299 return 0;
300}
301
302/**
303 * usb_driver_release_interface - unbind a driver from an interface
304 * @driver: the driver to be unbound
305 * @iface: the interface from which it will be unbound
306 *
307 * This can be used by drivers to release an interface without waiting
308 * for their disconnect() methods to be called. In typical cases this
309 * also causes the driver disconnect() method to be called.
310 *
311 * This call is synchronous, and may not be used in an interrupt context.
312 * Callers must own the device lock and the driver model's usb_bus_type.subsys
313 * writelock. So driver disconnect() entries don't need extra locking,
314 * but other call contexts may need to explicitly claim those locks.
315 */
316void usb_driver_release_interface(struct usb_driver *driver,
317 struct usb_interface *iface)
318{
319 struct device *dev = &iface->dev;
320
321 /* this should never happen, don't release something that's not ours */
322 if (!dev->driver || dev->driver != &driver->driver)
323 return;
324
325 /* don't disconnect from disconnect(), or before dev_add() */
mochel@digitalimplant.orgd4a75372005-03-24 13:00:16 -0800326 if (!klist_node_attached(&dev->knode_driver) && !klist_node_attached(&dev->knode_bus))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700327 device_release_driver(dev);
328
329 dev->driver = NULL;
330 usb_set_intfdata(iface, NULL);
331 iface->condition = USB_INTERFACE_UNBOUND;
332}
333
334/**
335 * usb_match_id - find first usb_device_id matching device or interface
336 * @interface: the interface of interest
337 * @id: array of usb_device_id structures, terminated by zero entry
338 *
339 * usb_match_id searches an array of usb_device_id's and returns
340 * the first one matching the device or interface, or null.
341 * This is used when binding (or rebinding) a driver to an interface.
342 * Most USB device drivers will use this indirectly, through the usb core,
343 * but some layered driver frameworks use it directly.
344 * These device tables are exported with MODULE_DEVICE_TABLE, through
345 * modutils and "modules.usbmap", to support the driver loading
346 * functionality of USB hotplugging.
347 *
348 * What Matches:
349 *
350 * The "match_flags" element in a usb_device_id controls which
351 * members are used. If the corresponding bit is set, the
352 * value in the device_id must match its corresponding member
353 * in the device or interface descriptor, or else the device_id
354 * does not match.
355 *
356 * "driver_info" is normally used only by device drivers,
357 * but you can create a wildcard "matches anything" usb_device_id
358 * as a driver's "modules.usbmap" entry if you provide an id with
359 * only a nonzero "driver_info" field. If you do this, the USB device
360 * driver's probe() routine should use additional intelligence to
361 * decide whether to bind to the specified interface.
362 *
363 * What Makes Good usb_device_id Tables:
364 *
365 * The match algorithm is very simple, so that intelligence in
366 * driver selection must come from smart driver id records.
367 * Unless you have good reasons to use another selection policy,
368 * provide match elements only in related groups, and order match
369 * specifiers from specific to general. Use the macros provided
370 * for that purpose if you can.
371 *
372 * The most specific match specifiers use device descriptor
373 * data. These are commonly used with product-specific matches;
374 * the USB_DEVICE macro lets you provide vendor and product IDs,
375 * and you can also match against ranges of product revisions.
376 * These are widely used for devices with application or vendor
377 * specific bDeviceClass values.
378 *
379 * Matches based on device class/subclass/protocol specifications
380 * are slightly more general; use the USB_DEVICE_INFO macro, or
381 * its siblings. These are used with single-function devices
382 * where bDeviceClass doesn't specify that each interface has
383 * its own class.
384 *
385 * Matches based on interface class/subclass/protocol are the
386 * most general; they let drivers bind to any interface on a
387 * multiple-function device. Use the USB_INTERFACE_INFO
388 * macro, or its siblings, to match class-per-interface style
389 * devices (as recorded in bDeviceClass).
390 *
391 * Within those groups, remember that not all combinations are
392 * meaningful. For example, don't give a product version range
393 * without vendor and product IDs; or specify a protocol without
394 * its associated class and subclass.
395 */
396const struct usb_device_id *
397usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
398{
399 struct usb_host_interface *intf;
400 struct usb_device *dev;
401
402 /* proc_connectinfo in devio.c may call us with id == NULL. */
403 if (id == NULL)
404 return NULL;
405
406 intf = interface->cur_altsetting;
407 dev = interface_to_usbdev(interface);
408
409 /* It is important to check that id->driver_info is nonzero,
410 since an entry that is all zeroes except for a nonzero
411 id->driver_info is the way to create an entry that
412 indicates that the driver want to examine every
413 device and interface. */
414 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
415 id->driver_info; id++) {
416
417 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
418 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
419 continue;
420
421 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
422 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
423 continue;
424
425 /* No need to test id->bcdDevice_lo != 0, since 0 is never
426 greater than any unsigned number. */
427 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
428 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
429 continue;
430
431 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
432 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
433 continue;
434
435 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
436 (id->bDeviceClass != dev->descriptor.bDeviceClass))
437 continue;
438
439 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
440 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
441 continue;
442
443 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
444 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
445 continue;
446
447 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
448 (id->bInterfaceClass != intf->desc.bInterfaceClass))
449 continue;
450
451 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
452 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
453 continue;
454
455 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
456 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
457 continue;
458
459 return id;
460 }
461
462 return NULL;
463}
464
mochel@digitalimplant.org6034a082005-03-21 11:09:40 -0800465
466static int __find_interface(struct device * dev, void * data)
467{
468 struct usb_interface ** ret = (struct usb_interface **)data;
469 struct usb_interface * intf = *ret;
470 int *minor = (int *)data;
471
472 /* can't look at usb devices, only interfaces */
473 if (dev->driver == &usb_generic_driver)
474 return 0;
475
476 intf = to_usb_interface(dev);
477 if (intf->minor != -1 && intf->minor == *minor) {
478 *ret = intf;
479 return 1;
480 }
481 return 0;
482}
483
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484/**
485 * usb_find_interface - find usb_interface pointer for driver and device
486 * @drv: the driver whose current configuration is considered
487 * @minor: the minor number of the desired device
488 *
489 * This walks the driver device list and returns a pointer to the interface
490 * with the matching minor. Note, this only works for devices that share the
491 * USB major number.
492 */
493struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
494{
gregkh@suse.deff710712005-03-24 00:44:28 -0800495 struct usb_interface *intf = (struct usb_interface *)(long)minor;
mochel@digitalimplant.org6034a082005-03-21 11:09:40 -0800496 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497
mochel@digitalimplant.org6034a082005-03-21 11:09:40 -0800498 ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499
mochel@digitalimplant.org6034a082005-03-21 11:09:40 -0800500 return ret ? intf : NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501}
502
503static int usb_device_match (struct device *dev, struct device_driver *drv)
504{
505 struct usb_interface *intf;
506 struct usb_driver *usb_drv;
507 const struct usb_device_id *id;
508
509 /* check for generic driver, which we don't match any device with */
510 if (drv == &usb_generic_driver)
511 return 0;
512
513 intf = to_usb_interface(dev);
514 usb_drv = to_usb_driver(drv);
515
516 id = usb_match_id (intf, usb_drv->id_table);
517 if (id)
518 return 1;
519
520 return 0;
521}
522
523
524#ifdef CONFIG_HOTPLUG
525
526/*
527 * USB hotplugging invokes what /proc/sys/kernel/hotplug says
528 * (normally /sbin/hotplug) when USB devices get added or removed.
529 *
530 * This invokes a user mode policy agent, typically helping to load driver
531 * or other modules, configure the device, and more. Drivers can provide
532 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
533 *
534 * We're called either from khubd (the typical case) or from root hub
535 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
536 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
537 * device (and this configuration!) are still present.
538 */
539static int usb_hotplug (struct device *dev, char **envp, int num_envp,
540 char *buffer, int buffer_size)
541{
542 struct usb_interface *intf;
543 struct usb_device *usb_dev;
544 int i = 0;
545 int length = 0;
546
547 if (!dev)
548 return -ENODEV;
549
550 /* driver is often null here; dev_dbg() would oops */
551 pr_debug ("usb %s: hotplug\n", dev->bus_id);
552
553 /* Must check driver_data here, as on remove driver is always NULL */
554 if ((dev->driver == &usb_generic_driver) ||
555 (dev->driver_data == &usb_generic_driver_data))
556 return 0;
557
558 intf = to_usb_interface(dev);
559 usb_dev = interface_to_usbdev (intf);
560
561 if (usb_dev->devnum < 0) {
562 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
563 return -ENODEV;
564 }
565 if (!usb_dev->bus) {
566 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
567 return -ENODEV;
568 }
569
570#ifdef CONFIG_USB_DEVICEFS
571 /* If this is available, userspace programs can directly read
572 * all the device descriptors we don't tell them about. Or
573 * even act as usermode drivers.
574 *
575 * FIXME reduce hardwired intelligence here
576 */
577 if (add_hotplug_env_var(envp, num_envp, &i,
578 buffer, buffer_size, &length,
579 "DEVICE=/proc/bus/usb/%03d/%03d",
580 usb_dev->bus->busnum, usb_dev->devnum))
581 return -ENOMEM;
582#endif
583
584 /* per-device configurations are common */
585 if (add_hotplug_env_var(envp, num_envp, &i,
586 buffer, buffer_size, &length,
587 "PRODUCT=%x/%x/%x",
588 le16_to_cpu(usb_dev->descriptor.idVendor),
589 le16_to_cpu(usb_dev->descriptor.idProduct),
590 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
591 return -ENOMEM;
592
593 /* class-based driver binding models */
594 if (add_hotplug_env_var(envp, num_envp, &i,
595 buffer, buffer_size, &length,
596 "TYPE=%d/%d/%d",
597 usb_dev->descriptor.bDeviceClass,
598 usb_dev->descriptor.bDeviceSubClass,
599 usb_dev->descriptor.bDeviceProtocol))
600 return -ENOMEM;
601
602 if (usb_dev->descriptor.bDeviceClass == 0) {
603 struct usb_host_interface *alt = intf->cur_altsetting;
604
605 /* 2.4 only exposed interface zero. in 2.5, hotplug
606 * agents are called for all interfaces, and can use
607 * $DEVPATH/bInterfaceNumber if necessary.
608 */
609 if (add_hotplug_env_var(envp, num_envp, &i,
610 buffer, buffer_size, &length,
611 "INTERFACE=%d/%d/%d",
612 alt->desc.bInterfaceClass,
613 alt->desc.bInterfaceSubClass,
614 alt->desc.bInterfaceProtocol))
615 return -ENOMEM;
616
617 if (add_hotplug_env_var(envp, num_envp, &i,
618 buffer, buffer_size, &length,
Roman Kaganfb3b4eb2005-04-22 15:07:01 -0700619 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620 le16_to_cpu(usb_dev->descriptor.idVendor),
621 le16_to_cpu(usb_dev->descriptor.idProduct),
622 le16_to_cpu(usb_dev->descriptor.bcdDevice),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 usb_dev->descriptor.bDeviceClass,
624 usb_dev->descriptor.bDeviceSubClass,
625 usb_dev->descriptor.bDeviceProtocol,
626 alt->desc.bInterfaceClass,
627 alt->desc.bInterfaceSubClass,
628 alt->desc.bInterfaceProtocol))
629 return -ENOMEM;
630 } else {
631 if (add_hotplug_env_var(envp, num_envp, &i,
632 buffer, buffer_size, &length,
Roman Kaganfb3b4eb2005-04-22 15:07:01 -0700633 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700634 le16_to_cpu(usb_dev->descriptor.idVendor),
635 le16_to_cpu(usb_dev->descriptor.idProduct),
636 le16_to_cpu(usb_dev->descriptor.bcdDevice),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 usb_dev->descriptor.bDeviceClass,
638 usb_dev->descriptor.bDeviceSubClass,
639 usb_dev->descriptor.bDeviceProtocol))
640 return -ENOMEM;
641 }
642
643 envp[i] = NULL;
644
645 return 0;
646}
647
648#else
649
650static int usb_hotplug (struct device *dev, char **envp,
651 int num_envp, char *buffer, int buffer_size)
652{
653 return -ENODEV;
654}
655
656#endif /* CONFIG_HOTPLUG */
657
658/**
659 * usb_release_dev - free a usb device structure when all users of it are finished.
660 * @dev: device that's been disconnected
661 *
662 * Will be called only by the device core when all users of this usb device are
663 * done.
664 */
665static void usb_release_dev(struct device *dev)
666{
667 struct usb_device *udev;
668
669 udev = to_usb_device(dev);
670
671 usb_destroy_configuration(udev);
672 usb_bus_put(udev->bus);
673 kfree(udev->product);
674 kfree(udev->manufacturer);
675 kfree(udev->serial);
676 kfree(udev);
677}
678
679/**
680 * usb_alloc_dev - usb device constructor (usbcore-internal)
681 * @parent: hub to which device is connected; null to allocate a root hub
682 * @bus: bus used to access the device
683 * @port1: one-based index of port; ignored for root hubs
684 * Context: !in_interrupt ()
685 *
686 * Only hub drivers (including virtual root hub drivers for host
687 * controllers) should ever call this.
688 *
689 * This call may not be used in a non-sleeping context.
690 */
691struct usb_device *
692usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
693{
694 struct usb_device *dev;
695
696 dev = kmalloc(sizeof(*dev), GFP_KERNEL);
697 if (!dev)
698 return NULL;
699
700 memset(dev, 0, sizeof(*dev));
701
702 bus = usb_bus_get(bus);
703 if (!bus) {
704 kfree(dev);
705 return NULL;
706 }
707
708 device_initialize(&dev->dev);
709 dev->dev.bus = &usb_bus_type;
710 dev->dev.dma_mask = bus->controller->dma_mask;
711 dev->dev.driver_data = &usb_generic_driver_data;
712 dev->dev.driver = &usb_generic_driver;
713 dev->dev.release = usb_release_dev;
714 dev->state = USB_STATE_ATTACHED;
715
716 INIT_LIST_HEAD(&dev->ep0.urb_list);
717 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
718 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
719 /* ep0 maxpacket comes later, from device descriptor */
720 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
721
722 /* Save readable and stable topology id, distinguishing devices
723 * by location for diagnostics, tools, driver model, etc. The
724 * string is a path along hub ports, from the root. Each device's
725 * dev->devpath will be stable until USB is re-cabled, and hubs
726 * are often labeled with these port numbers. The bus_id isn't
727 * as stable: bus->busnum changes easily from modprobe order,
728 * cardbus or pci hotplugging, and so on.
729 */
730 if (unlikely (!parent)) {
731 dev->devpath [0] = '0';
732
733 dev->dev.parent = bus->controller;
734 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
735 } else {
736 /* match any labeling on the hubs; it's one-based */
737 if (parent->devpath [0] == '0')
738 snprintf (dev->devpath, sizeof dev->devpath,
739 "%d", port1);
740 else
741 snprintf (dev->devpath, sizeof dev->devpath,
742 "%s.%d", parent->devpath, port1);
743
744 dev->dev.parent = &parent->dev;
745 sprintf (&dev->dev.bus_id[0], "%d-%s",
746 bus->busnum, dev->devpath);
747
748 /* hub driver sets up TT records */
749 }
750
751 dev->bus = bus;
752 dev->parent = parent;
753 INIT_LIST_HEAD(&dev->filelist);
754
755 init_MUTEX(&dev->serialize);
756
757 return dev;
758}
759
760/**
761 * usb_get_dev - increments the reference count of the usb device structure
762 * @dev: the device being referenced
763 *
764 * Each live reference to a device should be refcounted.
765 *
766 * Drivers for USB interfaces should normally record such references in
767 * their probe() methods, when they bind to an interface, and release
768 * them by calling usb_put_dev(), in their disconnect() methods.
769 *
770 * A pointer to the device with the incremented reference counter is returned.
771 */
772struct usb_device *usb_get_dev(struct usb_device *dev)
773{
774 if (dev)
775 get_device(&dev->dev);
776 return dev;
777}
778
779/**
780 * usb_put_dev - release a use of the usb device structure
781 * @dev: device that's been disconnected
782 *
783 * Must be called when a user of a device is finished with it. When the last
784 * user of the device calls this function, the memory of the device is freed.
785 */
786void usb_put_dev(struct usb_device *dev)
787{
788 if (dev)
789 put_device(&dev->dev);
790}
791
792/**
793 * usb_get_intf - increments the reference count of the usb interface structure
794 * @intf: the interface being referenced
795 *
796 * Each live reference to a interface must be refcounted.
797 *
798 * Drivers for USB interfaces should normally record such references in
799 * their probe() methods, when they bind to an interface, and release
800 * them by calling usb_put_intf(), in their disconnect() methods.
801 *
802 * A pointer to the interface with the incremented reference counter is
803 * returned.
804 */
805struct usb_interface *usb_get_intf(struct usb_interface *intf)
806{
807 if (intf)
808 get_device(&intf->dev);
809 return intf;
810}
811
812/**
813 * usb_put_intf - release a use of the usb interface structure
814 * @intf: interface that's been decremented
815 *
816 * Must be called when a user of an interface is finished with it. When the
817 * last user of the interface calls this function, the memory of the interface
818 * is freed.
819 */
820void usb_put_intf(struct usb_interface *intf)
821{
822 if (intf)
823 put_device(&intf->dev);
824}
825
826
827/* USB device locking
828 *
829 * Although locking USB devices should be straightforward, it is
830 * complicated by the way the driver-model core works. When a new USB
831 * driver is registered or unregistered, the core will automatically
832 * probe or disconnect all matching interfaces on all USB devices while
833 * holding the USB subsystem writelock. There's no good way for us to
834 * tell which devices will be used or to lock them beforehand; our only
835 * option is to effectively lock all the USB devices.
836 *
837 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
838 * When locking an individual device you must first acquire the rwsem's
839 * readlock. When a driver is registered or unregistered the writelock
840 * must be held. These actions are encapsulated in the subroutines
841 * below, so all a driver needs to do is call usb_lock_device() and
842 * usb_unlock_device().
843 *
844 * Complications arise when several devices are to be locked at the same
845 * time. Only hub-aware drivers that are part of usbcore ever have to
846 * do this; nobody else needs to worry about it. The problem is that
847 * usb_lock_device() must not be called to lock a second device since it
848 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
849 * another thread was waiting for the writelock. The solution is simple:
850 *
851 * When locking more than one device, call usb_lock_device()
852 * to lock the first one. Lock the others by calling
853 * down(&udev->serialize) directly.
854 *
855 * When unlocking multiple devices, use up(&udev->serialize)
856 * to unlock all but the last one. Unlock the last one by
857 * calling usb_unlock_device().
858 *
859 * When locking both a device and its parent, always lock the
860 * the parent first.
861 */
862
863/**
864 * usb_lock_device - acquire the lock for a usb device structure
865 * @udev: device that's being locked
866 *
867 * Use this routine when you don't hold any other device locks;
868 * to acquire nested inner locks call down(&udev->serialize) directly.
869 * This is necessary for proper interaction with usb_lock_all_devices().
870 */
871void usb_lock_device(struct usb_device *udev)
872{
873 down_read(&usb_all_devices_rwsem);
874 down(&udev->serialize);
875}
876
877/**
878 * usb_trylock_device - attempt to acquire the lock for a usb device structure
879 * @udev: device that's being locked
880 *
881 * Don't use this routine if you already hold a device lock;
882 * use down_trylock(&udev->serialize) instead.
883 * This is necessary for proper interaction with usb_lock_all_devices().
884 *
885 * Returns 1 if successful, 0 if contention.
886 */
887int usb_trylock_device(struct usb_device *udev)
888{
889 if (!down_read_trylock(&usb_all_devices_rwsem))
890 return 0;
891 if (down_trylock(&udev->serialize)) {
892 up_read(&usb_all_devices_rwsem);
893 return 0;
894 }
895 return 1;
896}
897
898/**
899 * usb_lock_device_for_reset - cautiously acquire the lock for a
900 * usb device structure
901 * @udev: device that's being locked
902 * @iface: interface bound to the driver making the request (optional)
903 *
904 * Attempts to acquire the device lock, but fails if the device is
905 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
906 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
907 * lock, the routine polls repeatedly. This is to prevent deadlock with
908 * disconnect; in some drivers (such as usb-storage) the disconnect()
909 * callback will block waiting for a device reset to complete.
910 *
911 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
912 * that the device will or will not have to be unlocked. (0 can be
913 * returned when an interface is given and is BINDING, because in that
914 * case the driver already owns the device lock.)
915 */
916int usb_lock_device_for_reset(struct usb_device *udev,
917 struct usb_interface *iface)
918{
919 if (udev->state == USB_STATE_NOTATTACHED)
920 return -ENODEV;
921 if (udev->state == USB_STATE_SUSPENDED)
922 return -EHOSTUNREACH;
923 if (iface) {
924 switch (iface->condition) {
925 case USB_INTERFACE_BINDING:
926 return 0;
927 case USB_INTERFACE_BOUND:
928 break;
929 default:
930 return -EINTR;
931 }
932 }
933
934 while (!usb_trylock_device(udev)) {
935 msleep(15);
936 if (udev->state == USB_STATE_NOTATTACHED)
937 return -ENODEV;
938 if (udev->state == USB_STATE_SUSPENDED)
939 return -EHOSTUNREACH;
940 if (iface && iface->condition != USB_INTERFACE_BOUND)
941 return -EINTR;
942 }
943 return 1;
944}
945
946/**
947 * usb_unlock_device - release the lock for a usb device structure
948 * @udev: device that's being unlocked
949 *
950 * Use this routine when releasing the only device lock you hold;
951 * to release inner nested locks call up(&udev->serialize) directly.
952 * This is necessary for proper interaction with usb_lock_all_devices().
953 */
954void usb_unlock_device(struct usb_device *udev)
955{
956 up(&udev->serialize);
957 up_read(&usb_all_devices_rwsem);
958}
959
960/**
961 * usb_lock_all_devices - acquire the lock for all usb device structures
962 *
963 * This is necessary when registering a new driver or probing a bus,
964 * since the driver-model core may try to use any usb_device.
965 */
966void usb_lock_all_devices(void)
967{
968 down_write(&usb_all_devices_rwsem);
969}
970
971/**
972 * usb_unlock_all_devices - release the lock for all usb device structures
973 */
974void usb_unlock_all_devices(void)
975{
976 up_write(&usb_all_devices_rwsem);
977}
978
979
980static struct usb_device *match_device(struct usb_device *dev,
981 u16 vendor_id, u16 product_id)
982{
983 struct usb_device *ret_dev = NULL;
984 int child;
985
986 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
987 le16_to_cpu(dev->descriptor.idVendor),
988 le16_to_cpu(dev->descriptor.idProduct));
989
990 /* see if this device matches */
991 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
992 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
993 dev_dbg (&dev->dev, "matched this device!\n");
994 ret_dev = usb_get_dev(dev);
995 goto exit;
996 }
997
998 /* look through all of the children of this device */
999 for (child = 0; child < dev->maxchild; ++child) {
1000 if (dev->children[child]) {
1001 down(&dev->children[child]->serialize);
1002 ret_dev = match_device(dev->children[child],
1003 vendor_id, product_id);
1004 up(&dev->children[child]->serialize);
1005 if (ret_dev)
1006 goto exit;
1007 }
1008 }
1009exit:
1010 return ret_dev;
1011}
1012
1013/**
1014 * usb_find_device - find a specific usb device in the system
1015 * @vendor_id: the vendor id of the device to find
1016 * @product_id: the product id of the device to find
1017 *
1018 * Returns a pointer to a struct usb_device if such a specified usb
1019 * device is present in the system currently. The usage count of the
1020 * device will be incremented if a device is found. Make sure to call
1021 * usb_put_dev() when the caller is finished with the device.
1022 *
1023 * If a device with the specified vendor and product id is not found,
1024 * NULL is returned.
1025 */
1026struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1027{
1028 struct list_head *buslist;
1029 struct usb_bus *bus;
1030 struct usb_device *dev = NULL;
1031
1032 down(&usb_bus_list_lock);
1033 for (buslist = usb_bus_list.next;
1034 buslist != &usb_bus_list;
1035 buslist = buslist->next) {
1036 bus = container_of(buslist, struct usb_bus, bus_list);
1037 if (!bus->root_hub)
1038 continue;
1039 usb_lock_device(bus->root_hub);
1040 dev = match_device(bus->root_hub, vendor_id, product_id);
1041 usb_unlock_device(bus->root_hub);
1042 if (dev)
1043 goto exit;
1044 }
1045exit:
1046 up(&usb_bus_list_lock);
1047 return dev;
1048}
1049
1050/**
1051 * usb_get_current_frame_number - return current bus frame number
1052 * @dev: the device whose bus is being queried
1053 *
1054 * Returns the current frame number for the USB host controller
1055 * used with the given USB device. This can be used when scheduling
1056 * isochronous requests.
1057 *
1058 * Note that different kinds of host controller have different
1059 * "scheduling horizons". While one type might support scheduling only
1060 * 32 frames into the future, others could support scheduling up to
1061 * 1024 frames into the future.
1062 */
1063int usb_get_current_frame_number(struct usb_device *dev)
1064{
1065 return dev->bus->op->get_frame_number (dev);
1066}
1067
1068/*-------------------------------------------------------------------*/
1069/*
1070 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1071 * extra field of the interface and endpoint descriptor structs.
1072 */
1073
1074int __usb_get_extra_descriptor(char *buffer, unsigned size,
1075 unsigned char type, void **ptr)
1076{
1077 struct usb_descriptor_header *header;
1078
1079 while (size >= sizeof(struct usb_descriptor_header)) {
1080 header = (struct usb_descriptor_header *)buffer;
1081
1082 if (header->bLength < 2) {
1083 printk(KERN_ERR
1084 "%s: bogus descriptor, type %d length %d\n",
1085 usbcore_name,
1086 header->bDescriptorType,
1087 header->bLength);
1088 return -1;
1089 }
1090
1091 if (header->bDescriptorType == type) {
1092 *ptr = header;
1093 return 0;
1094 }
1095
1096 buffer += header->bLength;
1097 size -= header->bLength;
1098 }
1099 return -1;
1100}
1101
1102/**
1103 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1104 * @dev: device the buffer will be used with
1105 * @size: requested buffer size
1106 * @mem_flags: affect whether allocation may block
1107 * @dma: used to return DMA address of buffer
1108 *
1109 * Return value is either null (indicating no buffer could be allocated), or
1110 * the cpu-space pointer to a buffer that may be used to perform DMA to the
1111 * specified device. Such cpu-space buffers are returned along with the DMA
1112 * address (through the pointer provided).
1113 *
1114 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1115 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1116 * mapping hardware for long idle periods. The implementation varies between
1117 * platforms, depending on details of how DMA will work to this device.
1118 * Using these buffers also helps prevent cacheline sharing problems on
1119 * architectures where CPU caches are not DMA-coherent.
1120 *
1121 * When the buffer is no longer used, free it with usb_buffer_free().
1122 */
1123void *usb_buffer_alloc (
1124 struct usb_device *dev,
1125 size_t size,
1126 int mem_flags,
1127 dma_addr_t *dma
1128)
1129{
1130 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1131 return NULL;
1132 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1133}
1134
1135/**
1136 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1137 * @dev: device the buffer was used with
1138 * @size: requested buffer size
1139 * @addr: CPU address of buffer
1140 * @dma: DMA address of buffer
1141 *
1142 * This reclaims an I/O buffer, letting it be reused. The memory must have
1143 * been allocated using usb_buffer_alloc(), and the parameters must match
1144 * those provided in that allocation request.
1145 */
1146void usb_buffer_free (
1147 struct usb_device *dev,
1148 size_t size,
1149 void *addr,
1150 dma_addr_t dma
1151)
1152{
1153 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1154 return;
1155 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1156}
1157
1158/**
1159 * usb_buffer_map - create DMA mapping(s) for an urb
1160 * @urb: urb whose transfer_buffer/setup_packet will be mapped
1161 *
1162 * Return value is either null (indicating no buffer could be mapped), or
1163 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1164 * added to urb->transfer_flags if the operation succeeds. If the device
1165 * is connected to this system through a non-DMA controller, this operation
1166 * always succeeds.
1167 *
1168 * This call would normally be used for an urb which is reused, perhaps
1169 * as the target of a large periodic transfer, with usb_buffer_dmasync()
1170 * calls to synchronize memory and dma state.
1171 *
1172 * Reverse the effect of this call with usb_buffer_unmap().
1173 */
1174#if 0
1175struct urb *usb_buffer_map (struct urb *urb)
1176{
1177 struct usb_bus *bus;
1178 struct device *controller;
1179
1180 if (!urb
1181 || !urb->dev
1182 || !(bus = urb->dev->bus)
1183 || !(controller = bus->controller))
1184 return NULL;
1185
1186 if (controller->dma_mask) {
1187 urb->transfer_dma = dma_map_single (controller,
1188 urb->transfer_buffer, urb->transfer_buffer_length,
1189 usb_pipein (urb->pipe)
1190 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1191 if (usb_pipecontrol (urb->pipe))
1192 urb->setup_dma = dma_map_single (controller,
1193 urb->setup_packet,
1194 sizeof (struct usb_ctrlrequest),
1195 DMA_TO_DEVICE);
1196 // FIXME generic api broken like pci, can't report errors
1197 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1198 } else
1199 urb->transfer_dma = ~0;
1200 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1201 | URB_NO_SETUP_DMA_MAP);
1202 return urb;
1203}
1204#endif /* 0 */
1205
1206/* XXX DISABLED, no users currently. If you wish to re-enable this
1207 * XXX please determine whether the sync is to transfer ownership of
1208 * XXX the buffer from device to cpu or vice verse, and thusly use the
1209 * XXX appropriate _for_{cpu,device}() method. -DaveM
1210 */
1211#if 0
1212
1213/**
1214 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1215 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1216 */
1217void usb_buffer_dmasync (struct urb *urb)
1218{
1219 struct usb_bus *bus;
1220 struct device *controller;
1221
1222 if (!urb
1223 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1224 || !urb->dev
1225 || !(bus = urb->dev->bus)
1226 || !(controller = bus->controller))
1227 return;
1228
1229 if (controller->dma_mask) {
1230 dma_sync_single (controller,
1231 urb->transfer_dma, urb->transfer_buffer_length,
1232 usb_pipein (urb->pipe)
1233 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1234 if (usb_pipecontrol (urb->pipe))
1235 dma_sync_single (controller,
1236 urb->setup_dma,
1237 sizeof (struct usb_ctrlrequest),
1238 DMA_TO_DEVICE);
1239 }
1240}
1241#endif
1242
1243/**
1244 * usb_buffer_unmap - free DMA mapping(s) for an urb
1245 * @urb: urb whose transfer_buffer will be unmapped
1246 *
1247 * Reverses the effect of usb_buffer_map().
1248 */
1249#if 0
1250void usb_buffer_unmap (struct urb *urb)
1251{
1252 struct usb_bus *bus;
1253 struct device *controller;
1254
1255 if (!urb
1256 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1257 || !urb->dev
1258 || !(bus = urb->dev->bus)
1259 || !(controller = bus->controller))
1260 return;
1261
1262 if (controller->dma_mask) {
1263 dma_unmap_single (controller,
1264 urb->transfer_dma, urb->transfer_buffer_length,
1265 usb_pipein (urb->pipe)
1266 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1267 if (usb_pipecontrol (urb->pipe))
1268 dma_unmap_single (controller,
1269 urb->setup_dma,
1270 sizeof (struct usb_ctrlrequest),
1271 DMA_TO_DEVICE);
1272 }
1273 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1274 | URB_NO_SETUP_DMA_MAP);
1275}
1276#endif /* 0 */
1277
1278/**
1279 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1280 * @dev: device to which the scatterlist will be mapped
1281 * @pipe: endpoint defining the mapping direction
1282 * @sg: the scatterlist to map
1283 * @nents: the number of entries in the scatterlist
1284 *
1285 * Return value is either < 0 (indicating no buffers could be mapped), or
1286 * the number of DMA mapping array entries in the scatterlist.
1287 *
1288 * The caller is responsible for placing the resulting DMA addresses from
1289 * the scatterlist into URB transfer buffer pointers, and for setting the
1290 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1291 *
1292 * Top I/O rates come from queuing URBs, instead of waiting for each one
1293 * to complete before starting the next I/O. This is particularly easy
1294 * to do with scatterlists. Just allocate and submit one URB for each DMA
1295 * mapping entry returned, stopping on the first error or when all succeed.
1296 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1297 *
1298 * This call would normally be used when translating scatterlist requests,
1299 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1300 * may be able to coalesce mappings for improved I/O efficiency.
1301 *
1302 * Reverse the effect of this call with usb_buffer_unmap_sg().
1303 */
1304int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1305 struct scatterlist *sg, int nents)
1306{
1307 struct usb_bus *bus;
1308 struct device *controller;
1309
1310 if (!dev
1311 || usb_pipecontrol (pipe)
1312 || !(bus = dev->bus)
1313 || !(controller = bus->controller)
1314 || !controller->dma_mask)
1315 return -1;
1316
1317 // FIXME generic api broken like pci, can't report errors
1318 return dma_map_sg (controller, sg, nents,
1319 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1320}
1321
1322/* XXX DISABLED, no users currently. If you wish to re-enable this
1323 * XXX please determine whether the sync is to transfer ownership of
1324 * XXX the buffer from device to cpu or vice verse, and thusly use the
1325 * XXX appropriate _for_{cpu,device}() method. -DaveM
1326 */
1327#if 0
1328
1329/**
1330 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1331 * @dev: device to which the scatterlist will be mapped
1332 * @pipe: endpoint defining the mapping direction
1333 * @sg: the scatterlist to synchronize
1334 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1335 *
1336 * Use this when you are re-using a scatterlist's data buffers for
1337 * another USB request.
1338 */
1339void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1340 struct scatterlist *sg, int n_hw_ents)
1341{
1342 struct usb_bus *bus;
1343 struct device *controller;
1344
1345 if (!dev
1346 || !(bus = dev->bus)
1347 || !(controller = bus->controller)
1348 || !controller->dma_mask)
1349 return;
1350
1351 dma_sync_sg (controller, sg, n_hw_ents,
1352 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1353}
1354#endif
1355
1356/**
1357 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1358 * @dev: device to which the scatterlist will be mapped
1359 * @pipe: endpoint defining the mapping direction
1360 * @sg: the scatterlist to unmap
1361 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1362 *
1363 * Reverses the effect of usb_buffer_map_sg().
1364 */
1365void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1366 struct scatterlist *sg, int n_hw_ents)
1367{
1368 struct usb_bus *bus;
1369 struct device *controller;
1370
1371 if (!dev
1372 || !(bus = dev->bus)
1373 || !(controller = bus->controller)
1374 || !controller->dma_mask)
1375 return;
1376
1377 dma_unmap_sg (controller, sg, n_hw_ents,
1378 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1379}
1380
David Brownell27d72e82005-04-18 17:39:22 -07001381static int usb_generic_suspend(struct device *dev, pm_message_t message)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001382{
1383 struct usb_interface *intf;
1384 struct usb_driver *driver;
1385
1386 if (dev->driver == &usb_generic_driver)
David Brownell27d72e82005-04-18 17:39:22 -07001387 return usb_suspend_device (to_usb_device(dev), message);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388
1389 if ((dev->driver == NULL) ||
1390 (dev->driver_data == &usb_generic_driver_data))
1391 return 0;
1392
1393 intf = to_usb_interface(dev);
1394 driver = to_usb_driver(dev->driver);
1395
1396 /* there's only one USB suspend state */
1397 if (intf->dev.power.power_state)
1398 return 0;
1399
1400 if (driver->suspend)
David Brownell27d72e82005-04-18 17:39:22 -07001401 return driver->suspend(intf, message);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402 return 0;
1403}
1404
1405static int usb_generic_resume(struct device *dev)
1406{
1407 struct usb_interface *intf;
1408 struct usb_driver *driver;
1409
1410 /* devices resume through their hub */
1411 if (dev->driver == &usb_generic_driver)
1412 return usb_resume_device (to_usb_device(dev));
1413
1414 if ((dev->driver == NULL) ||
1415 (dev->driver_data == &usb_generic_driver_data))
1416 return 0;
1417
1418 intf = to_usb_interface(dev);
1419 driver = to_usb_driver(dev->driver);
1420
1421 if (driver->resume)
1422 return driver->resume(intf);
1423 return 0;
1424}
1425
1426struct bus_type usb_bus_type = {
1427 .name = "usb",
1428 .match = usb_device_match,
1429 .hotplug = usb_hotplug,
1430 .suspend = usb_generic_suspend,
1431 .resume = usb_generic_resume,
1432};
1433
1434#ifndef MODULE
1435
1436static int __init usb_setup_disable(char *str)
1437{
1438 nousb = 1;
1439 return 1;
1440}
1441
1442/* format to disable USB on kernel command line is: nousb */
1443__setup("nousb", usb_setup_disable);
1444
1445#endif
1446
1447/*
1448 * for external read access to <nousb>
1449 */
1450int usb_disabled(void)
1451{
1452 return nousb;
1453}
1454
1455/*
1456 * Init
1457 */
1458static int __init usb_init(void)
1459{
1460 int retval;
1461 if (nousb) {
1462 pr_info ("%s: USB support disabled\n", usbcore_name);
1463 return 0;
1464 }
1465
1466 retval = bus_register(&usb_bus_type);
1467 if (retval)
1468 goto out;
1469 retval = usb_host_init();
1470 if (retval)
1471 goto host_init_failed;
1472 retval = usb_major_init();
1473 if (retval)
1474 goto major_init_failed;
1475 retval = usbfs_init();
1476 if (retval)
1477 goto fs_init_failed;
1478 retval = usb_hub_init();
1479 if (retval)
1480 goto hub_init_failed;
1481
1482 retval = driver_register(&usb_generic_driver);
1483 if (!retval)
1484 goto out;
1485
1486 usb_hub_cleanup();
1487hub_init_failed:
1488 usbfs_cleanup();
1489fs_init_failed:
1490 usb_major_cleanup();
1491major_init_failed:
1492 usb_host_cleanup();
1493host_init_failed:
1494 bus_unregister(&usb_bus_type);
1495out:
1496 return retval;
1497}
1498
1499/*
1500 * Cleanup
1501 */
1502static void __exit usb_exit(void)
1503{
1504 /* This will matter if shutdown/reboot does exitcalls. */
1505 if (nousb)
1506 return;
1507
1508 driver_unregister(&usb_generic_driver);
1509 usb_major_cleanup();
1510 usbfs_cleanup();
1511 usb_hub_cleanup();
1512 usb_host_cleanup();
1513 bus_unregister(&usb_bus_type);
1514}
1515
1516subsys_initcall(usb_init);
1517module_exit(usb_exit);
1518
1519/*
1520 * USB may be built into the kernel or be built as modules.
1521 * These symbols are exported for device (or host controller)
1522 * driver modules to use.
1523 */
1524
1525EXPORT_SYMBOL(usb_register);
1526EXPORT_SYMBOL(usb_deregister);
1527EXPORT_SYMBOL(usb_disabled);
1528
1529EXPORT_SYMBOL(usb_alloc_dev);
1530EXPORT_SYMBOL(usb_put_dev);
1531EXPORT_SYMBOL(usb_get_dev);
1532EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1533
1534EXPORT_SYMBOL(usb_lock_device);
1535EXPORT_SYMBOL(usb_trylock_device);
1536EXPORT_SYMBOL(usb_lock_device_for_reset);
1537EXPORT_SYMBOL(usb_unlock_device);
1538
1539EXPORT_SYMBOL(usb_driver_claim_interface);
1540EXPORT_SYMBOL(usb_driver_release_interface);
1541EXPORT_SYMBOL(usb_match_id);
1542EXPORT_SYMBOL(usb_find_interface);
1543EXPORT_SYMBOL(usb_ifnum_to_if);
1544EXPORT_SYMBOL(usb_altnum_to_altsetting);
1545
1546EXPORT_SYMBOL(usb_reset_device);
1547EXPORT_SYMBOL(usb_disconnect);
1548
1549EXPORT_SYMBOL(__usb_get_extra_descriptor);
1550
1551EXPORT_SYMBOL(usb_find_device);
1552EXPORT_SYMBOL(usb_get_current_frame_number);
1553
1554EXPORT_SYMBOL (usb_buffer_alloc);
1555EXPORT_SYMBOL (usb_buffer_free);
1556
1557#if 0
1558EXPORT_SYMBOL (usb_buffer_map);
1559EXPORT_SYMBOL (usb_buffer_dmasync);
1560EXPORT_SYMBOL (usb_buffer_unmap);
1561#endif
1562
1563EXPORT_SYMBOL (usb_buffer_map_sg);
1564#if 0
1565EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1566#endif
1567EXPORT_SYMBOL (usb_buffer_unmap_sg);
1568
1569MODULE_LICENSE("GPL");