blob: c8c98dd44ad479e5a24582ded284f39a036f9f05 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/arm/vfp/vfp.h
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
13{
14 if (shift) {
15 if (shift < 32)
16 val = val >> shift | ((val << (32 - shift)) != 0);
17 else
18 val = val != 0;
19 }
20 return val;
21}
22
23static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
24{
25 if (shift) {
26 if (shift < 64)
27 val = val >> shift | ((val << (64 - shift)) != 0);
28 else
29 val = val != 0;
30 }
31 return val;
32}
33
34static inline u32 vfp_hi64to32jamming(u64 val)
35{
36 u32 v;
37
38 asm(
39 "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
40 "movcc %0, %R1\n\t"
41 "orrcs %0, %R1, #1"
42 : "=r" (v) : "r" (val) : "cc");
43
44 return v;
45}
46
47static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
48{
49 asm( "adds %Q0, %Q2, %Q4\n\t"
50 "adcs %R0, %R2, %R4\n\t"
51 "adcs %Q1, %Q3, %Q5\n\t"
52 "adc %R1, %R3, %R5"
53 : "=r" (nl), "=r" (nh)
54 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55 : "cc");
56 *resh = nh;
57 *resl = nl;
58}
59
60static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
61{
62 asm( "subs %Q0, %Q2, %Q4\n\t"
63 "sbcs %R0, %R2, %R4\n\t"
64 "sbcs %Q1, %Q3, %Q5\n\t"
65 "sbc %R1, %R3, %R5\n\t"
66 : "=r" (nl), "=r" (nh)
67 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68 : "cc");
69 *resh = nh;
70 *resl = nl;
71}
72
73static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
74{
75 u32 nh, nl, mh, ml;
76 u64 rh, rma, rmb, rl;
77
78 nl = n;
79 ml = m;
80 rl = (u64)nl * ml;
81
82 nh = n >> 32;
83 rma = (u64)nh * ml;
84
85 mh = m >> 32;
86 rmb = (u64)nl * mh;
87 rma += rmb;
88
89 rh = (u64)nh * mh;
90 rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
91
92 rma <<= 32;
93 rl += rma;
94 rh += (rl < rma);
95
96 *resl = rl;
97 *resh = rh;
98}
99
100static inline void shift64left(u64 *resh, u64 *resl, u64 n)
101{
102 *resh = n >> 63;
103 *resl = n << 1;
104}
105
106static inline u64 vfp_hi64multiply64(u64 n, u64 m)
107{
108 u64 rh, rl;
109 mul64to128(&rh, &rl, n, m);
110 return rh | (rl != 0);
111}
112
113static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
114{
115 u64 mh, ml, remh, reml, termh, terml, z;
116
117 if (nh >= m)
118 return ~0ULL;
119 mh = m >> 32;
Russell King438a7612005-06-29 23:01:02 +0100120 if (mh << 32 <= nh) {
121 z = 0xffffffff00000000ULL;
122 } else {
123 z = nh;
124 do_div(z, mh);
125 z <<= 32;
126 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127 mul64to128(&termh, &terml, m, z);
128 sub128(&remh, &reml, nh, nl, termh, terml);
129 ml = m << 32;
130 while ((s64)remh < 0) {
131 z -= 0x100000000ULL;
132 add128(&remh, &reml, remh, reml, mh, ml);
133 }
134 remh = (remh << 32) | (reml >> 32);
Russell King438a7612005-06-29 23:01:02 +0100135 if (mh << 32 <= remh) {
136 z |= 0xffffffff;
137 } else {
138 do_div(remh, mh);
139 z |= remh;
140 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141 return z;
142}
143
144/*
145 * Operations on unpacked elements
146 */
147#define vfp_sign_negate(sign) (sign ^ 0x8000)
148
149/*
150 * Single-precision
151 */
152struct vfp_single {
153 s16 exponent;
154 u16 sign;
155 u32 significand;
156};
157
158extern s32 vfp_get_float(unsigned int reg);
Daniel Jacobowitz0355b3e02006-08-30 15:06:39 +0100159extern void vfp_put_float(s32 val, unsigned int reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160
161/*
162 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
163 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
164 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
165 * which are not propagated to the float upon packing.
166 */
167#define VFP_SINGLE_MANTISSA_BITS (23)
168#define VFP_SINGLE_EXPONENT_BITS (8)
169#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
170#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
171
172/*
173 * The bit in an unpacked float which indicates that it is a quiet NaN
174 */
175#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
176
177/*
178 * Operations on packed single-precision numbers
179 */
180#define vfp_single_packed_sign(v) ((v) & 0x80000000)
181#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
182#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
183#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
184#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
185
186/*
187 * Unpack a single-precision float. Note that this returns the magnitude
188 * of the single-precision float mantissa with the 1. if necessary,
189 * aligned to bit 30.
190 */
191static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
192{
193 u32 significand;
194
195 s->sign = vfp_single_packed_sign(val) >> 16,
196 s->exponent = vfp_single_packed_exponent(val);
197
198 significand = (u32) val;
199 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
200 if (s->exponent && s->exponent != 255)
201 significand |= 0x40000000;
202 s->significand = significand;
203}
204
205/*
206 * Re-pack a single-precision float. This assumes that the float is
207 * already normalised such that the MSB is bit 30, _not_ bit 31.
208 */
209static inline s32 vfp_single_pack(struct vfp_single *s)
210{
211 u32 val;
212 val = (s->sign << 16) +
213 (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
214 (s->significand >> VFP_SINGLE_LOW_BITS);
215 return (s32)val;
216}
217
218#define VFP_NUMBER (1<<0)
219#define VFP_ZERO (1<<1)
220#define VFP_DENORMAL (1<<2)
221#define VFP_INFINITY (1<<3)
222#define VFP_NAN (1<<4)
223#define VFP_NAN_SIGNAL (1<<5)
224
225#define VFP_QNAN (VFP_NAN)
226#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
227
228static inline int vfp_single_type(struct vfp_single *s)
229{
230 int type = VFP_NUMBER;
231 if (s->exponent == 255) {
232 if (s->significand == 0)
233 type = VFP_INFINITY;
234 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
235 type = VFP_QNAN;
236 else
237 type = VFP_SNAN;
238 } else if (s->exponent == 0) {
239 if (s->significand == 0)
240 type |= VFP_ZERO;
241 else
242 type |= VFP_DENORMAL;
243 }
244 return type;
245}
246
247#ifndef DEBUG
248#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
249u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
250#else
251u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
252#endif
253
254/*
255 * Double-precision
256 */
257struct vfp_double {
258 s16 exponent;
259 u16 sign;
260 u64 significand;
261};
262
263/*
264 * VFP_REG_ZERO is a special register number for vfp_get_double
265 * which returns (double)0.0. This is useful for the compare with
266 * zero instructions.
267 */
Catalin Marinas25ebee02007-09-25 15:22:24 +0100268#ifdef CONFIG_VFPv3
269#define VFP_REG_ZERO 32
270#else
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271#define VFP_REG_ZERO 16
Catalin Marinas25ebee02007-09-25 15:22:24 +0100272#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273extern u64 vfp_get_double(unsigned int reg);
Daniel Jacobowitz0355b3e02006-08-30 15:06:39 +0100274extern void vfp_put_double(u64 val, unsigned int reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275
276#define VFP_DOUBLE_MANTISSA_BITS (52)
277#define VFP_DOUBLE_EXPONENT_BITS (11)
278#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
279#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
280
281/*
282 * The bit in an unpacked double which indicates that it is a quiet NaN
283 */
284#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
285
286/*
287 * Operations on packed single-precision numbers
288 */
289#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
290#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
291#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
292#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
293#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
294
295/*
296 * Unpack a double-precision float. Note that this returns the magnitude
297 * of the double-precision float mantissa with the 1. if necessary,
298 * aligned to bit 62.
299 */
300static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
301{
302 u64 significand;
303
304 s->sign = vfp_double_packed_sign(val) >> 48;
305 s->exponent = vfp_double_packed_exponent(val);
306
307 significand = (u64) val;
308 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
309 if (s->exponent && s->exponent != 2047)
310 significand |= (1ULL << 62);
311 s->significand = significand;
312}
313
314/*
315 * Re-pack a double-precision float. This assumes that the float is
316 * already normalised such that the MSB is bit 30, _not_ bit 31.
317 */
318static inline s64 vfp_double_pack(struct vfp_double *s)
319{
320 u64 val;
321 val = ((u64)s->sign << 48) +
322 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
323 (s->significand >> VFP_DOUBLE_LOW_BITS);
324 return (s64)val;
325}
326
327static inline int vfp_double_type(struct vfp_double *s)
328{
329 int type = VFP_NUMBER;
330 if (s->exponent == 2047) {
331 if (s->significand == 0)
332 type = VFP_INFINITY;
333 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
334 type = VFP_QNAN;
335 else
336 type = VFP_SNAN;
337 } else if (s->exponent == 0) {
338 if (s->significand == 0)
339 type |= VFP_ZERO;
340 else
341 type |= VFP_DENORMAL;
342 }
343 return type;
344}
345
346u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
347
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
349
350/*
351 * A special flag to tell the normalisation code not to normalise.
352 */
353#define VFP_NAN_FLAG 0x100
Daniel Jacobowitz7c6f2512006-08-27 12:42:08 +0100354
355/*
356 * A bit pattern used to indicate the initial (unset) value of the
357 * exception mask, in case nothing handles an instruction. This
358 * doesn't include the NAN flag, which get masked out before
359 * we check for an error.
360 */
361#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
Gen FUKATSU4cc9bd22006-09-21 14:08:24 +0100362
363/*
Russell Kingbaf97ce2006-09-21 17:00:08 +0100364 * A flag to tell vfp instruction type.
365 * OP_SCALAR - this operation always operates in scalar mode
366 * OP_SD - the instruction exceptionally writes to a single precision result.
367 * OP_DD - the instruction exceptionally writes to a double precision result.
Russell King90e6b042008-01-10 17:07:08 +0000368 * OP_SM - the instruction exceptionally reads from a single precision operand.
Gen FUKATSU4cc9bd22006-09-21 14:08:24 +0100369 */
370#define OP_SCALAR (1 << 0)
371#define OP_SD (1 << 1)
Russell Kingbaf97ce2006-09-21 17:00:08 +0100372#define OP_DD (1 << 1)
Russell King90e6b042008-01-10 17:07:08 +0000373#define OP_SM (1 << 2)
Gen FUKATSU4cc9bd22006-09-21 14:08:24 +0100374
375struct op {
376 u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
377 u32 flags;
378};
Catalin Marinasc6428462007-01-24 18:47:08 +0100379
Catalin Marinasc6428462007-01-24 18:47:08 +0100380extern void vfp_save_state(void *location, u32 fpexc);