blob: 25cf7e9eccfaadab58c4eb596494cec910cfbdbb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/config.h>
25
26#ifdef CONFIG_USB_DEBUG
27 #define DEBUG
28#else
29 #undef DEBUG
30#endif
31
32#include <linux/module.h>
33#include <linux/string.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h> /* for in_interrupt() */
37#include <linux/kmod.h>
38#include <linux/init.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/smp_lock.h>
42#include <linux/rwsem.h>
43#include <linux/usb.h>
44
45#include <asm/io.h>
46#include <asm/scatterlist.h>
47#include <linux/mm.h>
48#include <linux/dma-mapping.h>
49
50#include "hcd.h"
51#include "usb.h"
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053
54const char *usbcore_name = "usbcore";
55
56static int nousb; /* Disable USB when built into kernel image */
57 /* Not honored on modular build */
58
59static DECLARE_RWSEM(usb_all_devices_rwsem);
60
61
62static int generic_probe (struct device *dev)
63{
64 return 0;
65}
66static int generic_remove (struct device *dev)
67{
68 return 0;
69}
70
71static struct device_driver usb_generic_driver = {
72 .owner = THIS_MODULE,
73 .name = "usb",
74 .bus = &usb_bus_type,
75 .probe = generic_probe,
76 .remove = generic_remove,
77};
78
79static int usb_generic_driver_data;
80
81/* called from driver core with usb_bus_type.subsys writelock */
82static int usb_probe_interface(struct device *dev)
83{
84 struct usb_interface * intf = to_usb_interface(dev);
85 struct usb_driver * driver = to_usb_driver(dev->driver);
86 const struct usb_device_id *id;
87 int error = -ENODEV;
88
89 dev_dbg(dev, "%s\n", __FUNCTION__);
90
91 if (!driver->probe)
92 return error;
93 /* FIXME we'd much prefer to just resume it ... */
94 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
95 return -EHOSTUNREACH;
96
97 id = usb_match_id (intf, driver->id_table);
98 if (id) {
99 dev_dbg (dev, "%s - got id\n", __FUNCTION__);
100 intf->condition = USB_INTERFACE_BINDING;
101 error = driver->probe (intf, id);
102 intf->condition = error ? USB_INTERFACE_UNBOUND :
103 USB_INTERFACE_BOUND;
104 }
105
106 return error;
107}
108
109/* called from driver core with usb_bus_type.subsys writelock */
110static int usb_unbind_interface(struct device *dev)
111{
112 struct usb_interface *intf = to_usb_interface(dev);
113 struct usb_driver *driver = to_usb_driver(intf->dev.driver);
114
115 intf->condition = USB_INTERFACE_UNBINDING;
116
117 /* release all urbs for this interface */
118 usb_disable_interface(interface_to_usbdev(intf), intf);
119
120 if (driver && driver->disconnect)
121 driver->disconnect(intf);
122
123 /* reset other interface state */
124 usb_set_interface(interface_to_usbdev(intf),
125 intf->altsetting[0].desc.bInterfaceNumber,
126 0);
127 usb_set_intfdata(intf, NULL);
128 intf->condition = USB_INTERFACE_UNBOUND;
129
130 return 0;
131}
132
133/**
134 * usb_register - register a USB driver
135 * @new_driver: USB operations for the driver
136 *
137 * Registers a USB driver with the USB core. The list of unattached
138 * interfaces will be rescanned whenever a new driver is added, allowing
139 * the new driver to attach to any recognized devices.
140 * Returns a negative error code on failure and 0 on success.
141 *
142 * NOTE: if you want your driver to use the USB major number, you must call
143 * usb_register_dev() to enable that functionality. This function no longer
144 * takes care of that.
145 */
146int usb_register(struct usb_driver *new_driver)
147{
148 int retval = 0;
149
150 if (nousb)
151 return -ENODEV;
152
153 new_driver->driver.name = (char *)new_driver->name;
154 new_driver->driver.bus = &usb_bus_type;
155 new_driver->driver.probe = usb_probe_interface;
156 new_driver->driver.remove = usb_unbind_interface;
157 new_driver->driver.owner = new_driver->owner;
158
159 usb_lock_all_devices();
160 retval = driver_register(&new_driver->driver);
161 usb_unlock_all_devices();
162
163 if (!retval) {
164 pr_info("%s: registered new driver %s\n",
165 usbcore_name, new_driver->name);
166 usbfs_update_special();
167 } else {
168 printk(KERN_ERR "%s: error %d registering driver %s\n",
169 usbcore_name, retval, new_driver->name);
170 }
171
172 return retval;
173}
174
175/**
176 * usb_deregister - unregister a USB driver
177 * @driver: USB operations of the driver to unregister
178 * Context: must be able to sleep
179 *
180 * Unlinks the specified driver from the internal USB driver list.
181 *
182 * NOTE: If you called usb_register_dev(), you still need to call
183 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
184 * this * call will no longer do it for you.
185 */
186void usb_deregister(struct usb_driver *driver)
187{
188 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
189
190 usb_lock_all_devices();
191 driver_unregister (&driver->driver);
192 usb_unlock_all_devices();
193
194 usbfs_update_special();
195}
196
197/**
198 * usb_ifnum_to_if - get the interface object with a given interface number
199 * @dev: the device whose current configuration is considered
200 * @ifnum: the desired interface
201 *
202 * This walks the device descriptor for the currently active configuration
203 * and returns a pointer to the interface with that particular interface
204 * number, or null.
205 *
206 * Note that configuration descriptors are not required to assign interface
207 * numbers sequentially, so that it would be incorrect to assume that
208 * the first interface in that descriptor corresponds to interface zero.
209 * This routine helps device drivers avoid such mistakes.
210 * However, you should make sure that you do the right thing with any
211 * alternate settings available for this interfaces.
212 *
213 * Don't call this function unless you are bound to one of the interfaces
214 * on this device or you have locked the device!
215 */
216struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
217{
218 struct usb_host_config *config = dev->actconfig;
219 int i;
220
221 if (!config)
222 return NULL;
223 for (i = 0; i < config->desc.bNumInterfaces; i++)
224 if (config->interface[i]->altsetting[0]
225 .desc.bInterfaceNumber == ifnum)
226 return config->interface[i];
227
228 return NULL;
229}
230
231/**
232 * usb_altnum_to_altsetting - get the altsetting structure with a given
233 * alternate setting number.
234 * @intf: the interface containing the altsetting in question
235 * @altnum: the desired alternate setting number
236 *
237 * This searches the altsetting array of the specified interface for
238 * an entry with the correct bAlternateSetting value and returns a pointer
239 * to that entry, or null.
240 *
241 * Note that altsettings need not be stored sequentially by number, so
242 * it would be incorrect to assume that the first altsetting entry in
243 * the array corresponds to altsetting zero. This routine helps device
244 * drivers avoid such mistakes.
245 *
246 * Don't call this function unless you are bound to the intf interface
247 * or you have locked the device!
248 */
249struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
250 unsigned int altnum)
251{
252 int i;
253
254 for (i = 0; i < intf->num_altsetting; i++) {
255 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
256 return &intf->altsetting[i];
257 }
258 return NULL;
259}
260
261/**
262 * usb_driver_claim_interface - bind a driver to an interface
263 * @driver: the driver to be bound
264 * @iface: the interface to which it will be bound; must be in the
265 * usb device's active configuration
266 * @priv: driver data associated with that interface
267 *
268 * This is used by usb device drivers that need to claim more than one
269 * interface on a device when probing (audio and acm are current examples).
270 * No device driver should directly modify internal usb_interface or
271 * usb_device structure members.
272 *
273 * Few drivers should need to use this routine, since the most natural
274 * way to bind to an interface is to return the private data from
275 * the driver's probe() method.
276 *
277 * Callers must own the device lock and the driver model's usb_bus_type.subsys
278 * writelock. So driver probe() entries don't need extra locking,
279 * but other call contexts may need to explicitly claim those locks.
280 */
281int usb_driver_claim_interface(struct usb_driver *driver,
282 struct usb_interface *iface, void* priv)
283{
284 struct device *dev = &iface->dev;
285
286 if (dev->driver)
287 return -EBUSY;
288
289 dev->driver = &driver->driver;
290 usb_set_intfdata(iface, priv);
291 iface->condition = USB_INTERFACE_BOUND;
292
293 /* if interface was already added, bind now; else let
294 * the future device_add() bind it, bypassing probe()
295 */
296 if (!list_empty (&dev->bus_list))
297 device_bind_driver(dev);
298
299 return 0;
300}
301
302/**
303 * usb_driver_release_interface - unbind a driver from an interface
304 * @driver: the driver to be unbound
305 * @iface: the interface from which it will be unbound
306 *
307 * This can be used by drivers to release an interface without waiting
308 * for their disconnect() methods to be called. In typical cases this
309 * also causes the driver disconnect() method to be called.
310 *
311 * This call is synchronous, and may not be used in an interrupt context.
312 * Callers must own the device lock and the driver model's usb_bus_type.subsys
313 * writelock. So driver disconnect() entries don't need extra locking,
314 * but other call contexts may need to explicitly claim those locks.
315 */
316void usb_driver_release_interface(struct usb_driver *driver,
317 struct usb_interface *iface)
318{
319 struct device *dev = &iface->dev;
320
321 /* this should never happen, don't release something that's not ours */
322 if (!dev->driver || dev->driver != &driver->driver)
323 return;
324
325 /* don't disconnect from disconnect(), or before dev_add() */
326 if (!list_empty (&dev->driver_list) && !list_empty (&dev->bus_list))
327 device_release_driver(dev);
328
329 dev->driver = NULL;
330 usb_set_intfdata(iface, NULL);
331 iface->condition = USB_INTERFACE_UNBOUND;
332}
333
334/**
335 * usb_match_id - find first usb_device_id matching device or interface
336 * @interface: the interface of interest
337 * @id: array of usb_device_id structures, terminated by zero entry
338 *
339 * usb_match_id searches an array of usb_device_id's and returns
340 * the first one matching the device or interface, or null.
341 * This is used when binding (or rebinding) a driver to an interface.
342 * Most USB device drivers will use this indirectly, through the usb core,
343 * but some layered driver frameworks use it directly.
344 * These device tables are exported with MODULE_DEVICE_TABLE, through
345 * modutils and "modules.usbmap", to support the driver loading
346 * functionality of USB hotplugging.
347 *
348 * What Matches:
349 *
350 * The "match_flags" element in a usb_device_id controls which
351 * members are used. If the corresponding bit is set, the
352 * value in the device_id must match its corresponding member
353 * in the device or interface descriptor, or else the device_id
354 * does not match.
355 *
356 * "driver_info" is normally used only by device drivers,
357 * but you can create a wildcard "matches anything" usb_device_id
358 * as a driver's "modules.usbmap" entry if you provide an id with
359 * only a nonzero "driver_info" field. If you do this, the USB device
360 * driver's probe() routine should use additional intelligence to
361 * decide whether to bind to the specified interface.
362 *
363 * What Makes Good usb_device_id Tables:
364 *
365 * The match algorithm is very simple, so that intelligence in
366 * driver selection must come from smart driver id records.
367 * Unless you have good reasons to use another selection policy,
368 * provide match elements only in related groups, and order match
369 * specifiers from specific to general. Use the macros provided
370 * for that purpose if you can.
371 *
372 * The most specific match specifiers use device descriptor
373 * data. These are commonly used with product-specific matches;
374 * the USB_DEVICE macro lets you provide vendor and product IDs,
375 * and you can also match against ranges of product revisions.
376 * These are widely used for devices with application or vendor
377 * specific bDeviceClass values.
378 *
379 * Matches based on device class/subclass/protocol specifications
380 * are slightly more general; use the USB_DEVICE_INFO macro, or
381 * its siblings. These are used with single-function devices
382 * where bDeviceClass doesn't specify that each interface has
383 * its own class.
384 *
385 * Matches based on interface class/subclass/protocol are the
386 * most general; they let drivers bind to any interface on a
387 * multiple-function device. Use the USB_INTERFACE_INFO
388 * macro, or its siblings, to match class-per-interface style
389 * devices (as recorded in bDeviceClass).
390 *
391 * Within those groups, remember that not all combinations are
392 * meaningful. For example, don't give a product version range
393 * without vendor and product IDs; or specify a protocol without
394 * its associated class and subclass.
395 */
396const struct usb_device_id *
397usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
398{
399 struct usb_host_interface *intf;
400 struct usb_device *dev;
401
402 /* proc_connectinfo in devio.c may call us with id == NULL. */
403 if (id == NULL)
404 return NULL;
405
406 intf = interface->cur_altsetting;
407 dev = interface_to_usbdev(interface);
408
409 /* It is important to check that id->driver_info is nonzero,
410 since an entry that is all zeroes except for a nonzero
411 id->driver_info is the way to create an entry that
412 indicates that the driver want to examine every
413 device and interface. */
414 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
415 id->driver_info; id++) {
416
417 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
418 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
419 continue;
420
421 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
422 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
423 continue;
424
425 /* No need to test id->bcdDevice_lo != 0, since 0 is never
426 greater than any unsigned number. */
427 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
428 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
429 continue;
430
431 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
432 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
433 continue;
434
435 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
436 (id->bDeviceClass != dev->descriptor.bDeviceClass))
437 continue;
438
439 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
440 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
441 continue;
442
443 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
444 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
445 continue;
446
447 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
448 (id->bInterfaceClass != intf->desc.bInterfaceClass))
449 continue;
450
451 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
452 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
453 continue;
454
455 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
456 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
457 continue;
458
459 return id;
460 }
461
462 return NULL;
463}
464
465/**
466 * usb_find_interface - find usb_interface pointer for driver and device
467 * @drv: the driver whose current configuration is considered
468 * @minor: the minor number of the desired device
469 *
470 * This walks the driver device list and returns a pointer to the interface
471 * with the matching minor. Note, this only works for devices that share the
472 * USB major number.
473 */
474struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
475{
476 struct list_head *entry;
477 struct device *dev;
478 struct usb_interface *intf;
479
480 list_for_each(entry, &drv->driver.devices) {
481 dev = container_of(entry, struct device, driver_list);
482
483 /* can't look at usb devices, only interfaces */
484 if (dev->driver == &usb_generic_driver)
485 continue;
486
487 intf = to_usb_interface(dev);
488 if (intf->minor == -1)
489 continue;
490 if (intf->minor == minor)
491 return intf;
492 }
493
494 /* no device found that matches */
495 return NULL;
496}
497
498static int usb_device_match (struct device *dev, struct device_driver *drv)
499{
500 struct usb_interface *intf;
501 struct usb_driver *usb_drv;
502 const struct usb_device_id *id;
503
504 /* check for generic driver, which we don't match any device with */
505 if (drv == &usb_generic_driver)
506 return 0;
507
508 intf = to_usb_interface(dev);
509 usb_drv = to_usb_driver(drv);
510
511 id = usb_match_id (intf, usb_drv->id_table);
512 if (id)
513 return 1;
514
515 return 0;
516}
517
518
519#ifdef CONFIG_HOTPLUG
520
521/*
522 * USB hotplugging invokes what /proc/sys/kernel/hotplug says
523 * (normally /sbin/hotplug) when USB devices get added or removed.
524 *
525 * This invokes a user mode policy agent, typically helping to load driver
526 * or other modules, configure the device, and more. Drivers can provide
527 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
528 *
529 * We're called either from khubd (the typical case) or from root hub
530 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
531 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
532 * device (and this configuration!) are still present.
533 */
534static int usb_hotplug (struct device *dev, char **envp, int num_envp,
535 char *buffer, int buffer_size)
536{
537 struct usb_interface *intf;
538 struct usb_device *usb_dev;
539 int i = 0;
540 int length = 0;
541
542 if (!dev)
543 return -ENODEV;
544
545 /* driver is often null here; dev_dbg() would oops */
546 pr_debug ("usb %s: hotplug\n", dev->bus_id);
547
548 /* Must check driver_data here, as on remove driver is always NULL */
549 if ((dev->driver == &usb_generic_driver) ||
550 (dev->driver_data == &usb_generic_driver_data))
551 return 0;
552
553 intf = to_usb_interface(dev);
554 usb_dev = interface_to_usbdev (intf);
555
556 if (usb_dev->devnum < 0) {
557 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
558 return -ENODEV;
559 }
560 if (!usb_dev->bus) {
561 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
562 return -ENODEV;
563 }
564
565#ifdef CONFIG_USB_DEVICEFS
566 /* If this is available, userspace programs can directly read
567 * all the device descriptors we don't tell them about. Or
568 * even act as usermode drivers.
569 *
570 * FIXME reduce hardwired intelligence here
571 */
572 if (add_hotplug_env_var(envp, num_envp, &i,
573 buffer, buffer_size, &length,
574 "DEVICE=/proc/bus/usb/%03d/%03d",
575 usb_dev->bus->busnum, usb_dev->devnum))
576 return -ENOMEM;
577#endif
578
579 /* per-device configurations are common */
580 if (add_hotplug_env_var(envp, num_envp, &i,
581 buffer, buffer_size, &length,
582 "PRODUCT=%x/%x/%x",
583 le16_to_cpu(usb_dev->descriptor.idVendor),
584 le16_to_cpu(usb_dev->descriptor.idProduct),
585 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
586 return -ENOMEM;
587
588 /* class-based driver binding models */
589 if (add_hotplug_env_var(envp, num_envp, &i,
590 buffer, buffer_size, &length,
591 "TYPE=%d/%d/%d",
592 usb_dev->descriptor.bDeviceClass,
593 usb_dev->descriptor.bDeviceSubClass,
594 usb_dev->descriptor.bDeviceProtocol))
595 return -ENOMEM;
596
597 if (usb_dev->descriptor.bDeviceClass == 0) {
598 struct usb_host_interface *alt = intf->cur_altsetting;
599
600 /* 2.4 only exposed interface zero. in 2.5, hotplug
601 * agents are called for all interfaces, and can use
602 * $DEVPATH/bInterfaceNumber if necessary.
603 */
604 if (add_hotplug_env_var(envp, num_envp, &i,
605 buffer, buffer_size, &length,
606 "INTERFACE=%d/%d/%d",
607 alt->desc.bInterfaceClass,
608 alt->desc.bInterfaceSubClass,
609 alt->desc.bInterfaceProtocol))
610 return -ENOMEM;
611
612 if (add_hotplug_env_var(envp, num_envp, &i,
613 buffer, buffer_size, &length,
Roman Kaganfb3b4eb2005-04-22 15:07:01 -0700614 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615 le16_to_cpu(usb_dev->descriptor.idVendor),
616 le16_to_cpu(usb_dev->descriptor.idProduct),
617 le16_to_cpu(usb_dev->descriptor.bcdDevice),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618 usb_dev->descriptor.bDeviceClass,
619 usb_dev->descriptor.bDeviceSubClass,
620 usb_dev->descriptor.bDeviceProtocol,
621 alt->desc.bInterfaceClass,
622 alt->desc.bInterfaceSubClass,
623 alt->desc.bInterfaceProtocol))
624 return -ENOMEM;
625 } else {
626 if (add_hotplug_env_var(envp, num_envp, &i,
627 buffer, buffer_size, &length,
Roman Kaganfb3b4eb2005-04-22 15:07:01 -0700628 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629 le16_to_cpu(usb_dev->descriptor.idVendor),
630 le16_to_cpu(usb_dev->descriptor.idProduct),
631 le16_to_cpu(usb_dev->descriptor.bcdDevice),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 usb_dev->descriptor.bDeviceClass,
633 usb_dev->descriptor.bDeviceSubClass,
634 usb_dev->descriptor.bDeviceProtocol))
635 return -ENOMEM;
636 }
637
638 envp[i] = NULL;
639
640 return 0;
641}
642
643#else
644
645static int usb_hotplug (struct device *dev, char **envp,
646 int num_envp, char *buffer, int buffer_size)
647{
648 return -ENODEV;
649}
650
651#endif /* CONFIG_HOTPLUG */
652
653/**
654 * usb_release_dev - free a usb device structure when all users of it are finished.
655 * @dev: device that's been disconnected
656 *
657 * Will be called only by the device core when all users of this usb device are
658 * done.
659 */
660static void usb_release_dev(struct device *dev)
661{
662 struct usb_device *udev;
663
664 udev = to_usb_device(dev);
665
666 usb_destroy_configuration(udev);
667 usb_bus_put(udev->bus);
668 kfree(udev->product);
669 kfree(udev->manufacturer);
670 kfree(udev->serial);
671 kfree(udev);
672}
673
674/**
675 * usb_alloc_dev - usb device constructor (usbcore-internal)
676 * @parent: hub to which device is connected; null to allocate a root hub
677 * @bus: bus used to access the device
678 * @port1: one-based index of port; ignored for root hubs
679 * Context: !in_interrupt ()
680 *
681 * Only hub drivers (including virtual root hub drivers for host
682 * controllers) should ever call this.
683 *
684 * This call may not be used in a non-sleeping context.
685 */
686struct usb_device *
687usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
688{
689 struct usb_device *dev;
690
691 dev = kmalloc(sizeof(*dev), GFP_KERNEL);
692 if (!dev)
693 return NULL;
694
695 memset(dev, 0, sizeof(*dev));
696
697 bus = usb_bus_get(bus);
698 if (!bus) {
699 kfree(dev);
700 return NULL;
701 }
702
703 device_initialize(&dev->dev);
704 dev->dev.bus = &usb_bus_type;
705 dev->dev.dma_mask = bus->controller->dma_mask;
706 dev->dev.driver_data = &usb_generic_driver_data;
707 dev->dev.driver = &usb_generic_driver;
708 dev->dev.release = usb_release_dev;
709 dev->state = USB_STATE_ATTACHED;
710
711 INIT_LIST_HEAD(&dev->ep0.urb_list);
712 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
713 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
714 /* ep0 maxpacket comes later, from device descriptor */
715 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
716
717 /* Save readable and stable topology id, distinguishing devices
718 * by location for diagnostics, tools, driver model, etc. The
719 * string is a path along hub ports, from the root. Each device's
720 * dev->devpath will be stable until USB is re-cabled, and hubs
721 * are often labeled with these port numbers. The bus_id isn't
722 * as stable: bus->busnum changes easily from modprobe order,
723 * cardbus or pci hotplugging, and so on.
724 */
725 if (unlikely (!parent)) {
726 dev->devpath [0] = '0';
727
728 dev->dev.parent = bus->controller;
729 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
730 } else {
731 /* match any labeling on the hubs; it's one-based */
732 if (parent->devpath [0] == '0')
733 snprintf (dev->devpath, sizeof dev->devpath,
734 "%d", port1);
735 else
736 snprintf (dev->devpath, sizeof dev->devpath,
737 "%s.%d", parent->devpath, port1);
738
739 dev->dev.parent = &parent->dev;
740 sprintf (&dev->dev.bus_id[0], "%d-%s",
741 bus->busnum, dev->devpath);
742
743 /* hub driver sets up TT records */
744 }
745
746 dev->bus = bus;
747 dev->parent = parent;
748 INIT_LIST_HEAD(&dev->filelist);
749
750 init_MUTEX(&dev->serialize);
751
752 return dev;
753}
754
755/**
756 * usb_get_dev - increments the reference count of the usb device structure
757 * @dev: the device being referenced
758 *
759 * Each live reference to a device should be refcounted.
760 *
761 * Drivers for USB interfaces should normally record such references in
762 * their probe() methods, when they bind to an interface, and release
763 * them by calling usb_put_dev(), in their disconnect() methods.
764 *
765 * A pointer to the device with the incremented reference counter is returned.
766 */
767struct usb_device *usb_get_dev(struct usb_device *dev)
768{
769 if (dev)
770 get_device(&dev->dev);
771 return dev;
772}
773
774/**
775 * usb_put_dev - release a use of the usb device structure
776 * @dev: device that's been disconnected
777 *
778 * Must be called when a user of a device is finished with it. When the last
779 * user of the device calls this function, the memory of the device is freed.
780 */
781void usb_put_dev(struct usb_device *dev)
782{
783 if (dev)
784 put_device(&dev->dev);
785}
786
787/**
788 * usb_get_intf - increments the reference count of the usb interface structure
789 * @intf: the interface being referenced
790 *
791 * Each live reference to a interface must be refcounted.
792 *
793 * Drivers for USB interfaces should normally record such references in
794 * their probe() methods, when they bind to an interface, and release
795 * them by calling usb_put_intf(), in their disconnect() methods.
796 *
797 * A pointer to the interface with the incremented reference counter is
798 * returned.
799 */
800struct usb_interface *usb_get_intf(struct usb_interface *intf)
801{
802 if (intf)
803 get_device(&intf->dev);
804 return intf;
805}
806
807/**
808 * usb_put_intf - release a use of the usb interface structure
809 * @intf: interface that's been decremented
810 *
811 * Must be called when a user of an interface is finished with it. When the
812 * last user of the interface calls this function, the memory of the interface
813 * is freed.
814 */
815void usb_put_intf(struct usb_interface *intf)
816{
817 if (intf)
818 put_device(&intf->dev);
819}
820
821
822/* USB device locking
823 *
824 * Although locking USB devices should be straightforward, it is
825 * complicated by the way the driver-model core works. When a new USB
826 * driver is registered or unregistered, the core will automatically
827 * probe or disconnect all matching interfaces on all USB devices while
828 * holding the USB subsystem writelock. There's no good way for us to
829 * tell which devices will be used or to lock them beforehand; our only
830 * option is to effectively lock all the USB devices.
831 *
832 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
833 * When locking an individual device you must first acquire the rwsem's
834 * readlock. When a driver is registered or unregistered the writelock
835 * must be held. These actions are encapsulated in the subroutines
836 * below, so all a driver needs to do is call usb_lock_device() and
837 * usb_unlock_device().
838 *
839 * Complications arise when several devices are to be locked at the same
840 * time. Only hub-aware drivers that are part of usbcore ever have to
841 * do this; nobody else needs to worry about it. The problem is that
842 * usb_lock_device() must not be called to lock a second device since it
843 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
844 * another thread was waiting for the writelock. The solution is simple:
845 *
846 * When locking more than one device, call usb_lock_device()
847 * to lock the first one. Lock the others by calling
848 * down(&udev->serialize) directly.
849 *
850 * When unlocking multiple devices, use up(&udev->serialize)
851 * to unlock all but the last one. Unlock the last one by
852 * calling usb_unlock_device().
853 *
854 * When locking both a device and its parent, always lock the
855 * the parent first.
856 */
857
858/**
859 * usb_lock_device - acquire the lock for a usb device structure
860 * @udev: device that's being locked
861 *
862 * Use this routine when you don't hold any other device locks;
863 * to acquire nested inner locks call down(&udev->serialize) directly.
864 * This is necessary for proper interaction with usb_lock_all_devices().
865 */
866void usb_lock_device(struct usb_device *udev)
867{
868 down_read(&usb_all_devices_rwsem);
869 down(&udev->serialize);
870}
871
872/**
873 * usb_trylock_device - attempt to acquire the lock for a usb device structure
874 * @udev: device that's being locked
875 *
876 * Don't use this routine if you already hold a device lock;
877 * use down_trylock(&udev->serialize) instead.
878 * This is necessary for proper interaction with usb_lock_all_devices().
879 *
880 * Returns 1 if successful, 0 if contention.
881 */
882int usb_trylock_device(struct usb_device *udev)
883{
884 if (!down_read_trylock(&usb_all_devices_rwsem))
885 return 0;
886 if (down_trylock(&udev->serialize)) {
887 up_read(&usb_all_devices_rwsem);
888 return 0;
889 }
890 return 1;
891}
892
893/**
894 * usb_lock_device_for_reset - cautiously acquire the lock for a
895 * usb device structure
896 * @udev: device that's being locked
897 * @iface: interface bound to the driver making the request (optional)
898 *
899 * Attempts to acquire the device lock, but fails if the device is
900 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
901 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
902 * lock, the routine polls repeatedly. This is to prevent deadlock with
903 * disconnect; in some drivers (such as usb-storage) the disconnect()
904 * callback will block waiting for a device reset to complete.
905 *
906 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
907 * that the device will or will not have to be unlocked. (0 can be
908 * returned when an interface is given and is BINDING, because in that
909 * case the driver already owns the device lock.)
910 */
911int usb_lock_device_for_reset(struct usb_device *udev,
912 struct usb_interface *iface)
913{
914 if (udev->state == USB_STATE_NOTATTACHED)
915 return -ENODEV;
916 if (udev->state == USB_STATE_SUSPENDED)
917 return -EHOSTUNREACH;
918 if (iface) {
919 switch (iface->condition) {
920 case USB_INTERFACE_BINDING:
921 return 0;
922 case USB_INTERFACE_BOUND:
923 break;
924 default:
925 return -EINTR;
926 }
927 }
928
929 while (!usb_trylock_device(udev)) {
930 msleep(15);
931 if (udev->state == USB_STATE_NOTATTACHED)
932 return -ENODEV;
933 if (udev->state == USB_STATE_SUSPENDED)
934 return -EHOSTUNREACH;
935 if (iface && iface->condition != USB_INTERFACE_BOUND)
936 return -EINTR;
937 }
938 return 1;
939}
940
941/**
942 * usb_unlock_device - release the lock for a usb device structure
943 * @udev: device that's being unlocked
944 *
945 * Use this routine when releasing the only device lock you hold;
946 * to release inner nested locks call up(&udev->serialize) directly.
947 * This is necessary for proper interaction with usb_lock_all_devices().
948 */
949void usb_unlock_device(struct usb_device *udev)
950{
951 up(&udev->serialize);
952 up_read(&usb_all_devices_rwsem);
953}
954
955/**
956 * usb_lock_all_devices - acquire the lock for all usb device structures
957 *
958 * This is necessary when registering a new driver or probing a bus,
959 * since the driver-model core may try to use any usb_device.
960 */
961void usb_lock_all_devices(void)
962{
963 down_write(&usb_all_devices_rwsem);
964}
965
966/**
967 * usb_unlock_all_devices - release the lock for all usb device structures
968 */
969void usb_unlock_all_devices(void)
970{
971 up_write(&usb_all_devices_rwsem);
972}
973
974
975static struct usb_device *match_device(struct usb_device *dev,
976 u16 vendor_id, u16 product_id)
977{
978 struct usb_device *ret_dev = NULL;
979 int child;
980
981 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
982 le16_to_cpu(dev->descriptor.idVendor),
983 le16_to_cpu(dev->descriptor.idProduct));
984
985 /* see if this device matches */
986 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
987 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
988 dev_dbg (&dev->dev, "matched this device!\n");
989 ret_dev = usb_get_dev(dev);
990 goto exit;
991 }
992
993 /* look through all of the children of this device */
994 for (child = 0; child < dev->maxchild; ++child) {
995 if (dev->children[child]) {
996 down(&dev->children[child]->serialize);
997 ret_dev = match_device(dev->children[child],
998 vendor_id, product_id);
999 up(&dev->children[child]->serialize);
1000 if (ret_dev)
1001 goto exit;
1002 }
1003 }
1004exit:
1005 return ret_dev;
1006}
1007
1008/**
1009 * usb_find_device - find a specific usb device in the system
1010 * @vendor_id: the vendor id of the device to find
1011 * @product_id: the product id of the device to find
1012 *
1013 * Returns a pointer to a struct usb_device if such a specified usb
1014 * device is present in the system currently. The usage count of the
1015 * device will be incremented if a device is found. Make sure to call
1016 * usb_put_dev() when the caller is finished with the device.
1017 *
1018 * If a device with the specified vendor and product id is not found,
1019 * NULL is returned.
1020 */
1021struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1022{
1023 struct list_head *buslist;
1024 struct usb_bus *bus;
1025 struct usb_device *dev = NULL;
1026
1027 down(&usb_bus_list_lock);
1028 for (buslist = usb_bus_list.next;
1029 buslist != &usb_bus_list;
1030 buslist = buslist->next) {
1031 bus = container_of(buslist, struct usb_bus, bus_list);
1032 if (!bus->root_hub)
1033 continue;
1034 usb_lock_device(bus->root_hub);
1035 dev = match_device(bus->root_hub, vendor_id, product_id);
1036 usb_unlock_device(bus->root_hub);
1037 if (dev)
1038 goto exit;
1039 }
1040exit:
1041 up(&usb_bus_list_lock);
1042 return dev;
1043}
1044
1045/**
1046 * usb_get_current_frame_number - return current bus frame number
1047 * @dev: the device whose bus is being queried
1048 *
1049 * Returns the current frame number for the USB host controller
1050 * used with the given USB device. This can be used when scheduling
1051 * isochronous requests.
1052 *
1053 * Note that different kinds of host controller have different
1054 * "scheduling horizons". While one type might support scheduling only
1055 * 32 frames into the future, others could support scheduling up to
1056 * 1024 frames into the future.
1057 */
1058int usb_get_current_frame_number(struct usb_device *dev)
1059{
1060 return dev->bus->op->get_frame_number (dev);
1061}
1062
1063/*-------------------------------------------------------------------*/
1064/*
1065 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1066 * extra field of the interface and endpoint descriptor structs.
1067 */
1068
1069int __usb_get_extra_descriptor(char *buffer, unsigned size,
1070 unsigned char type, void **ptr)
1071{
1072 struct usb_descriptor_header *header;
1073
1074 while (size >= sizeof(struct usb_descriptor_header)) {
1075 header = (struct usb_descriptor_header *)buffer;
1076
1077 if (header->bLength < 2) {
1078 printk(KERN_ERR
1079 "%s: bogus descriptor, type %d length %d\n",
1080 usbcore_name,
1081 header->bDescriptorType,
1082 header->bLength);
1083 return -1;
1084 }
1085
1086 if (header->bDescriptorType == type) {
1087 *ptr = header;
1088 return 0;
1089 }
1090
1091 buffer += header->bLength;
1092 size -= header->bLength;
1093 }
1094 return -1;
1095}
1096
1097/**
1098 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1099 * @dev: device the buffer will be used with
1100 * @size: requested buffer size
1101 * @mem_flags: affect whether allocation may block
1102 * @dma: used to return DMA address of buffer
1103 *
1104 * Return value is either null (indicating no buffer could be allocated), or
1105 * the cpu-space pointer to a buffer that may be used to perform DMA to the
1106 * specified device. Such cpu-space buffers are returned along with the DMA
1107 * address (through the pointer provided).
1108 *
1109 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1110 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1111 * mapping hardware for long idle periods. The implementation varies between
1112 * platforms, depending on details of how DMA will work to this device.
1113 * Using these buffers also helps prevent cacheline sharing problems on
1114 * architectures where CPU caches are not DMA-coherent.
1115 *
1116 * When the buffer is no longer used, free it with usb_buffer_free().
1117 */
1118void *usb_buffer_alloc (
1119 struct usb_device *dev,
1120 size_t size,
1121 int mem_flags,
1122 dma_addr_t *dma
1123)
1124{
1125 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1126 return NULL;
1127 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1128}
1129
1130/**
1131 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1132 * @dev: device the buffer was used with
1133 * @size: requested buffer size
1134 * @addr: CPU address of buffer
1135 * @dma: DMA address of buffer
1136 *
1137 * This reclaims an I/O buffer, letting it be reused. The memory must have
1138 * been allocated using usb_buffer_alloc(), and the parameters must match
1139 * those provided in that allocation request.
1140 */
1141void usb_buffer_free (
1142 struct usb_device *dev,
1143 size_t size,
1144 void *addr,
1145 dma_addr_t dma
1146)
1147{
1148 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1149 return;
1150 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1151}
1152
1153/**
1154 * usb_buffer_map - create DMA mapping(s) for an urb
1155 * @urb: urb whose transfer_buffer/setup_packet will be mapped
1156 *
1157 * Return value is either null (indicating no buffer could be mapped), or
1158 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1159 * added to urb->transfer_flags if the operation succeeds. If the device
1160 * is connected to this system through a non-DMA controller, this operation
1161 * always succeeds.
1162 *
1163 * This call would normally be used for an urb which is reused, perhaps
1164 * as the target of a large periodic transfer, with usb_buffer_dmasync()
1165 * calls to synchronize memory and dma state.
1166 *
1167 * Reverse the effect of this call with usb_buffer_unmap().
1168 */
1169#if 0
1170struct urb *usb_buffer_map (struct urb *urb)
1171{
1172 struct usb_bus *bus;
1173 struct device *controller;
1174
1175 if (!urb
1176 || !urb->dev
1177 || !(bus = urb->dev->bus)
1178 || !(controller = bus->controller))
1179 return NULL;
1180
1181 if (controller->dma_mask) {
1182 urb->transfer_dma = dma_map_single (controller,
1183 urb->transfer_buffer, urb->transfer_buffer_length,
1184 usb_pipein (urb->pipe)
1185 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1186 if (usb_pipecontrol (urb->pipe))
1187 urb->setup_dma = dma_map_single (controller,
1188 urb->setup_packet,
1189 sizeof (struct usb_ctrlrequest),
1190 DMA_TO_DEVICE);
1191 // FIXME generic api broken like pci, can't report errors
1192 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1193 } else
1194 urb->transfer_dma = ~0;
1195 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1196 | URB_NO_SETUP_DMA_MAP);
1197 return urb;
1198}
1199#endif /* 0 */
1200
1201/* XXX DISABLED, no users currently. If you wish to re-enable this
1202 * XXX please determine whether the sync is to transfer ownership of
1203 * XXX the buffer from device to cpu or vice verse, and thusly use the
1204 * XXX appropriate _for_{cpu,device}() method. -DaveM
1205 */
1206#if 0
1207
1208/**
1209 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1210 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1211 */
1212void usb_buffer_dmasync (struct urb *urb)
1213{
1214 struct usb_bus *bus;
1215 struct device *controller;
1216
1217 if (!urb
1218 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1219 || !urb->dev
1220 || !(bus = urb->dev->bus)
1221 || !(controller = bus->controller))
1222 return;
1223
1224 if (controller->dma_mask) {
1225 dma_sync_single (controller,
1226 urb->transfer_dma, urb->transfer_buffer_length,
1227 usb_pipein (urb->pipe)
1228 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1229 if (usb_pipecontrol (urb->pipe))
1230 dma_sync_single (controller,
1231 urb->setup_dma,
1232 sizeof (struct usb_ctrlrequest),
1233 DMA_TO_DEVICE);
1234 }
1235}
1236#endif
1237
1238/**
1239 * usb_buffer_unmap - free DMA mapping(s) for an urb
1240 * @urb: urb whose transfer_buffer will be unmapped
1241 *
1242 * Reverses the effect of usb_buffer_map().
1243 */
1244#if 0
1245void usb_buffer_unmap (struct urb *urb)
1246{
1247 struct usb_bus *bus;
1248 struct device *controller;
1249
1250 if (!urb
1251 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1252 || !urb->dev
1253 || !(bus = urb->dev->bus)
1254 || !(controller = bus->controller))
1255 return;
1256
1257 if (controller->dma_mask) {
1258 dma_unmap_single (controller,
1259 urb->transfer_dma, urb->transfer_buffer_length,
1260 usb_pipein (urb->pipe)
1261 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1262 if (usb_pipecontrol (urb->pipe))
1263 dma_unmap_single (controller,
1264 urb->setup_dma,
1265 sizeof (struct usb_ctrlrequest),
1266 DMA_TO_DEVICE);
1267 }
1268 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1269 | URB_NO_SETUP_DMA_MAP);
1270}
1271#endif /* 0 */
1272
1273/**
1274 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1275 * @dev: device to which the scatterlist will be mapped
1276 * @pipe: endpoint defining the mapping direction
1277 * @sg: the scatterlist to map
1278 * @nents: the number of entries in the scatterlist
1279 *
1280 * Return value is either < 0 (indicating no buffers could be mapped), or
1281 * the number of DMA mapping array entries in the scatterlist.
1282 *
1283 * The caller is responsible for placing the resulting DMA addresses from
1284 * the scatterlist into URB transfer buffer pointers, and for setting the
1285 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1286 *
1287 * Top I/O rates come from queuing URBs, instead of waiting for each one
1288 * to complete before starting the next I/O. This is particularly easy
1289 * to do with scatterlists. Just allocate and submit one URB for each DMA
1290 * mapping entry returned, stopping on the first error or when all succeed.
1291 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1292 *
1293 * This call would normally be used when translating scatterlist requests,
1294 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1295 * may be able to coalesce mappings for improved I/O efficiency.
1296 *
1297 * Reverse the effect of this call with usb_buffer_unmap_sg().
1298 */
1299int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1300 struct scatterlist *sg, int nents)
1301{
1302 struct usb_bus *bus;
1303 struct device *controller;
1304
1305 if (!dev
1306 || usb_pipecontrol (pipe)
1307 || !(bus = dev->bus)
1308 || !(controller = bus->controller)
1309 || !controller->dma_mask)
1310 return -1;
1311
1312 // FIXME generic api broken like pci, can't report errors
1313 return dma_map_sg (controller, sg, nents,
1314 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1315}
1316
1317/* XXX DISABLED, no users currently. If you wish to re-enable this
1318 * XXX please determine whether the sync is to transfer ownership of
1319 * XXX the buffer from device to cpu or vice verse, and thusly use the
1320 * XXX appropriate _for_{cpu,device}() method. -DaveM
1321 */
1322#if 0
1323
1324/**
1325 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1326 * @dev: device to which the scatterlist will be mapped
1327 * @pipe: endpoint defining the mapping direction
1328 * @sg: the scatterlist to synchronize
1329 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1330 *
1331 * Use this when you are re-using a scatterlist's data buffers for
1332 * another USB request.
1333 */
1334void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1335 struct scatterlist *sg, int n_hw_ents)
1336{
1337 struct usb_bus *bus;
1338 struct device *controller;
1339
1340 if (!dev
1341 || !(bus = dev->bus)
1342 || !(controller = bus->controller)
1343 || !controller->dma_mask)
1344 return;
1345
1346 dma_sync_sg (controller, sg, n_hw_ents,
1347 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1348}
1349#endif
1350
1351/**
1352 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1353 * @dev: device to which the scatterlist will be mapped
1354 * @pipe: endpoint defining the mapping direction
1355 * @sg: the scatterlist to unmap
1356 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1357 *
1358 * Reverses the effect of usb_buffer_map_sg().
1359 */
1360void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1361 struct scatterlist *sg, int n_hw_ents)
1362{
1363 struct usb_bus *bus;
1364 struct device *controller;
1365
1366 if (!dev
1367 || !(bus = dev->bus)
1368 || !(controller = bus->controller)
1369 || !controller->dma_mask)
1370 return;
1371
1372 dma_unmap_sg (controller, sg, n_hw_ents,
1373 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1374}
1375
David Brownell27d72e82005-04-18 17:39:22 -07001376static int usb_generic_suspend(struct device *dev, pm_message_t message)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377{
1378 struct usb_interface *intf;
1379 struct usb_driver *driver;
1380
1381 if (dev->driver == &usb_generic_driver)
David Brownell27d72e82005-04-18 17:39:22 -07001382 return usb_suspend_device (to_usb_device(dev), message);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383
1384 if ((dev->driver == NULL) ||
1385 (dev->driver_data == &usb_generic_driver_data))
1386 return 0;
1387
1388 intf = to_usb_interface(dev);
1389 driver = to_usb_driver(dev->driver);
1390
1391 /* there's only one USB suspend state */
1392 if (intf->dev.power.power_state)
1393 return 0;
1394
1395 if (driver->suspend)
David Brownell27d72e82005-04-18 17:39:22 -07001396 return driver->suspend(intf, message);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001397 return 0;
1398}
1399
1400static int usb_generic_resume(struct device *dev)
1401{
1402 struct usb_interface *intf;
1403 struct usb_driver *driver;
1404
1405 /* devices resume through their hub */
1406 if (dev->driver == &usb_generic_driver)
1407 return usb_resume_device (to_usb_device(dev));
1408
1409 if ((dev->driver == NULL) ||
1410 (dev->driver_data == &usb_generic_driver_data))
1411 return 0;
1412
1413 intf = to_usb_interface(dev);
1414 driver = to_usb_driver(dev->driver);
1415
1416 if (driver->resume)
1417 return driver->resume(intf);
1418 return 0;
1419}
1420
1421struct bus_type usb_bus_type = {
1422 .name = "usb",
1423 .match = usb_device_match,
1424 .hotplug = usb_hotplug,
1425 .suspend = usb_generic_suspend,
1426 .resume = usb_generic_resume,
1427};
1428
1429#ifndef MODULE
1430
1431static int __init usb_setup_disable(char *str)
1432{
1433 nousb = 1;
1434 return 1;
1435}
1436
1437/* format to disable USB on kernel command line is: nousb */
1438__setup("nousb", usb_setup_disable);
1439
1440#endif
1441
1442/*
1443 * for external read access to <nousb>
1444 */
1445int usb_disabled(void)
1446{
1447 return nousb;
1448}
1449
1450/*
1451 * Init
1452 */
1453static int __init usb_init(void)
1454{
1455 int retval;
1456 if (nousb) {
1457 pr_info ("%s: USB support disabled\n", usbcore_name);
1458 return 0;
1459 }
1460
1461 retval = bus_register(&usb_bus_type);
1462 if (retval)
1463 goto out;
1464 retval = usb_host_init();
1465 if (retval)
1466 goto host_init_failed;
1467 retval = usb_major_init();
1468 if (retval)
1469 goto major_init_failed;
1470 retval = usbfs_init();
1471 if (retval)
1472 goto fs_init_failed;
1473 retval = usb_hub_init();
1474 if (retval)
1475 goto hub_init_failed;
1476
1477 retval = driver_register(&usb_generic_driver);
1478 if (!retval)
1479 goto out;
1480
1481 usb_hub_cleanup();
1482hub_init_failed:
1483 usbfs_cleanup();
1484fs_init_failed:
1485 usb_major_cleanup();
1486major_init_failed:
1487 usb_host_cleanup();
1488host_init_failed:
1489 bus_unregister(&usb_bus_type);
1490out:
1491 return retval;
1492}
1493
1494/*
1495 * Cleanup
1496 */
1497static void __exit usb_exit(void)
1498{
1499 /* This will matter if shutdown/reboot does exitcalls. */
1500 if (nousb)
1501 return;
1502
1503 driver_unregister(&usb_generic_driver);
1504 usb_major_cleanup();
1505 usbfs_cleanup();
1506 usb_hub_cleanup();
1507 usb_host_cleanup();
1508 bus_unregister(&usb_bus_type);
1509}
1510
1511subsys_initcall(usb_init);
1512module_exit(usb_exit);
1513
1514/*
1515 * USB may be built into the kernel or be built as modules.
1516 * These symbols are exported for device (or host controller)
1517 * driver modules to use.
1518 */
1519
1520EXPORT_SYMBOL(usb_register);
1521EXPORT_SYMBOL(usb_deregister);
1522EXPORT_SYMBOL(usb_disabled);
1523
1524EXPORT_SYMBOL(usb_alloc_dev);
1525EXPORT_SYMBOL(usb_put_dev);
1526EXPORT_SYMBOL(usb_get_dev);
1527EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1528
1529EXPORT_SYMBOL(usb_lock_device);
1530EXPORT_SYMBOL(usb_trylock_device);
1531EXPORT_SYMBOL(usb_lock_device_for_reset);
1532EXPORT_SYMBOL(usb_unlock_device);
1533
1534EXPORT_SYMBOL(usb_driver_claim_interface);
1535EXPORT_SYMBOL(usb_driver_release_interface);
1536EXPORT_SYMBOL(usb_match_id);
1537EXPORT_SYMBOL(usb_find_interface);
1538EXPORT_SYMBOL(usb_ifnum_to_if);
1539EXPORT_SYMBOL(usb_altnum_to_altsetting);
1540
1541EXPORT_SYMBOL(usb_reset_device);
1542EXPORT_SYMBOL(usb_disconnect);
1543
1544EXPORT_SYMBOL(__usb_get_extra_descriptor);
1545
1546EXPORT_SYMBOL(usb_find_device);
1547EXPORT_SYMBOL(usb_get_current_frame_number);
1548
1549EXPORT_SYMBOL (usb_buffer_alloc);
1550EXPORT_SYMBOL (usb_buffer_free);
1551
1552#if 0
1553EXPORT_SYMBOL (usb_buffer_map);
1554EXPORT_SYMBOL (usb_buffer_dmasync);
1555EXPORT_SYMBOL (usb_buffer_unmap);
1556#endif
1557
1558EXPORT_SYMBOL (usb_buffer_map_sg);
1559#if 0
1560EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1561#endif
1562EXPORT_SYMBOL (usb_buffer_unmap_sg);
1563
1564MODULE_LICENSE("GPL");