Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 1 | /* |
| 2 | * LZMA2 decoder |
| 3 | * |
| 4 | * Authors: Lasse Collin <lasse.collin@tukaani.org> |
| 5 | * Igor Pavlov <http://7-zip.org/> |
| 6 | * |
| 7 | * This file has been put into the public domain. |
| 8 | * You can do whatever you want with this file. |
| 9 | */ |
| 10 | |
| 11 | #include "xz_private.h" |
| 12 | #include "xz_lzma2.h" |
| 13 | |
| 14 | /* |
| 15 | * Range decoder initialization eats the first five bytes of each LZMA chunk. |
| 16 | */ |
| 17 | #define RC_INIT_BYTES 5 |
| 18 | |
| 19 | /* |
| 20 | * Minimum number of usable input buffer to safely decode one LZMA symbol. |
| 21 | * The worst case is that we decode 22 bits using probabilities and 26 |
| 22 | * direct bits. This may decode at maximum of 20 bytes of input. However, |
| 23 | * lzma_main() does an extra normalization before returning, thus we |
| 24 | * need to put 21 here. |
| 25 | */ |
| 26 | #define LZMA_IN_REQUIRED 21 |
| 27 | |
| 28 | /* |
| 29 | * Dictionary (history buffer) |
| 30 | * |
| 31 | * These are always true: |
| 32 | * start <= pos <= full <= end |
| 33 | * pos <= limit <= end |
| 34 | * |
| 35 | * In multi-call mode, also these are true: |
| 36 | * end == size |
| 37 | * size <= size_max |
| 38 | * allocated <= size |
| 39 | * |
| 40 | * Most of these variables are size_t to support single-call mode, |
| 41 | * in which the dictionary variables address the actual output |
| 42 | * buffer directly. |
| 43 | */ |
| 44 | struct dictionary { |
| 45 | /* Beginning of the history buffer */ |
| 46 | uint8_t *buf; |
| 47 | |
| 48 | /* Old position in buf (before decoding more data) */ |
| 49 | size_t start; |
| 50 | |
| 51 | /* Position in buf */ |
| 52 | size_t pos; |
| 53 | |
| 54 | /* |
| 55 | * How full dictionary is. This is used to detect corrupt input that |
| 56 | * would read beyond the beginning of the uncompressed stream. |
| 57 | */ |
| 58 | size_t full; |
| 59 | |
| 60 | /* Write limit; we don't write to buf[limit] or later bytes. */ |
| 61 | size_t limit; |
| 62 | |
| 63 | /* |
| 64 | * End of the dictionary buffer. In multi-call mode, this is |
| 65 | * the same as the dictionary size. In single-call mode, this |
| 66 | * indicates the size of the output buffer. |
| 67 | */ |
| 68 | size_t end; |
| 69 | |
| 70 | /* |
| 71 | * Size of the dictionary as specified in Block Header. This is used |
| 72 | * together with "full" to detect corrupt input that would make us |
| 73 | * read beyond the beginning of the uncompressed stream. |
| 74 | */ |
| 75 | uint32_t size; |
| 76 | |
| 77 | /* |
| 78 | * Maximum allowed dictionary size in multi-call mode. |
| 79 | * This is ignored in single-call mode. |
| 80 | */ |
| 81 | uint32_t size_max; |
| 82 | |
| 83 | /* |
| 84 | * Amount of memory currently allocated for the dictionary. |
| 85 | * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, |
| 86 | * size_max is always the same as the allocated size.) |
| 87 | */ |
| 88 | uint32_t allocated; |
| 89 | |
| 90 | /* Operation mode */ |
| 91 | enum xz_mode mode; |
| 92 | }; |
| 93 | |
| 94 | /* Range decoder */ |
| 95 | struct rc_dec { |
| 96 | uint32_t range; |
| 97 | uint32_t code; |
| 98 | |
| 99 | /* |
| 100 | * Number of initializing bytes remaining to be read |
| 101 | * by rc_read_init(). |
| 102 | */ |
| 103 | uint32_t init_bytes_left; |
| 104 | |
| 105 | /* |
| 106 | * Buffer from which we read our input. It can be either |
| 107 | * temp.buf or the caller-provided input buffer. |
| 108 | */ |
| 109 | const uint8_t *in; |
| 110 | size_t in_pos; |
| 111 | size_t in_limit; |
| 112 | }; |
| 113 | |
| 114 | /* Probabilities for a length decoder. */ |
| 115 | struct lzma_len_dec { |
| 116 | /* Probability of match length being at least 10 */ |
| 117 | uint16_t choice; |
| 118 | |
| 119 | /* Probability of match length being at least 18 */ |
| 120 | uint16_t choice2; |
| 121 | |
| 122 | /* Probabilities for match lengths 2-9 */ |
| 123 | uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; |
| 124 | |
| 125 | /* Probabilities for match lengths 10-17 */ |
| 126 | uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; |
| 127 | |
| 128 | /* Probabilities for match lengths 18-273 */ |
| 129 | uint16_t high[LEN_HIGH_SYMBOLS]; |
| 130 | }; |
| 131 | |
| 132 | struct lzma_dec { |
| 133 | /* Distances of latest four matches */ |
| 134 | uint32_t rep0; |
| 135 | uint32_t rep1; |
| 136 | uint32_t rep2; |
| 137 | uint32_t rep3; |
| 138 | |
| 139 | /* Types of the most recently seen LZMA symbols */ |
| 140 | enum lzma_state state; |
| 141 | |
| 142 | /* |
| 143 | * Length of a match. This is updated so that dict_repeat can |
| 144 | * be called again to finish repeating the whole match. |
| 145 | */ |
| 146 | uint32_t len; |
| 147 | |
| 148 | /* |
| 149 | * LZMA properties or related bit masks (number of literal |
| 150 | * context bits, a mask dervied from the number of literal |
| 151 | * position bits, and a mask dervied from the number |
| 152 | * position bits) |
| 153 | */ |
| 154 | uint32_t lc; |
| 155 | uint32_t literal_pos_mask; /* (1 << lp) - 1 */ |
| 156 | uint32_t pos_mask; /* (1 << pb) - 1 */ |
| 157 | |
| 158 | /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ |
| 159 | uint16_t is_match[STATES][POS_STATES_MAX]; |
| 160 | |
| 161 | /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ |
| 162 | uint16_t is_rep[STATES]; |
| 163 | |
| 164 | /* |
| 165 | * If 0, distance of a repeated match is rep0. |
| 166 | * Otherwise check is_rep1. |
| 167 | */ |
| 168 | uint16_t is_rep0[STATES]; |
| 169 | |
| 170 | /* |
| 171 | * If 0, distance of a repeated match is rep1. |
| 172 | * Otherwise check is_rep2. |
| 173 | */ |
| 174 | uint16_t is_rep1[STATES]; |
| 175 | |
| 176 | /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ |
| 177 | uint16_t is_rep2[STATES]; |
| 178 | |
| 179 | /* |
| 180 | * If 1, the repeated match has length of one byte. Otherwise |
| 181 | * the length is decoded from rep_len_decoder. |
| 182 | */ |
| 183 | uint16_t is_rep0_long[STATES][POS_STATES_MAX]; |
| 184 | |
| 185 | /* |
| 186 | * Probability tree for the highest two bits of the match |
| 187 | * distance. There is a separate probability tree for match |
| 188 | * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. |
| 189 | */ |
| 190 | uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; |
| 191 | |
| 192 | /* |
| 193 | * Probility trees for additional bits for match distance |
| 194 | * when the distance is in the range [4, 127]. |
| 195 | */ |
| 196 | uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; |
| 197 | |
| 198 | /* |
| 199 | * Probability tree for the lowest four bits of a match |
| 200 | * distance that is equal to or greater than 128. |
| 201 | */ |
| 202 | uint16_t dist_align[ALIGN_SIZE]; |
| 203 | |
| 204 | /* Length of a normal match */ |
| 205 | struct lzma_len_dec match_len_dec; |
| 206 | |
| 207 | /* Length of a repeated match */ |
| 208 | struct lzma_len_dec rep_len_dec; |
| 209 | |
| 210 | /* Probabilities of literals */ |
| 211 | uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; |
| 212 | }; |
| 213 | |
| 214 | struct lzma2_dec { |
| 215 | /* Position in xz_dec_lzma2_run(). */ |
| 216 | enum lzma2_seq { |
| 217 | SEQ_CONTROL, |
| 218 | SEQ_UNCOMPRESSED_1, |
| 219 | SEQ_UNCOMPRESSED_2, |
| 220 | SEQ_COMPRESSED_0, |
| 221 | SEQ_COMPRESSED_1, |
| 222 | SEQ_PROPERTIES, |
| 223 | SEQ_LZMA_PREPARE, |
| 224 | SEQ_LZMA_RUN, |
| 225 | SEQ_COPY |
| 226 | } sequence; |
| 227 | |
| 228 | /* Next position after decoding the compressed size of the chunk. */ |
| 229 | enum lzma2_seq next_sequence; |
| 230 | |
| 231 | /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ |
| 232 | uint32_t uncompressed; |
| 233 | |
| 234 | /* |
| 235 | * Compressed size of LZMA chunk or compressed/uncompressed |
| 236 | * size of uncompressed chunk (64 KiB at maximum) |
| 237 | */ |
| 238 | uint32_t compressed; |
| 239 | |
| 240 | /* |
| 241 | * True if dictionary reset is needed. This is false before |
| 242 | * the first chunk (LZMA or uncompressed). |
| 243 | */ |
| 244 | bool need_dict_reset; |
| 245 | |
| 246 | /* |
| 247 | * True if new LZMA properties are needed. This is false |
| 248 | * before the first LZMA chunk. |
| 249 | */ |
| 250 | bool need_props; |
| 251 | }; |
| 252 | |
| 253 | struct xz_dec_lzma2 { |
| 254 | /* |
| 255 | * The order below is important on x86 to reduce code size and |
| 256 | * it shouldn't hurt on other platforms. Everything up to and |
| 257 | * including lzma.pos_mask are in the first 128 bytes on x86-32, |
| 258 | * which allows using smaller instructions to access those |
| 259 | * variables. On x86-64, fewer variables fit into the first 128 |
| 260 | * bytes, but this is still the best order without sacrificing |
| 261 | * the readability by splitting the structures. |
| 262 | */ |
| 263 | struct rc_dec rc; |
| 264 | struct dictionary dict; |
| 265 | struct lzma2_dec lzma2; |
| 266 | struct lzma_dec lzma; |
| 267 | |
| 268 | /* |
| 269 | * Temporary buffer which holds small number of input bytes between |
| 270 | * decoder calls. See lzma2_lzma() for details. |
| 271 | */ |
| 272 | struct { |
| 273 | uint32_t size; |
| 274 | uint8_t buf[3 * LZMA_IN_REQUIRED]; |
| 275 | } temp; |
| 276 | }; |
| 277 | |
| 278 | /************** |
| 279 | * Dictionary * |
| 280 | **************/ |
| 281 | |
| 282 | /* |
| 283 | * Reset the dictionary state. When in single-call mode, set up the beginning |
| 284 | * of the dictionary to point to the actual output buffer. |
| 285 | */ |
| 286 | static void dict_reset(struct dictionary *dict, struct xz_buf *b) |
| 287 | { |
| 288 | if (DEC_IS_SINGLE(dict->mode)) { |
| 289 | dict->buf = b->out + b->out_pos; |
| 290 | dict->end = b->out_size - b->out_pos; |
| 291 | } |
| 292 | |
| 293 | dict->start = 0; |
| 294 | dict->pos = 0; |
| 295 | dict->limit = 0; |
| 296 | dict->full = 0; |
| 297 | } |
| 298 | |
| 299 | /* Set dictionary write limit */ |
| 300 | static void dict_limit(struct dictionary *dict, size_t out_max) |
| 301 | { |
| 302 | if (dict->end - dict->pos <= out_max) |
| 303 | dict->limit = dict->end; |
| 304 | else |
| 305 | dict->limit = dict->pos + out_max; |
| 306 | } |
| 307 | |
| 308 | /* Return true if at least one byte can be written into the dictionary. */ |
| 309 | static inline bool dict_has_space(const struct dictionary *dict) |
| 310 | { |
| 311 | return dict->pos < dict->limit; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Get a byte from the dictionary at the given distance. The distance is |
| 316 | * assumed to valid, or as a special case, zero when the dictionary is |
| 317 | * still empty. This special case is needed for single-call decoding to |
| 318 | * avoid writing a '\0' to the end of the destination buffer. |
| 319 | */ |
| 320 | static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) |
| 321 | { |
| 322 | size_t offset = dict->pos - dist - 1; |
| 323 | |
| 324 | if (dist >= dict->pos) |
| 325 | offset += dict->end; |
| 326 | |
| 327 | return dict->full > 0 ? dict->buf[offset] : 0; |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Put one byte into the dictionary. It is assumed that there is space for it. |
| 332 | */ |
| 333 | static inline void dict_put(struct dictionary *dict, uint8_t byte) |
| 334 | { |
| 335 | dict->buf[dict->pos++] = byte; |
| 336 | |
| 337 | if (dict->full < dict->pos) |
| 338 | dict->full = dict->pos; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Repeat given number of bytes from the given distance. If the distance is |
| 343 | * invalid, false is returned. On success, true is returned and *len is |
| 344 | * updated to indicate how many bytes were left to be repeated. |
| 345 | */ |
| 346 | static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) |
| 347 | { |
| 348 | size_t back; |
| 349 | uint32_t left; |
| 350 | |
| 351 | if (dist >= dict->full || dist >= dict->size) |
| 352 | return false; |
| 353 | |
| 354 | left = min_t(size_t, dict->limit - dict->pos, *len); |
| 355 | *len -= left; |
| 356 | |
| 357 | back = dict->pos - dist - 1; |
| 358 | if (dist >= dict->pos) |
| 359 | back += dict->end; |
| 360 | |
| 361 | do { |
| 362 | dict->buf[dict->pos++] = dict->buf[back++]; |
| 363 | if (back == dict->end) |
| 364 | back = 0; |
| 365 | } while (--left > 0); |
| 366 | |
| 367 | if (dict->full < dict->pos) |
| 368 | dict->full = dict->pos; |
| 369 | |
| 370 | return true; |
| 371 | } |
| 372 | |
| 373 | /* Copy uncompressed data as is from input to dictionary and output buffers. */ |
| 374 | static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, |
| 375 | uint32_t *left) |
| 376 | { |
| 377 | size_t copy_size; |
| 378 | |
| 379 | while (*left > 0 && b->in_pos < b->in_size |
| 380 | && b->out_pos < b->out_size) { |
| 381 | copy_size = min(b->in_size - b->in_pos, |
| 382 | b->out_size - b->out_pos); |
| 383 | if (copy_size > dict->end - dict->pos) |
| 384 | copy_size = dict->end - dict->pos; |
| 385 | if (copy_size > *left) |
| 386 | copy_size = *left; |
| 387 | |
| 388 | *left -= copy_size; |
| 389 | |
| 390 | memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); |
| 391 | dict->pos += copy_size; |
| 392 | |
| 393 | if (dict->full < dict->pos) |
| 394 | dict->full = dict->pos; |
| 395 | |
| 396 | if (DEC_IS_MULTI(dict->mode)) { |
| 397 | if (dict->pos == dict->end) |
| 398 | dict->pos = 0; |
| 399 | |
| 400 | memcpy(b->out + b->out_pos, b->in + b->in_pos, |
| 401 | copy_size); |
| 402 | } |
| 403 | |
| 404 | dict->start = dict->pos; |
| 405 | |
| 406 | b->out_pos += copy_size; |
| 407 | b->in_pos += copy_size; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Flush pending data from dictionary to b->out. It is assumed that there is |
| 413 | * enough space in b->out. This is guaranteed because caller uses dict_limit() |
| 414 | * before decoding data into the dictionary. |
| 415 | */ |
| 416 | static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) |
| 417 | { |
| 418 | size_t copy_size = dict->pos - dict->start; |
| 419 | |
| 420 | if (DEC_IS_MULTI(dict->mode)) { |
| 421 | if (dict->pos == dict->end) |
| 422 | dict->pos = 0; |
| 423 | |
| 424 | memcpy(b->out + b->out_pos, dict->buf + dict->start, |
| 425 | copy_size); |
| 426 | } |
| 427 | |
| 428 | dict->start = dict->pos; |
| 429 | b->out_pos += copy_size; |
| 430 | return copy_size; |
| 431 | } |
| 432 | |
| 433 | /***************** |
| 434 | * Range decoder * |
| 435 | *****************/ |
| 436 | |
| 437 | /* Reset the range decoder. */ |
| 438 | static void rc_reset(struct rc_dec *rc) |
| 439 | { |
| 440 | rc->range = (uint32_t)-1; |
| 441 | rc->code = 0; |
| 442 | rc->init_bytes_left = RC_INIT_BYTES; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Read the first five initial bytes into rc->code if they haven't been |
| 447 | * read already. (Yes, the first byte gets completely ignored.) |
| 448 | */ |
| 449 | static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) |
| 450 | { |
| 451 | while (rc->init_bytes_left > 0) { |
| 452 | if (b->in_pos == b->in_size) |
| 453 | return false; |
| 454 | |
| 455 | rc->code = (rc->code << 8) + b->in[b->in_pos++]; |
| 456 | --rc->init_bytes_left; |
| 457 | } |
| 458 | |
| 459 | return true; |
| 460 | } |
| 461 | |
| 462 | /* Return true if there may not be enough input for the next decoding loop. */ |
| 463 | static inline bool rc_limit_exceeded(const struct rc_dec *rc) |
| 464 | { |
| 465 | return rc->in_pos > rc->in_limit; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Return true if it is possible (from point of view of range decoder) that |
| 470 | * we have reached the end of the LZMA chunk. |
| 471 | */ |
| 472 | static inline bool rc_is_finished(const struct rc_dec *rc) |
| 473 | { |
| 474 | return rc->code == 0; |
| 475 | } |
| 476 | |
| 477 | /* Read the next input byte if needed. */ |
| 478 | static __always_inline void rc_normalize(struct rc_dec *rc) |
| 479 | { |
| 480 | if (rc->range < RC_TOP_VALUE) { |
| 481 | rc->range <<= RC_SHIFT_BITS; |
| 482 | rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Decode one bit. In some versions, this function has been splitted in three |
| 488 | * functions so that the compiler is supposed to be able to more easily avoid |
| 489 | * an extra branch. In this particular version of the LZMA decoder, this |
| 490 | * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 |
| 491 | * on x86). Using a non-splitted version results in nicer looking code too. |
| 492 | * |
| 493 | * NOTE: This must return an int. Do not make it return a bool or the speed |
| 494 | * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, |
| 495 | * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) |
| 496 | */ |
| 497 | static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) |
| 498 | { |
| 499 | uint32_t bound; |
| 500 | int bit; |
| 501 | |
| 502 | rc_normalize(rc); |
| 503 | bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; |
| 504 | if (rc->code < bound) { |
| 505 | rc->range = bound; |
| 506 | *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; |
| 507 | bit = 0; |
| 508 | } else { |
| 509 | rc->range -= bound; |
| 510 | rc->code -= bound; |
| 511 | *prob -= *prob >> RC_MOVE_BITS; |
| 512 | bit = 1; |
| 513 | } |
| 514 | |
| 515 | return bit; |
| 516 | } |
| 517 | |
| 518 | /* Decode a bittree starting from the most significant bit. */ |
| 519 | static __always_inline uint32_t rc_bittree(struct rc_dec *rc, |
| 520 | uint16_t *probs, uint32_t limit) |
| 521 | { |
| 522 | uint32_t symbol = 1; |
| 523 | |
| 524 | do { |
| 525 | if (rc_bit(rc, &probs[symbol])) |
| 526 | symbol = (symbol << 1) + 1; |
| 527 | else |
| 528 | symbol <<= 1; |
| 529 | } while (symbol < limit); |
| 530 | |
| 531 | return symbol; |
| 532 | } |
| 533 | |
| 534 | /* Decode a bittree starting from the least significant bit. */ |
| 535 | static __always_inline void rc_bittree_reverse(struct rc_dec *rc, |
| 536 | uint16_t *probs, |
| 537 | uint32_t *dest, uint32_t limit) |
| 538 | { |
| 539 | uint32_t symbol = 1; |
| 540 | uint32_t i = 0; |
| 541 | |
| 542 | do { |
| 543 | if (rc_bit(rc, &probs[symbol])) { |
| 544 | symbol = (symbol << 1) + 1; |
| 545 | *dest += 1 << i; |
| 546 | } else { |
| 547 | symbol <<= 1; |
| 548 | } |
| 549 | } while (++i < limit); |
| 550 | } |
| 551 | |
| 552 | /* Decode direct bits (fixed fifty-fifty probability) */ |
| 553 | static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) |
| 554 | { |
| 555 | uint32_t mask; |
| 556 | |
| 557 | do { |
| 558 | rc_normalize(rc); |
| 559 | rc->range >>= 1; |
| 560 | rc->code -= rc->range; |
| 561 | mask = (uint32_t)0 - (rc->code >> 31); |
| 562 | rc->code += rc->range & mask; |
| 563 | *dest = (*dest << 1) + (mask + 1); |
| 564 | } while (--limit > 0); |
| 565 | } |
| 566 | |
| 567 | /******** |
| 568 | * LZMA * |
| 569 | ********/ |
| 570 | |
| 571 | /* Get pointer to literal coder probability array. */ |
| 572 | static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) |
| 573 | { |
| 574 | uint32_t prev_byte = dict_get(&s->dict, 0); |
| 575 | uint32_t low = prev_byte >> (8 - s->lzma.lc); |
| 576 | uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; |
| 577 | return s->lzma.literal[low + high]; |
| 578 | } |
| 579 | |
| 580 | /* Decode a literal (one 8-bit byte) */ |
| 581 | static void lzma_literal(struct xz_dec_lzma2 *s) |
| 582 | { |
| 583 | uint16_t *probs; |
| 584 | uint32_t symbol; |
| 585 | uint32_t match_byte; |
| 586 | uint32_t match_bit; |
| 587 | uint32_t offset; |
| 588 | uint32_t i; |
| 589 | |
| 590 | probs = lzma_literal_probs(s); |
| 591 | |
| 592 | if (lzma_state_is_literal(s->lzma.state)) { |
| 593 | symbol = rc_bittree(&s->rc, probs, 0x100); |
| 594 | } else { |
| 595 | symbol = 1; |
| 596 | match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; |
| 597 | offset = 0x100; |
| 598 | |
| 599 | do { |
| 600 | match_bit = match_byte & offset; |
| 601 | match_byte <<= 1; |
| 602 | i = offset + match_bit + symbol; |
| 603 | |
| 604 | if (rc_bit(&s->rc, &probs[i])) { |
| 605 | symbol = (symbol << 1) + 1; |
| 606 | offset &= match_bit; |
| 607 | } else { |
| 608 | symbol <<= 1; |
| 609 | offset &= ~match_bit; |
| 610 | } |
| 611 | } while (symbol < 0x100); |
| 612 | } |
| 613 | |
| 614 | dict_put(&s->dict, (uint8_t)symbol); |
| 615 | lzma_state_literal(&s->lzma.state); |
| 616 | } |
| 617 | |
| 618 | /* Decode the length of the match into s->lzma.len. */ |
| 619 | static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, |
| 620 | uint32_t pos_state) |
| 621 | { |
| 622 | uint16_t *probs; |
| 623 | uint32_t limit; |
| 624 | |
| 625 | if (!rc_bit(&s->rc, &l->choice)) { |
| 626 | probs = l->low[pos_state]; |
| 627 | limit = LEN_LOW_SYMBOLS; |
| 628 | s->lzma.len = MATCH_LEN_MIN; |
| 629 | } else { |
| 630 | if (!rc_bit(&s->rc, &l->choice2)) { |
| 631 | probs = l->mid[pos_state]; |
| 632 | limit = LEN_MID_SYMBOLS; |
| 633 | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; |
| 634 | } else { |
| 635 | probs = l->high; |
| 636 | limit = LEN_HIGH_SYMBOLS; |
| 637 | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS |
| 638 | + LEN_MID_SYMBOLS; |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; |
| 643 | } |
| 644 | |
| 645 | /* Decode a match. The distance will be stored in s->lzma.rep0. */ |
| 646 | static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) |
| 647 | { |
| 648 | uint16_t *probs; |
| 649 | uint32_t dist_slot; |
| 650 | uint32_t limit; |
| 651 | |
| 652 | lzma_state_match(&s->lzma.state); |
| 653 | |
| 654 | s->lzma.rep3 = s->lzma.rep2; |
| 655 | s->lzma.rep2 = s->lzma.rep1; |
| 656 | s->lzma.rep1 = s->lzma.rep0; |
| 657 | |
| 658 | lzma_len(s, &s->lzma.match_len_dec, pos_state); |
| 659 | |
| 660 | probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; |
| 661 | dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; |
| 662 | |
| 663 | if (dist_slot < DIST_MODEL_START) { |
| 664 | s->lzma.rep0 = dist_slot; |
| 665 | } else { |
| 666 | limit = (dist_slot >> 1) - 1; |
| 667 | s->lzma.rep0 = 2 + (dist_slot & 1); |
| 668 | |
| 669 | if (dist_slot < DIST_MODEL_END) { |
| 670 | s->lzma.rep0 <<= limit; |
| 671 | probs = s->lzma.dist_special + s->lzma.rep0 |
| 672 | - dist_slot - 1; |
| 673 | rc_bittree_reverse(&s->rc, probs, |
| 674 | &s->lzma.rep0, limit); |
| 675 | } else { |
| 676 | rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); |
| 677 | s->lzma.rep0 <<= ALIGN_BITS; |
| 678 | rc_bittree_reverse(&s->rc, s->lzma.dist_align, |
| 679 | &s->lzma.rep0, ALIGN_BITS); |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * Decode a repeated match. The distance is one of the four most recently |
| 686 | * seen matches. The distance will be stored in s->lzma.rep0. |
| 687 | */ |
| 688 | static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) |
| 689 | { |
| 690 | uint32_t tmp; |
| 691 | |
| 692 | if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { |
| 693 | if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ |
| 694 | s->lzma.state][pos_state])) { |
| 695 | lzma_state_short_rep(&s->lzma.state); |
| 696 | s->lzma.len = 1; |
| 697 | return; |
| 698 | } |
| 699 | } else { |
| 700 | if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { |
| 701 | tmp = s->lzma.rep1; |
| 702 | } else { |
| 703 | if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { |
| 704 | tmp = s->lzma.rep2; |
| 705 | } else { |
| 706 | tmp = s->lzma.rep3; |
| 707 | s->lzma.rep3 = s->lzma.rep2; |
| 708 | } |
| 709 | |
| 710 | s->lzma.rep2 = s->lzma.rep1; |
| 711 | } |
| 712 | |
| 713 | s->lzma.rep1 = s->lzma.rep0; |
| 714 | s->lzma.rep0 = tmp; |
| 715 | } |
| 716 | |
| 717 | lzma_state_long_rep(&s->lzma.state); |
| 718 | lzma_len(s, &s->lzma.rep_len_dec, pos_state); |
| 719 | } |
| 720 | |
| 721 | /* LZMA decoder core */ |
| 722 | static bool lzma_main(struct xz_dec_lzma2 *s) |
| 723 | { |
| 724 | uint32_t pos_state; |
| 725 | |
| 726 | /* |
| 727 | * If the dictionary was reached during the previous call, try to |
| 728 | * finish the possibly pending repeat in the dictionary. |
| 729 | */ |
| 730 | if (dict_has_space(&s->dict) && s->lzma.len > 0) |
| 731 | dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); |
| 732 | |
| 733 | /* |
| 734 | * Decode more LZMA symbols. One iteration may consume up to |
| 735 | * LZMA_IN_REQUIRED - 1 bytes. |
| 736 | */ |
| 737 | while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { |
| 738 | pos_state = s->dict.pos & s->lzma.pos_mask; |
| 739 | |
| 740 | if (!rc_bit(&s->rc, &s->lzma.is_match[ |
| 741 | s->lzma.state][pos_state])) { |
| 742 | lzma_literal(s); |
| 743 | } else { |
| 744 | if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) |
| 745 | lzma_rep_match(s, pos_state); |
| 746 | else |
| 747 | lzma_match(s, pos_state); |
| 748 | |
| 749 | if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) |
| 750 | return false; |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * Having the range decoder always normalized when we are outside |
| 756 | * this function makes it easier to correctly handle end of the chunk. |
| 757 | */ |
| 758 | rc_normalize(&s->rc); |
| 759 | |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * Reset the LZMA decoder and range decoder state. Dictionary is nore reset |
| 765 | * here, because LZMA state may be reset without resetting the dictionary. |
| 766 | */ |
| 767 | static void lzma_reset(struct xz_dec_lzma2 *s) |
| 768 | { |
| 769 | uint16_t *probs; |
| 770 | size_t i; |
| 771 | |
| 772 | s->lzma.state = STATE_LIT_LIT; |
| 773 | s->lzma.rep0 = 0; |
| 774 | s->lzma.rep1 = 0; |
| 775 | s->lzma.rep2 = 0; |
| 776 | s->lzma.rep3 = 0; |
| 777 | |
| 778 | /* |
| 779 | * All probabilities are initialized to the same value. This hack |
| 780 | * makes the code smaller by avoiding a separate loop for each |
| 781 | * probability array. |
| 782 | * |
| 783 | * This could be optimized so that only that part of literal |
| 784 | * probabilities that are actually required. In the common case |
| 785 | * we would write 12 KiB less. |
| 786 | */ |
| 787 | probs = s->lzma.is_match[0]; |
| 788 | for (i = 0; i < PROBS_TOTAL; ++i) |
| 789 | probs[i] = RC_BIT_MODEL_TOTAL / 2; |
| 790 | |
| 791 | rc_reset(&s->rc); |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks |
| 796 | * from the decoded lp and pb values. On success, the LZMA decoder state is |
| 797 | * reset and true is returned. |
| 798 | */ |
| 799 | static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) |
| 800 | { |
| 801 | if (props > (4 * 5 + 4) * 9 + 8) |
| 802 | return false; |
| 803 | |
| 804 | s->lzma.pos_mask = 0; |
| 805 | while (props >= 9 * 5) { |
| 806 | props -= 9 * 5; |
| 807 | ++s->lzma.pos_mask; |
| 808 | } |
| 809 | |
| 810 | s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; |
| 811 | |
| 812 | s->lzma.literal_pos_mask = 0; |
| 813 | while (props >= 9) { |
| 814 | props -= 9; |
| 815 | ++s->lzma.literal_pos_mask; |
| 816 | } |
| 817 | |
| 818 | s->lzma.lc = props; |
| 819 | |
| 820 | if (s->lzma.lc + s->lzma.literal_pos_mask > 4) |
| 821 | return false; |
| 822 | |
| 823 | s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; |
| 824 | |
| 825 | lzma_reset(s); |
| 826 | |
| 827 | return true; |
| 828 | } |
| 829 | |
| 830 | /********* |
| 831 | * LZMA2 * |
| 832 | *********/ |
| 833 | |
| 834 | /* |
| 835 | * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't |
| 836 | * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This |
| 837 | * wrapper function takes care of making the LZMA decoder's assumption safe. |
| 838 | * |
| 839 | * As long as there is plenty of input left to be decoded in the current LZMA |
| 840 | * chunk, we decode directly from the caller-supplied input buffer until |
| 841 | * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into |
| 842 | * s->temp.buf, which (hopefully) gets filled on the next call to this |
| 843 | * function. We decode a few bytes from the temporary buffer so that we can |
| 844 | * continue decoding from the caller-supplied input buffer again. |
| 845 | */ |
| 846 | static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) |
| 847 | { |
| 848 | size_t in_avail; |
| 849 | uint32_t tmp; |
| 850 | |
| 851 | in_avail = b->in_size - b->in_pos; |
| 852 | if (s->temp.size > 0 || s->lzma2.compressed == 0) { |
| 853 | tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; |
| 854 | if (tmp > s->lzma2.compressed - s->temp.size) |
| 855 | tmp = s->lzma2.compressed - s->temp.size; |
| 856 | if (tmp > in_avail) |
| 857 | tmp = in_avail; |
| 858 | |
| 859 | memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); |
| 860 | |
| 861 | if (s->temp.size + tmp == s->lzma2.compressed) { |
| 862 | memzero(s->temp.buf + s->temp.size + tmp, |
| 863 | sizeof(s->temp.buf) |
| 864 | - s->temp.size - tmp); |
| 865 | s->rc.in_limit = s->temp.size + tmp; |
| 866 | } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { |
| 867 | s->temp.size += tmp; |
| 868 | b->in_pos += tmp; |
| 869 | return true; |
| 870 | } else { |
| 871 | s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; |
| 872 | } |
| 873 | |
| 874 | s->rc.in = s->temp.buf; |
| 875 | s->rc.in_pos = 0; |
| 876 | |
| 877 | if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) |
| 878 | return false; |
| 879 | |
| 880 | s->lzma2.compressed -= s->rc.in_pos; |
| 881 | |
| 882 | if (s->rc.in_pos < s->temp.size) { |
| 883 | s->temp.size -= s->rc.in_pos; |
| 884 | memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, |
| 885 | s->temp.size); |
| 886 | return true; |
| 887 | } |
| 888 | |
| 889 | b->in_pos += s->rc.in_pos - s->temp.size; |
| 890 | s->temp.size = 0; |
| 891 | } |
| 892 | |
| 893 | in_avail = b->in_size - b->in_pos; |
| 894 | if (in_avail >= LZMA_IN_REQUIRED) { |
| 895 | s->rc.in = b->in; |
| 896 | s->rc.in_pos = b->in_pos; |
| 897 | |
| 898 | if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) |
| 899 | s->rc.in_limit = b->in_pos + s->lzma2.compressed; |
| 900 | else |
| 901 | s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; |
| 902 | |
| 903 | if (!lzma_main(s)) |
| 904 | return false; |
| 905 | |
| 906 | in_avail = s->rc.in_pos - b->in_pos; |
| 907 | if (in_avail > s->lzma2.compressed) |
| 908 | return false; |
| 909 | |
| 910 | s->lzma2.compressed -= in_avail; |
| 911 | b->in_pos = s->rc.in_pos; |
| 912 | } |
| 913 | |
| 914 | in_avail = b->in_size - b->in_pos; |
| 915 | if (in_avail < LZMA_IN_REQUIRED) { |
| 916 | if (in_avail > s->lzma2.compressed) |
| 917 | in_avail = s->lzma2.compressed; |
| 918 | |
| 919 | memcpy(s->temp.buf, b->in + b->in_pos, in_avail); |
| 920 | s->temp.size = in_avail; |
| 921 | b->in_pos += in_avail; |
| 922 | } |
| 923 | |
| 924 | return true; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Take care of the LZMA2 control layer, and forward the job of actual LZMA |
| 929 | * decoding or copying of uncompressed chunks to other functions. |
| 930 | */ |
| 931 | XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, |
| 932 | struct xz_buf *b) |
| 933 | { |
| 934 | uint32_t tmp; |
| 935 | |
| 936 | while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { |
| 937 | switch (s->lzma2.sequence) { |
| 938 | case SEQ_CONTROL: |
| 939 | /* |
| 940 | * LZMA2 control byte |
| 941 | * |
| 942 | * Exact values: |
| 943 | * 0x00 End marker |
| 944 | * 0x01 Dictionary reset followed by |
| 945 | * an uncompressed chunk |
| 946 | * 0x02 Uncompressed chunk (no dictionary reset) |
| 947 | * |
| 948 | * Highest three bits (s->control & 0xE0): |
| 949 | * 0xE0 Dictionary reset, new properties and state |
| 950 | * reset, followed by LZMA compressed chunk |
| 951 | * 0xC0 New properties and state reset, followed |
| 952 | * by LZMA compressed chunk (no dictionary |
| 953 | * reset) |
| 954 | * 0xA0 State reset using old properties, |
| 955 | * followed by LZMA compressed chunk (no |
| 956 | * dictionary reset) |
| 957 | * 0x80 LZMA chunk (no dictionary or state reset) |
| 958 | * |
| 959 | * For LZMA compressed chunks, the lowest five bits |
| 960 | * (s->control & 1F) are the highest bits of the |
| 961 | * uncompressed size (bits 16-20). |
| 962 | * |
| 963 | * A new LZMA2 stream must begin with a dictionary |
| 964 | * reset. The first LZMA chunk must set new |
| 965 | * properties and reset the LZMA state. |
| 966 | * |
| 967 | * Values that don't match anything described above |
| 968 | * are invalid and we return XZ_DATA_ERROR. |
| 969 | */ |
| 970 | tmp = b->in[b->in_pos++]; |
| 971 | |
| 972 | if (tmp >= 0xE0 || tmp == 0x01) { |
| 973 | s->lzma2.need_props = true; |
| 974 | s->lzma2.need_dict_reset = false; |
| 975 | dict_reset(&s->dict, b); |
| 976 | } else if (s->lzma2.need_dict_reset) { |
| 977 | return XZ_DATA_ERROR; |
| 978 | } |
| 979 | |
| 980 | if (tmp >= 0x80) { |
| 981 | s->lzma2.uncompressed = (tmp & 0x1F) << 16; |
| 982 | s->lzma2.sequence = SEQ_UNCOMPRESSED_1; |
| 983 | |
| 984 | if (tmp >= 0xC0) { |
| 985 | /* |
| 986 | * When there are new properties, |
| 987 | * state reset is done at |
| 988 | * SEQ_PROPERTIES. |
| 989 | */ |
| 990 | s->lzma2.need_props = false; |
| 991 | s->lzma2.next_sequence |
| 992 | = SEQ_PROPERTIES; |
| 993 | |
| 994 | } else if (s->lzma2.need_props) { |
| 995 | return XZ_DATA_ERROR; |
| 996 | |
| 997 | } else { |
| 998 | s->lzma2.next_sequence |
| 999 | = SEQ_LZMA_PREPARE; |
| 1000 | if (tmp >= 0xA0) |
| 1001 | lzma_reset(s); |
| 1002 | } |
| 1003 | } else { |
| 1004 | if (tmp == 0x00) |
| 1005 | return XZ_STREAM_END; |
| 1006 | |
| 1007 | if (tmp > 0x02) |
| 1008 | return XZ_DATA_ERROR; |
| 1009 | |
| 1010 | s->lzma2.sequence = SEQ_COMPRESSED_0; |
| 1011 | s->lzma2.next_sequence = SEQ_COPY; |
| 1012 | } |
| 1013 | |
| 1014 | break; |
| 1015 | |
| 1016 | case SEQ_UNCOMPRESSED_1: |
| 1017 | s->lzma2.uncompressed |
| 1018 | += (uint32_t)b->in[b->in_pos++] << 8; |
| 1019 | s->lzma2.sequence = SEQ_UNCOMPRESSED_2; |
| 1020 | break; |
| 1021 | |
| 1022 | case SEQ_UNCOMPRESSED_2: |
| 1023 | s->lzma2.uncompressed |
| 1024 | += (uint32_t)b->in[b->in_pos++] + 1; |
| 1025 | s->lzma2.sequence = SEQ_COMPRESSED_0; |
| 1026 | break; |
| 1027 | |
| 1028 | case SEQ_COMPRESSED_0: |
| 1029 | s->lzma2.compressed |
| 1030 | = (uint32_t)b->in[b->in_pos++] << 8; |
| 1031 | s->lzma2.sequence = SEQ_COMPRESSED_1; |
| 1032 | break; |
| 1033 | |
| 1034 | case SEQ_COMPRESSED_1: |
| 1035 | s->lzma2.compressed |
| 1036 | += (uint32_t)b->in[b->in_pos++] + 1; |
| 1037 | s->lzma2.sequence = s->lzma2.next_sequence; |
| 1038 | break; |
| 1039 | |
| 1040 | case SEQ_PROPERTIES: |
| 1041 | if (!lzma_props(s, b->in[b->in_pos++])) |
| 1042 | return XZ_DATA_ERROR; |
| 1043 | |
| 1044 | s->lzma2.sequence = SEQ_LZMA_PREPARE; |
| 1045 | |
| 1046 | case SEQ_LZMA_PREPARE: |
| 1047 | if (s->lzma2.compressed < RC_INIT_BYTES) |
| 1048 | return XZ_DATA_ERROR; |
| 1049 | |
| 1050 | if (!rc_read_init(&s->rc, b)) |
| 1051 | return XZ_OK; |
| 1052 | |
| 1053 | s->lzma2.compressed -= RC_INIT_BYTES; |
| 1054 | s->lzma2.sequence = SEQ_LZMA_RUN; |
| 1055 | |
| 1056 | case SEQ_LZMA_RUN: |
| 1057 | /* |
| 1058 | * Set dictionary limit to indicate how much we want |
| 1059 | * to be encoded at maximum. Decode new data into the |
| 1060 | * dictionary. Flush the new data from dictionary to |
| 1061 | * b->out. Check if we finished decoding this chunk. |
| 1062 | * In case the dictionary got full but we didn't fill |
| 1063 | * the output buffer yet, we may run this loop |
| 1064 | * multiple times without changing s->lzma2.sequence. |
| 1065 | */ |
| 1066 | dict_limit(&s->dict, min_t(size_t, |
| 1067 | b->out_size - b->out_pos, |
| 1068 | s->lzma2.uncompressed)); |
| 1069 | if (!lzma2_lzma(s, b)) |
| 1070 | return XZ_DATA_ERROR; |
| 1071 | |
| 1072 | s->lzma2.uncompressed -= dict_flush(&s->dict, b); |
| 1073 | |
| 1074 | if (s->lzma2.uncompressed == 0) { |
| 1075 | if (s->lzma2.compressed > 0 || s->lzma.len > 0 |
| 1076 | || !rc_is_finished(&s->rc)) |
| 1077 | return XZ_DATA_ERROR; |
| 1078 | |
| 1079 | rc_reset(&s->rc); |
| 1080 | s->lzma2.sequence = SEQ_CONTROL; |
| 1081 | |
| 1082 | } else if (b->out_pos == b->out_size |
| 1083 | || (b->in_pos == b->in_size |
| 1084 | && s->temp.size |
| 1085 | < s->lzma2.compressed)) { |
| 1086 | return XZ_OK; |
| 1087 | } |
| 1088 | |
| 1089 | break; |
| 1090 | |
| 1091 | case SEQ_COPY: |
| 1092 | dict_uncompressed(&s->dict, b, &s->lzma2.compressed); |
| 1093 | if (s->lzma2.compressed > 0) |
| 1094 | return XZ_OK; |
| 1095 | |
| 1096 | s->lzma2.sequence = SEQ_CONTROL; |
| 1097 | break; |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | return XZ_OK; |
| 1102 | } |
| 1103 | |
| 1104 | XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, |
| 1105 | uint32_t dict_max) |
| 1106 | { |
| 1107 | struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| 1108 | if (s == NULL) |
| 1109 | return NULL; |
| 1110 | |
| 1111 | s->dict.mode = mode; |
| 1112 | s->dict.size_max = dict_max; |
| 1113 | |
| 1114 | if (DEC_IS_PREALLOC(mode)) { |
| 1115 | s->dict.buf = vmalloc(dict_max); |
| 1116 | if (s->dict.buf == NULL) { |
| 1117 | kfree(s); |
| 1118 | return NULL; |
| 1119 | } |
| 1120 | } else if (DEC_IS_DYNALLOC(mode)) { |
| 1121 | s->dict.buf = NULL; |
| 1122 | s->dict.allocated = 0; |
| 1123 | } |
| 1124 | |
| 1125 | return s; |
| 1126 | } |
| 1127 | |
| 1128 | XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) |
| 1129 | { |
| 1130 | /* This limits dictionary size to 3 GiB to keep parsing simpler. */ |
| 1131 | if (props > 39) |
| 1132 | return XZ_OPTIONS_ERROR; |
| 1133 | |
| 1134 | s->dict.size = 2 + (props & 1); |
| 1135 | s->dict.size <<= (props >> 1) + 11; |
| 1136 | |
| 1137 | if (DEC_IS_MULTI(s->dict.mode)) { |
| 1138 | if (s->dict.size > s->dict.size_max) |
| 1139 | return XZ_MEMLIMIT_ERROR; |
| 1140 | |
| 1141 | s->dict.end = s->dict.size; |
| 1142 | |
| 1143 | if (DEC_IS_DYNALLOC(s->dict.mode)) { |
| 1144 | if (s->dict.allocated < s->dict.size) { |
| 1145 | vfree(s->dict.buf); |
| 1146 | s->dict.buf = vmalloc(s->dict.size); |
| 1147 | if (s->dict.buf == NULL) { |
| 1148 | s->dict.allocated = 0; |
| 1149 | return XZ_MEM_ERROR; |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | s->lzma.len = 0; |
| 1156 | |
| 1157 | s->lzma2.sequence = SEQ_CONTROL; |
| 1158 | s->lzma2.need_dict_reset = true; |
| 1159 | |
| 1160 | s->temp.size = 0; |
| 1161 | |
| 1162 | return XZ_OK; |
| 1163 | } |
| 1164 | |
| 1165 | XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) |
| 1166 | { |
| 1167 | if (DEC_IS_MULTI(s->dict.mode)) |
| 1168 | vfree(s->dict.buf); |
| 1169 | |
| 1170 | kfree(s); |
| 1171 | } |