blob: f6fb7a768ba58b08739742224b5c0cfb85aa7de2 [file] [log] [blame]
Bruce Allanfe2ddfb2011-12-21 09:47:10 +00001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanf5e261e2012-01-01 16:00:03 +00004 Copyright(c) 1999 - 2012 Intel Corporation.
Bruce Allanfe2ddfb2011-12-21 09:47:10 +00005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 * e1000_raise_eec_clk - Raise EEPROM clock
33 * @hw: pointer to the HW structure
34 * @eecd: pointer to the EEPROM
35 *
36 * Enable/Raise the EEPROM clock bit.
37 **/
38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
39{
40 *eecd = *eecd | E1000_EECD_SK;
41 ew32(EECD, *eecd);
42 e1e_flush();
43 udelay(hw->nvm.delay_usec);
44}
45
46/**
47 * e1000_lower_eec_clk - Lower EEPROM clock
48 * @hw: pointer to the HW structure
49 * @eecd: pointer to the EEPROM
50 *
51 * Clear/Lower the EEPROM clock bit.
52 **/
53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
54{
55 *eecd = *eecd & ~E1000_EECD_SK;
56 ew32(EECD, *eecd);
57 e1e_flush();
58 udelay(hw->nvm.delay_usec);
59}
60
61/**
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
63 * @hw: pointer to the HW structure
64 * @data: data to send to the EEPROM
65 * @count: number of bits to shift out
66 *
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the
68 * "data" parameter will be shifted out to the EEPROM one bit at a time.
69 * In order to do this, "data" must be broken down into bits.
70 **/
71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
72{
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 u32 eecd = er32(EECD);
75 u32 mask;
76
77 mask = 0x01 << (count - 1);
78 if (nvm->type == e1000_nvm_eeprom_spi)
79 eecd |= E1000_EECD_DO;
80
81 do {
82 eecd &= ~E1000_EECD_DI;
83
84 if (data & mask)
85 eecd |= E1000_EECD_DI;
86
87 ew32(EECD, eecd);
88 e1e_flush();
89
90 udelay(nvm->delay_usec);
91
92 e1000_raise_eec_clk(hw, &eecd);
93 e1000_lower_eec_clk(hw, &eecd);
94
95 mask >>= 1;
96 } while (mask);
97
98 eecd &= ~E1000_EECD_DI;
99 ew32(EECD, eecd);
100}
101
102/**
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 * @hw: pointer to the HW structure
105 * @count: number of bits to shift in
106 *
107 * In order to read a register from the EEPROM, we need to shift 'count' bits
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
109 * the EEPROM (setting the SK bit), and then reading the value of the data out
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should
111 * always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115 u32 eecd;
116 u32 i;
117 u16 data;
118
119 eecd = er32(EECD);
120
121 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122 data = 0;
123
124 for (i = 0; i < count; i++) {
125 data <<= 1;
126 e1000_raise_eec_clk(hw, &eecd);
127
128 eecd = er32(EECD);
129
130 eecd &= ~E1000_EECD_DI;
131 if (eecd & E1000_EECD_DO)
132 data |= 1;
133
134 e1000_lower_eec_clk(hw, &eecd);
135 }
136
137 return data;
138}
139
140/**
141 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 * @hw: pointer to the HW structure
143 * @ee_reg: EEPROM flag for polling
144 *
145 * Polls the EEPROM status bit for either read or write completion based
146 * upon the value of 'ee_reg'.
147 **/
148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149{
150 u32 attempts = 100000;
151 u32 i, reg = 0;
152
153 for (i = 0; i < attempts; i++) {
154 if (ee_reg == E1000_NVM_POLL_READ)
155 reg = er32(EERD);
156 else
157 reg = er32(EEWR);
158
159 if (reg & E1000_NVM_RW_REG_DONE)
160 return 0;
161
162 udelay(5);
163 }
164
165 return -E1000_ERR_NVM;
166}
167
168/**
169 * e1000e_acquire_nvm - Generic request for access to EEPROM
170 * @hw: pointer to the HW structure
171 *
172 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 * Return successful if access grant bit set, else clear the request for
174 * EEPROM access and return -E1000_ERR_NVM (-1).
175 **/
176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
177{
178 u32 eecd = er32(EECD);
179 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
180
181 ew32(EECD, eecd | E1000_EECD_REQ);
182 eecd = er32(EECD);
183
184 while (timeout) {
185 if (eecd & E1000_EECD_GNT)
186 break;
187 udelay(5);
188 eecd = er32(EECD);
189 timeout--;
190 }
191
192 if (!timeout) {
193 eecd &= ~E1000_EECD_REQ;
194 ew32(EECD, eecd);
195 e_dbg("Could not acquire NVM grant\n");
196 return -E1000_ERR_NVM;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_standby_nvm - Return EEPROM to standby state
204 * @hw: pointer to the HW structure
205 *
206 * Return the EEPROM to a standby state.
207 **/
208static void e1000_standby_nvm(struct e1000_hw *hw)
209{
210 struct e1000_nvm_info *nvm = &hw->nvm;
211 u32 eecd = er32(EECD);
212
213 if (nvm->type == e1000_nvm_eeprom_spi) {
214 /* Toggle CS to flush commands */
215 eecd |= E1000_EECD_CS;
216 ew32(EECD, eecd);
217 e1e_flush();
218 udelay(nvm->delay_usec);
219 eecd &= ~E1000_EECD_CS;
220 ew32(EECD, eecd);
221 e1e_flush();
222 udelay(nvm->delay_usec);
223 }
224}
225
226/**
227 * e1000_stop_nvm - Terminate EEPROM command
228 * @hw: pointer to the HW structure
229 *
230 * Terminates the current command by inverting the EEPROM's chip select pin.
231 **/
232static void e1000_stop_nvm(struct e1000_hw *hw)
233{
234 u32 eecd;
235
236 eecd = er32(EECD);
237 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238 /* Pull CS high */
239 eecd |= E1000_EECD_CS;
240 e1000_lower_eec_clk(hw, &eecd);
241 }
242}
243
244/**
245 * e1000e_release_nvm - Release exclusive access to EEPROM
246 * @hw: pointer to the HW structure
247 *
248 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
249 **/
250void e1000e_release_nvm(struct e1000_hw *hw)
251{
252 u32 eecd;
253
254 e1000_stop_nvm(hw);
255
256 eecd = er32(EECD);
257 eecd &= ~E1000_EECD_REQ;
258 ew32(EECD, eecd);
259}
260
261/**
262 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 * @hw: pointer to the HW structure
264 *
265 * Setups the EEPROM for reading and writing.
266 **/
267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268{
269 struct e1000_nvm_info *nvm = &hw->nvm;
270 u32 eecd = er32(EECD);
271 u8 spi_stat_reg;
272
273 if (nvm->type == e1000_nvm_eeprom_spi) {
274 u16 timeout = NVM_MAX_RETRY_SPI;
275
276 /* Clear SK and CS */
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 ew32(EECD, eecd);
279 e1e_flush();
280 udelay(1);
281
282 /*
283 * Read "Status Register" repeatedly until the LSB is cleared.
284 * The EEPROM will signal that the command has been completed
285 * by clearing bit 0 of the internal status register. If it's
286 * not cleared within 'timeout', then error out.
287 */
288 while (timeout) {
289 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290 hw->nvm.opcode_bits);
291 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293 break;
294
295 udelay(5);
296 e1000_standby_nvm(hw);
297 timeout--;
298 }
299
300 if (!timeout) {
301 e_dbg("SPI NVM Status error\n");
302 return -E1000_ERR_NVM;
303 }
304 }
305
306 return 0;
307}
308
309/**
310 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 * @hw: pointer to the HW structure
312 * @offset: offset of word in the EEPROM to read
313 * @words: number of words to read
314 * @data: word read from the EEPROM
315 *
316 * Reads a 16 bit word from the EEPROM using the EERD register.
317 **/
318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319{
320 struct e1000_nvm_info *nvm = &hw->nvm;
321 u32 i, eerd = 0;
322 s32 ret_val = 0;
323
324 /*
325 * A check for invalid values: offset too large, too many words,
326 * too many words for the offset, and not enough words.
327 */
328 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329 (words == 0)) {
330 e_dbg("nvm parameter(s) out of bounds\n");
331 return -E1000_ERR_NVM;
332 }
333
334 for (i = 0; i < words; i++) {
335 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
336 E1000_NVM_RW_REG_START;
337
338 ew32(EERD, eerd);
339 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
340 if (ret_val)
341 break;
342
343 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344 }
345
346 return ret_val;
347}
348
349/**
350 * e1000e_write_nvm_spi - Write to EEPROM using SPI
351 * @hw: pointer to the HW structure
352 * @offset: offset within the EEPROM to be written to
353 * @words: number of words to write
354 * @data: 16 bit word(s) to be written to the EEPROM
355 *
356 * Writes data to EEPROM at offset using SPI interface.
357 *
358 * If e1000e_update_nvm_checksum is not called after this function , the
359 * EEPROM will most likely contain an invalid checksum.
360 **/
361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362{
363 struct e1000_nvm_info *nvm = &hw->nvm;
364 s32 ret_val;
365 u16 widx = 0;
366
367 /*
368 * A check for invalid values: offset too large, too many words,
369 * and not enough words.
370 */
371 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372 (words == 0)) {
373 e_dbg("nvm parameter(s) out of bounds\n");
374 return -E1000_ERR_NVM;
375 }
376
377 ret_val = nvm->ops.acquire(hw);
378 if (ret_val)
379 return ret_val;
380
381 while (widx < words) {
382 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383
384 ret_val = e1000_ready_nvm_eeprom(hw);
385 if (ret_val) {
386 nvm->ops.release(hw);
387 return ret_val;
388 }
389
390 e1000_standby_nvm(hw);
391
392 /* Send the WRITE ENABLE command (8 bit opcode) */
393 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
394 nvm->opcode_bits);
395
396 e1000_standby_nvm(hw);
397
398 /*
399 * Some SPI eeproms use the 8th address bit embedded in the
400 * opcode
401 */
402 if ((nvm->address_bits == 8) && (offset >= 128))
403 write_opcode |= NVM_A8_OPCODE_SPI;
404
405 /* Send the Write command (8-bit opcode + addr) */
406 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
407 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
408 nvm->address_bits);
409
410 /* Loop to allow for up to whole page write of eeprom */
411 while (widx < words) {
412 u16 word_out = data[widx];
413 word_out = (word_out >> 8) | (word_out << 8);
414 e1000_shift_out_eec_bits(hw, word_out, 16);
415 widx++;
416
417 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
418 e1000_standby_nvm(hw);
419 break;
420 }
421 }
422 }
423
424 usleep_range(10000, 20000);
425 nvm->ops.release(hw);
426 return 0;
427}
428
429/**
430 * e1000_read_pba_string_generic - Read device part number
431 * @hw: pointer to the HW structure
432 * @pba_num: pointer to device part number
433 * @pba_num_size: size of part number buffer
434 *
435 * Reads the product board assembly (PBA) number from the EEPROM and stores
436 * the value in pba_num.
437 **/
438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
439 u32 pba_num_size)
440{
441 s32 ret_val;
442 u16 nvm_data;
443 u16 pba_ptr;
444 u16 offset;
445 u16 length;
446
447 if (pba_num == NULL) {
448 e_dbg("PBA string buffer was null\n");
449 ret_val = E1000_ERR_INVALID_ARGUMENT;
450 goto out;
451 }
452
453 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
454 if (ret_val) {
455 e_dbg("NVM Read Error\n");
456 goto out;
457 }
458
459 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
460 if (ret_val) {
461 e_dbg("NVM Read Error\n");
462 goto out;
463 }
464
465 /*
466 * if nvm_data is not ptr guard the PBA must be in legacy format which
467 * means pba_ptr is actually our second data word for the PBA number
468 * and we can decode it into an ascii string
469 */
470 if (nvm_data != NVM_PBA_PTR_GUARD) {
471 e_dbg("NVM PBA number is not stored as string\n");
472
473 /* we will need 11 characters to store the PBA */
474 if (pba_num_size < 11) {
475 e_dbg("PBA string buffer too small\n");
476 return E1000_ERR_NO_SPACE;
477 }
478
479 /* extract hex string from data and pba_ptr */
480 pba_num[0] = (nvm_data >> 12) & 0xF;
481 pba_num[1] = (nvm_data >> 8) & 0xF;
482 pba_num[2] = (nvm_data >> 4) & 0xF;
483 pba_num[3] = nvm_data & 0xF;
484 pba_num[4] = (pba_ptr >> 12) & 0xF;
485 pba_num[5] = (pba_ptr >> 8) & 0xF;
486 pba_num[6] = '-';
487 pba_num[7] = 0;
488 pba_num[8] = (pba_ptr >> 4) & 0xF;
489 pba_num[9] = pba_ptr & 0xF;
490
491 /* put a null character on the end of our string */
492 pba_num[10] = '\0';
493
494 /* switch all the data but the '-' to hex char */
495 for (offset = 0; offset < 10; offset++) {
496 if (pba_num[offset] < 0xA)
497 pba_num[offset] += '0';
498 else if (pba_num[offset] < 0x10)
499 pba_num[offset] += 'A' - 0xA;
500 }
501
502 goto out;
503 }
504
505 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
506 if (ret_val) {
507 e_dbg("NVM Read Error\n");
508 goto out;
509 }
510
511 if (length == 0xFFFF || length == 0) {
512 e_dbg("NVM PBA number section invalid length\n");
513 ret_val = E1000_ERR_NVM_PBA_SECTION;
514 goto out;
515 }
516 /* check if pba_num buffer is big enough */
517 if (pba_num_size < (((u32)length * 2) - 1)) {
518 e_dbg("PBA string buffer too small\n");
519 ret_val = E1000_ERR_NO_SPACE;
520 goto out;
521 }
522
523 /* trim pba length from start of string */
524 pba_ptr++;
525 length--;
526
527 for (offset = 0; offset < length; offset++) {
528 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
529 if (ret_val) {
530 e_dbg("NVM Read Error\n");
531 goto out;
532 }
533 pba_num[offset * 2] = (u8)(nvm_data >> 8);
534 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
535 }
536 pba_num[offset * 2] = '\0';
537
538out:
539 return ret_val;
540}
541
542/**
543 * e1000_read_mac_addr_generic - Read device MAC address
544 * @hw: pointer to the HW structure
545 *
546 * Reads the device MAC address from the EEPROM and stores the value.
547 * Since devices with two ports use the same EEPROM, we increment the
548 * last bit in the MAC address for the second port.
549 **/
550s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
551{
552 u32 rar_high;
553 u32 rar_low;
554 u16 i;
555
556 rar_high = er32(RAH(0));
557 rar_low = er32(RAL(0));
558
559 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
560 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
561
562 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
563 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
564
565 for (i = 0; i < ETH_ALEN; i++)
566 hw->mac.addr[i] = hw->mac.perm_addr[i];
567
568 return 0;
569}
570
571/**
572 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
573 * @hw: pointer to the HW structure
574 *
575 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
576 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
577 **/
578s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
579{
580 s32 ret_val;
581 u16 checksum = 0;
582 u16 i, nvm_data;
583
584 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
585 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
586 if (ret_val) {
587 e_dbg("NVM Read Error\n");
588 return ret_val;
589 }
590 checksum += nvm_data;
591 }
592
593 if (checksum != (u16)NVM_SUM) {
594 e_dbg("NVM Checksum Invalid\n");
595 return -E1000_ERR_NVM;
596 }
597
598 return 0;
599}
600
601/**
602 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
603 * @hw: pointer to the HW structure
604 *
605 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
606 * up to the checksum. Then calculates the EEPROM checksum and writes the
607 * value to the EEPROM.
608 **/
609s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
610{
611 s32 ret_val;
612 u16 checksum = 0;
613 u16 i, nvm_data;
614
615 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
616 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
617 if (ret_val) {
618 e_dbg("NVM Read Error while updating checksum.\n");
619 return ret_val;
620 }
621 checksum += nvm_data;
622 }
623 checksum = (u16)NVM_SUM - checksum;
624 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
625 if (ret_val)
626 e_dbg("NVM Write Error while updating checksum.\n");
627
628 return ret_val;
629}
630
631/**
632 * e1000e_reload_nvm - Reloads EEPROM
633 * @hw: pointer to the HW structure
634 *
635 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
636 * extended control register.
637 **/
638void e1000e_reload_nvm(struct e1000_hw *hw)
639{
640 u32 ctrl_ext;
641
642 udelay(10);
643 ctrl_ext = er32(CTRL_EXT);
644 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
645 ew32(CTRL_EXT, ctrl_ext);
646 e1e_flush();
647}