blob: 2d437447e0855a50bef5776aca292c80727d43df [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * 2003-10-17 - Ported from altq
10 */
11/*
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
19 *
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33 * DAMAGE.
34 *
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
39 */
40/*
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45 *
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
50 */
51
52#include <linux/kernel.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/errno.h>
56#include <linux/jiffies.h>
57#include <linux/compiler.h>
58#include <linux/spinlock.h>
59#include <linux/skbuff.h>
60#include <linux/string.h>
61#include <linux/slab.h>
62#include <linux/timer.h>
63#include <linux/list.h>
64#include <linux/rbtree.h>
65#include <linux/init.h>
66#include <linux/netdevice.h>
67#include <linux/rtnetlink.h>
68#include <linux/pkt_sched.h>
69#include <net/pkt_sched.h>
70#include <net/pkt_cls.h>
71#include <asm/system.h>
72#include <asm/div64.h>
73
74#define HFSC_DEBUG 1
75
76/*
77 * kernel internal service curve representation:
78 * coordinates are given by 64 bit unsigned integers.
79 * x-axis: unit is clock count.
80 * y-axis: unit is byte.
81 *
82 * The service curve parameters are converted to the internal
83 * representation. The slope values are scaled to avoid overflow.
84 * the inverse slope values as well as the y-projection of the 1st
85 * segment are kept in order to to avoid 64-bit divide operations
86 * that are expensive on 32-bit architectures.
87 */
88
89struct internal_sc
90{
91 u64 sm1; /* scaled slope of the 1st segment */
92 u64 ism1; /* scaled inverse-slope of the 1st segment */
93 u64 dx; /* the x-projection of the 1st segment */
94 u64 dy; /* the y-projection of the 1st segment */
95 u64 sm2; /* scaled slope of the 2nd segment */
96 u64 ism2; /* scaled inverse-slope of the 2nd segment */
97};
98
99/* runtime service curve */
100struct runtime_sc
101{
102 u64 x; /* current starting position on x-axis */
103 u64 y; /* current starting position on y-axis */
104 u64 sm1; /* scaled slope of the 1st segment */
105 u64 ism1; /* scaled inverse-slope of the 1st segment */
106 u64 dx; /* the x-projection of the 1st segment */
107 u64 dy; /* the y-projection of the 1st segment */
108 u64 sm2; /* scaled slope of the 2nd segment */
109 u64 ism2; /* scaled inverse-slope of the 2nd segment */
110};
111
112enum hfsc_class_flags
113{
114 HFSC_RSC = 0x1,
115 HFSC_FSC = 0x2,
116 HFSC_USC = 0x4
117};
118
119struct hfsc_class
120{
121 u32 classid; /* class id */
122 unsigned int refcnt; /* usage count */
123
124 struct gnet_stats_basic bstats;
125 struct gnet_stats_queue qstats;
126 struct gnet_stats_rate_est rate_est;
127 spinlock_t *stats_lock;
128 unsigned int level; /* class level in hierarchy */
129 struct tcf_proto *filter_list; /* filter list */
130 unsigned int filter_cnt; /* filter count */
131
132 struct hfsc_sched *sched; /* scheduler data */
133 struct hfsc_class *cl_parent; /* parent class */
134 struct list_head siblings; /* sibling classes */
135 struct list_head children; /* child classes */
136 struct Qdisc *qdisc; /* leaf qdisc */
137
138 struct rb_node el_node; /* qdisc's eligible tree member */
139 struct rb_root vt_tree; /* active children sorted by cl_vt */
140 struct rb_node vt_node; /* parent's vt_tree member */
141 struct rb_root cf_tree; /* active children sorted by cl_f */
142 struct rb_node cf_node; /* parent's cf_heap member */
143 struct list_head hlist; /* hash list member */
144 struct list_head dlist; /* drop list member */
145
146 u64 cl_total; /* total work in bytes */
147 u64 cl_cumul; /* cumulative work in bytes done by
148 real-time criteria */
149
150 u64 cl_d; /* deadline*/
151 u64 cl_e; /* eligible time */
152 u64 cl_vt; /* virtual time */
153 u64 cl_f; /* time when this class will fit for
154 link-sharing, max(myf, cfmin) */
155 u64 cl_myf; /* my fit-time (calculated from this
156 class's own upperlimit curve) */
157 u64 cl_myfadj; /* my fit-time adjustment (to cancel
158 history dependence) */
159 u64 cl_cfmin; /* earliest children's fit-time (used
160 with cl_myf to obtain cl_f) */
161 u64 cl_cvtmin; /* minimal virtual time among the
162 children fit for link-sharing
163 (monotonic within a period) */
164 u64 cl_vtadj; /* intra-period cumulative vt
165 adjustment */
166 u64 cl_vtoff; /* inter-period cumulative vt offset */
167 u64 cl_cvtmax; /* max child's vt in the last period */
168 u64 cl_cvtoff; /* cumulative cvtmax of all periods */
169 u64 cl_pcvtoff; /* parent's cvtoff at initalization
170 time */
171
172 struct internal_sc cl_rsc; /* internal real-time service curve */
173 struct internal_sc cl_fsc; /* internal fair service curve */
174 struct internal_sc cl_usc; /* internal upperlimit service curve */
175 struct runtime_sc cl_deadline; /* deadline curve */
176 struct runtime_sc cl_eligible; /* eligible curve */
177 struct runtime_sc cl_virtual; /* virtual curve */
178 struct runtime_sc cl_ulimit; /* upperlimit curve */
179
180 unsigned long cl_flags; /* which curves are valid */
181 unsigned long cl_vtperiod; /* vt period sequence number */
182 unsigned long cl_parentperiod;/* parent's vt period sequence number*/
183 unsigned long cl_nactive; /* number of active children */
184};
185
186#define HFSC_HSIZE 16
187
188struct hfsc_sched
189{
190 u16 defcls; /* default class id */
191 struct hfsc_class root; /* root class */
192 struct list_head clhash[HFSC_HSIZE]; /* class hash */
193 struct rb_root eligible; /* eligible tree */
194 struct list_head droplist; /* active leaf class list (for
195 dropping) */
196 struct sk_buff_head requeue; /* requeued packet */
197 struct timer_list wd_timer; /* watchdog timer */
198};
199
200/*
201 * macros
202 */
203#ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY
204#include <linux/time.h>
205#undef PSCHED_GET_TIME
206#define PSCHED_GET_TIME(stamp) \
207do { \
208 struct timeval tv; \
209 do_gettimeofday(&tv); \
Patrick McHardy538e43a2006-01-08 22:12:03 -0800210 (stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec; \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211} while (0)
212#endif
213
214#if HFSC_DEBUG
215#define ASSERT(cond) \
216do { \
217 if (unlikely(!(cond))) \
218 printk("assertion %s failed at %s:%i (%s)\n", \
219 #cond, __FILE__, __LINE__, __FUNCTION__); \
220} while (0)
221#else
222#define ASSERT(cond)
223#endif /* HFSC_DEBUG */
224
225#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
226
227
228/*
229 * eligible tree holds backlogged classes being sorted by their eligible times.
230 * there is one eligible tree per hfsc instance.
231 */
232
233static void
234eltree_insert(struct hfsc_class *cl)
235{
236 struct rb_node **p = &cl->sched->eligible.rb_node;
237 struct rb_node *parent = NULL;
238 struct hfsc_class *cl1;
239
240 while (*p != NULL) {
241 parent = *p;
242 cl1 = rb_entry(parent, struct hfsc_class, el_node);
243 if (cl->cl_e >= cl1->cl_e)
244 p = &parent->rb_right;
245 else
246 p = &parent->rb_left;
247 }
248 rb_link_node(&cl->el_node, parent, p);
249 rb_insert_color(&cl->el_node, &cl->sched->eligible);
250}
251
252static inline void
253eltree_remove(struct hfsc_class *cl)
254{
255 rb_erase(&cl->el_node, &cl->sched->eligible);
256}
257
258static inline void
259eltree_update(struct hfsc_class *cl)
260{
261 eltree_remove(cl);
262 eltree_insert(cl);
263}
264
265/* find the class with the minimum deadline among the eligible classes */
266static inline struct hfsc_class *
267eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
268{
269 struct hfsc_class *p, *cl = NULL;
270 struct rb_node *n;
271
272 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
273 p = rb_entry(n, struct hfsc_class, el_node);
274 if (p->cl_e > cur_time)
275 break;
276 if (cl == NULL || p->cl_d < cl->cl_d)
277 cl = p;
278 }
279 return cl;
280}
281
282/* find the class with minimum eligible time among the eligible classes */
283static inline struct hfsc_class *
284eltree_get_minel(struct hfsc_sched *q)
285{
286 struct rb_node *n;
287
288 n = rb_first(&q->eligible);
289 if (n == NULL)
290 return NULL;
291 return rb_entry(n, struct hfsc_class, el_node);
292}
293
294/*
295 * vttree holds holds backlogged child classes being sorted by their virtual
296 * time. each intermediate class has one vttree.
297 */
298static void
299vttree_insert(struct hfsc_class *cl)
300{
301 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
302 struct rb_node *parent = NULL;
303 struct hfsc_class *cl1;
304
305 while (*p != NULL) {
306 parent = *p;
307 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
308 if (cl->cl_vt >= cl1->cl_vt)
309 p = &parent->rb_right;
310 else
311 p = &parent->rb_left;
312 }
313 rb_link_node(&cl->vt_node, parent, p);
314 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
315}
316
317static inline void
318vttree_remove(struct hfsc_class *cl)
319{
320 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
321}
322
323static inline void
324vttree_update(struct hfsc_class *cl)
325{
326 vttree_remove(cl);
327 vttree_insert(cl);
328}
329
330static inline struct hfsc_class *
331vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
332{
333 struct hfsc_class *p;
334 struct rb_node *n;
335
336 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
337 p = rb_entry(n, struct hfsc_class, vt_node);
338 if (p->cl_f <= cur_time)
339 return p;
340 }
341 return NULL;
342}
343
344/*
345 * get the leaf class with the minimum vt in the hierarchy
346 */
347static struct hfsc_class *
348vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
349{
350 /* if root-class's cfmin is bigger than cur_time nothing to do */
351 if (cl->cl_cfmin > cur_time)
352 return NULL;
353
354 while (cl->level > 0) {
355 cl = vttree_firstfit(cl, cur_time);
356 if (cl == NULL)
357 return NULL;
358 /*
359 * update parent's cl_cvtmin.
360 */
361 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
362 cl->cl_parent->cl_cvtmin = cl->cl_vt;
363 }
364 return cl;
365}
366
367static void
368cftree_insert(struct hfsc_class *cl)
369{
370 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
371 struct rb_node *parent = NULL;
372 struct hfsc_class *cl1;
373
374 while (*p != NULL) {
375 parent = *p;
376 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
377 if (cl->cl_f >= cl1->cl_f)
378 p = &parent->rb_right;
379 else
380 p = &parent->rb_left;
381 }
382 rb_link_node(&cl->cf_node, parent, p);
383 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
384}
385
386static inline void
387cftree_remove(struct hfsc_class *cl)
388{
389 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
390}
391
392static inline void
393cftree_update(struct hfsc_class *cl)
394{
395 cftree_remove(cl);
396 cftree_insert(cl);
397}
398
399/*
400 * service curve support functions
401 *
402 * external service curve parameters
403 * m: bps
404 * d: us
405 * internal service curve parameters
406 * sm: (bytes/psched_us) << SM_SHIFT
407 * ism: (psched_us/byte) << ISM_SHIFT
408 * dx: psched_us
409 *
410 * Clock source resolution (CONFIG_NET_SCH_CLK_*)
411 * JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us.
412 * CPU: resolution is between 0.5us and 1us.
413 * GETTIMEOFDAY: resolution is exactly 1us.
414 *
415 * sm and ism are scaled in order to keep effective digits.
416 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
417 * digits in decimal using the following table.
418 *
419 * Note: We can afford the additional accuracy (altq hfsc keeps at most
420 * 3 effective digits) thanks to the fact that linux clock is bounded
421 * much more tightly.
422 *
423 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
424 * ------------+-------------------------------------------------------
425 * bytes/0.5us 6.25e-3 62.5e-3 625e-3 6250e-e 62500e-3
426 * bytes/us 12.5e-3 125e-3 1250e-3 12500e-3 125000e-3
427 * bytes/1.27us 15.875e-3 158.75e-3 1587.5e-3 15875e-3 158750e-3
428 *
429 * 0.5us/byte 160 16 1.6 0.16 0.016
430 * us/byte 80 8 0.8 0.08 0.008
431 * 1.27us/byte 63 6.3 0.63 0.063 0.0063
432 */
433#define SM_SHIFT 20
434#define ISM_SHIFT 18
435
436#define SM_MASK ((1ULL << SM_SHIFT) - 1)
437#define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
438
439static inline u64
440seg_x2y(u64 x, u64 sm)
441{
442 u64 y;
443
444 /*
445 * compute
446 * y = x * sm >> SM_SHIFT
447 * but divide it for the upper and lower bits to avoid overflow
448 */
449 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
450 return y;
451}
452
453static inline u64
454seg_y2x(u64 y, u64 ism)
455{
456 u64 x;
457
458 if (y == 0)
459 x = 0;
460 else if (ism == HT_INFINITY)
461 x = HT_INFINITY;
462 else {
463 x = (y >> ISM_SHIFT) * ism
464 + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
465 }
466 return x;
467}
468
469/* Convert m (bps) into sm (bytes/psched us) */
470static u64
471m2sm(u32 m)
472{
473 u64 sm;
474
475 sm = ((u64)m << SM_SHIFT);
476 sm += PSCHED_JIFFIE2US(HZ) - 1;
477 do_div(sm, PSCHED_JIFFIE2US(HZ));
478 return sm;
479}
480
481/* convert m (bps) into ism (psched us/byte) */
482static u64
483m2ism(u32 m)
484{
485 u64 ism;
486
487 if (m == 0)
488 ism = HT_INFINITY;
489 else {
490 ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT);
491 ism += m - 1;
492 do_div(ism, m);
493 }
494 return ism;
495}
496
497/* convert d (us) into dx (psched us) */
498static u64
499d2dx(u32 d)
500{
501 u64 dx;
502
503 dx = ((u64)d * PSCHED_JIFFIE2US(HZ));
Patrick McHardy538e43a2006-01-08 22:12:03 -0800504 dx += USEC_PER_SEC - 1;
505 do_div(dx, USEC_PER_SEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506 return dx;
507}
508
509/* convert sm (bytes/psched us) into m (bps) */
510static u32
511sm2m(u64 sm)
512{
513 u64 m;
514
515 m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT;
516 return (u32)m;
517}
518
519/* convert dx (psched us) into d (us) */
520static u32
521dx2d(u64 dx)
522{
523 u64 d;
524
Patrick McHardy538e43a2006-01-08 22:12:03 -0800525 d = dx * USEC_PER_SEC;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526 do_div(d, PSCHED_JIFFIE2US(HZ));
527 return (u32)d;
528}
529
530static void
531sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
532{
533 isc->sm1 = m2sm(sc->m1);
534 isc->ism1 = m2ism(sc->m1);
535 isc->dx = d2dx(sc->d);
536 isc->dy = seg_x2y(isc->dx, isc->sm1);
537 isc->sm2 = m2sm(sc->m2);
538 isc->ism2 = m2ism(sc->m2);
539}
540
541/*
542 * initialize the runtime service curve with the given internal
543 * service curve starting at (x, y).
544 */
545static void
546rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
547{
548 rtsc->x = x;
549 rtsc->y = y;
550 rtsc->sm1 = isc->sm1;
551 rtsc->ism1 = isc->ism1;
552 rtsc->dx = isc->dx;
553 rtsc->dy = isc->dy;
554 rtsc->sm2 = isc->sm2;
555 rtsc->ism2 = isc->ism2;
556}
557
558/*
559 * calculate the y-projection of the runtime service curve by the
560 * given x-projection value
561 */
562static u64
563rtsc_y2x(struct runtime_sc *rtsc, u64 y)
564{
565 u64 x;
566
567 if (y < rtsc->y)
568 x = rtsc->x;
569 else if (y <= rtsc->y + rtsc->dy) {
570 /* x belongs to the 1st segment */
571 if (rtsc->dy == 0)
572 x = rtsc->x + rtsc->dx;
573 else
574 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
575 } else {
576 /* x belongs to the 2nd segment */
577 x = rtsc->x + rtsc->dx
578 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
579 }
580 return x;
581}
582
583static u64
584rtsc_x2y(struct runtime_sc *rtsc, u64 x)
585{
586 u64 y;
587
588 if (x <= rtsc->x)
589 y = rtsc->y;
590 else if (x <= rtsc->x + rtsc->dx)
591 /* y belongs to the 1st segment */
592 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
593 else
594 /* y belongs to the 2nd segment */
595 y = rtsc->y + rtsc->dy
596 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
597 return y;
598}
599
600/*
601 * update the runtime service curve by taking the minimum of the current
602 * runtime service curve and the service curve starting at (x, y).
603 */
604static void
605rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
606{
607 u64 y1, y2, dx, dy;
608 u32 dsm;
609
610 if (isc->sm1 <= isc->sm2) {
611 /* service curve is convex */
612 y1 = rtsc_x2y(rtsc, x);
613 if (y1 < y)
614 /* the current rtsc is smaller */
615 return;
616 rtsc->x = x;
617 rtsc->y = y;
618 return;
619 }
620
621 /*
622 * service curve is concave
623 * compute the two y values of the current rtsc
624 * y1: at x
625 * y2: at (x + dx)
626 */
627 y1 = rtsc_x2y(rtsc, x);
628 if (y1 <= y) {
629 /* rtsc is below isc, no change to rtsc */
630 return;
631 }
632
633 y2 = rtsc_x2y(rtsc, x + isc->dx);
634 if (y2 >= y + isc->dy) {
635 /* rtsc is above isc, replace rtsc by isc */
636 rtsc->x = x;
637 rtsc->y = y;
638 rtsc->dx = isc->dx;
639 rtsc->dy = isc->dy;
640 return;
641 }
642
643 /*
644 * the two curves intersect
645 * compute the offsets (dx, dy) using the reverse
646 * function of seg_x2y()
647 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
648 */
649 dx = (y1 - y) << SM_SHIFT;
650 dsm = isc->sm1 - isc->sm2;
651 do_div(dx, dsm);
652 /*
653 * check if (x, y1) belongs to the 1st segment of rtsc.
654 * if so, add the offset.
655 */
656 if (rtsc->x + rtsc->dx > x)
657 dx += rtsc->x + rtsc->dx - x;
658 dy = seg_x2y(dx, isc->sm1);
659
660 rtsc->x = x;
661 rtsc->y = y;
662 rtsc->dx = dx;
663 rtsc->dy = dy;
664 return;
665}
666
667static void
668init_ed(struct hfsc_class *cl, unsigned int next_len)
669{
670 u64 cur_time;
671
672 PSCHED_GET_TIME(cur_time);
673
674 /* update the deadline curve */
675 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
676
677 /*
678 * update the eligible curve.
679 * for concave, it is equal to the deadline curve.
680 * for convex, it is a linear curve with slope m2.
681 */
682 cl->cl_eligible = cl->cl_deadline;
683 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
684 cl->cl_eligible.dx = 0;
685 cl->cl_eligible.dy = 0;
686 }
687
688 /* compute e and d */
689 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
690 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
691
692 eltree_insert(cl);
693}
694
695static void
696update_ed(struct hfsc_class *cl, unsigned int next_len)
697{
698 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
699 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
700
701 eltree_update(cl);
702}
703
704static inline void
705update_d(struct hfsc_class *cl, unsigned int next_len)
706{
707 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
708}
709
710static inline void
711update_cfmin(struct hfsc_class *cl)
712{
713 struct rb_node *n = rb_first(&cl->cf_tree);
714 struct hfsc_class *p;
715
716 if (n == NULL) {
717 cl->cl_cfmin = 0;
718 return;
719 }
720 p = rb_entry(n, struct hfsc_class, cf_node);
721 cl->cl_cfmin = p->cl_f;
722}
723
724static void
725init_vf(struct hfsc_class *cl, unsigned int len)
726{
727 struct hfsc_class *max_cl;
728 struct rb_node *n;
729 u64 vt, f, cur_time;
730 int go_active;
731
732 cur_time = 0;
733 go_active = 1;
734 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
735 if (go_active && cl->cl_nactive++ == 0)
736 go_active = 1;
737 else
738 go_active = 0;
739
740 if (go_active) {
741 n = rb_last(&cl->cl_parent->vt_tree);
742 if (n != NULL) {
743 max_cl = rb_entry(n, struct hfsc_class,vt_node);
744 /*
745 * set vt to the average of the min and max
746 * classes. if the parent's period didn't
747 * change, don't decrease vt of the class.
748 */
749 vt = max_cl->cl_vt;
750 if (cl->cl_parent->cl_cvtmin != 0)
751 vt = (cl->cl_parent->cl_cvtmin + vt)/2;
752
753 if (cl->cl_parent->cl_vtperiod !=
754 cl->cl_parentperiod || vt > cl->cl_vt)
755 cl->cl_vt = vt;
756 } else {
757 /*
758 * first child for a new parent backlog period.
759 * add parent's cvtmax to cvtoff to make a new
760 * vt (vtoff + vt) larger than the vt in the
761 * last period for all children.
762 */
763 vt = cl->cl_parent->cl_cvtmax;
764 cl->cl_parent->cl_cvtoff += vt;
765 cl->cl_parent->cl_cvtmax = 0;
766 cl->cl_parent->cl_cvtmin = 0;
767 cl->cl_vt = 0;
768 }
769
770 cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
771 cl->cl_pcvtoff;
772
773 /* update the virtual curve */
774 vt = cl->cl_vt + cl->cl_vtoff;
775 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
776 cl->cl_total);
777 if (cl->cl_virtual.x == vt) {
778 cl->cl_virtual.x -= cl->cl_vtoff;
779 cl->cl_vtoff = 0;
780 }
781 cl->cl_vtadj = 0;
782
783 cl->cl_vtperiod++; /* increment vt period */
784 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
785 if (cl->cl_parent->cl_nactive == 0)
786 cl->cl_parentperiod++;
787 cl->cl_f = 0;
788
789 vttree_insert(cl);
790 cftree_insert(cl);
791
792 if (cl->cl_flags & HFSC_USC) {
793 /* class has upper limit curve */
794 if (cur_time == 0)
795 PSCHED_GET_TIME(cur_time);
796
797 /* update the ulimit curve */
798 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
799 cl->cl_total);
800 /* compute myf */
801 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
802 cl->cl_total);
803 cl->cl_myfadj = 0;
804 }
805 }
806
807 f = max(cl->cl_myf, cl->cl_cfmin);
808 if (f != cl->cl_f) {
809 cl->cl_f = f;
810 cftree_update(cl);
811 update_cfmin(cl->cl_parent);
812 }
813 }
814}
815
816static void
817update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
818{
819 u64 f; /* , myf_bound, delta; */
820 int go_passive = 0;
821
822 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
823 go_passive = 1;
824
825 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
826 cl->cl_total += len;
827
828 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
829 continue;
830
831 if (go_passive && --cl->cl_nactive == 0)
832 go_passive = 1;
833 else
834 go_passive = 0;
835
836 if (go_passive) {
837 /* no more active child, going passive */
838
839 /* update cvtmax of the parent class */
840 if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
841 cl->cl_parent->cl_cvtmax = cl->cl_vt;
842
843 /* remove this class from the vt tree */
844 vttree_remove(cl);
845
846 cftree_remove(cl);
847 update_cfmin(cl->cl_parent);
848
849 continue;
850 }
851
852 /*
853 * update vt and f
854 */
855 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
856 - cl->cl_vtoff + cl->cl_vtadj;
857
858 /*
859 * if vt of the class is smaller than cvtmin,
860 * the class was skipped in the past due to non-fit.
861 * if so, we need to adjust vtadj.
862 */
863 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
864 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
865 cl->cl_vt = cl->cl_parent->cl_cvtmin;
866 }
867
868 /* update the vt tree */
869 vttree_update(cl);
870
871 if (cl->cl_flags & HFSC_USC) {
872 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
873 cl->cl_total);
874#if 0
875 /*
876 * This code causes classes to stay way under their
877 * limit when multiple classes are used at gigabit
878 * speed. needs investigation. -kaber
879 */
880 /*
881 * if myf lags behind by more than one clock tick
882 * from the current time, adjust myfadj to prevent
883 * a rate-limited class from going greedy.
884 * in a steady state under rate-limiting, myf
885 * fluctuates within one clock tick.
886 */
887 myf_bound = cur_time - PSCHED_JIFFIE2US(1);
888 if (cl->cl_myf < myf_bound) {
889 delta = cur_time - cl->cl_myf;
890 cl->cl_myfadj += delta;
891 cl->cl_myf += delta;
892 }
893#endif
894 }
895
896 f = max(cl->cl_myf, cl->cl_cfmin);
897 if (f != cl->cl_f) {
898 cl->cl_f = f;
899 cftree_update(cl);
900 update_cfmin(cl->cl_parent);
901 }
902 }
903}
904
905static void
906set_active(struct hfsc_class *cl, unsigned int len)
907{
908 if (cl->cl_flags & HFSC_RSC)
909 init_ed(cl, len);
910 if (cl->cl_flags & HFSC_FSC)
911 init_vf(cl, len);
912
913 list_add_tail(&cl->dlist, &cl->sched->droplist);
914}
915
916static void
917set_passive(struct hfsc_class *cl)
918{
919 if (cl->cl_flags & HFSC_RSC)
920 eltree_remove(cl);
921
922 list_del(&cl->dlist);
923
924 /*
925 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
926 * needs to be called explicitly to remove a class from vttree.
927 */
928}
929
930/*
931 * hack to get length of first packet in queue.
932 */
933static unsigned int
934qdisc_peek_len(struct Qdisc *sch)
935{
936 struct sk_buff *skb;
937 unsigned int len;
938
939 skb = sch->dequeue(sch);
940 if (skb == NULL) {
941 if (net_ratelimit())
942 printk("qdisc_peek_len: non work-conserving qdisc ?\n");
943 return 0;
944 }
945 len = skb->len;
946 if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
947 if (net_ratelimit())
948 printk("qdisc_peek_len: failed to requeue\n");
949 return 0;
950 }
951 return len;
952}
953
954static void
955hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
956{
957 unsigned int len = cl->qdisc->q.qlen;
958
959 qdisc_reset(cl->qdisc);
Patrick McHardyf973b912006-11-29 17:36:43 -0800960 qdisc_tree_decrease_qlen(cl->qdisc, len);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961}
962
963static void
964hfsc_adjust_levels(struct hfsc_class *cl)
965{
966 struct hfsc_class *p;
967 unsigned int level;
968
969 do {
970 level = 0;
971 list_for_each_entry(p, &cl->children, siblings) {
Patrick McHardy210525d2006-05-11 12:22:03 -0700972 if (p->level >= level)
973 level = p->level + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974 }
Patrick McHardy210525d2006-05-11 12:22:03 -0700975 cl->level = level;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 } while ((cl = cl->cl_parent) != NULL);
977}
978
979static inline unsigned int
980hfsc_hash(u32 h)
981{
982 h ^= h >> 8;
983 h ^= h >> 4;
984
985 return h & (HFSC_HSIZE - 1);
986}
987
988static inline struct hfsc_class *
989hfsc_find_class(u32 classid, struct Qdisc *sch)
990{
991 struct hfsc_sched *q = qdisc_priv(sch);
992 struct hfsc_class *cl;
993
994 list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
995 if (cl->classid == classid)
996 return cl;
997 }
998 return NULL;
999}
1000
1001static void
1002hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
1003 u64 cur_time)
1004{
1005 sc2isc(rsc, &cl->cl_rsc);
1006 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
1007 cl->cl_eligible = cl->cl_deadline;
1008 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
1009 cl->cl_eligible.dx = 0;
1010 cl->cl_eligible.dy = 0;
1011 }
1012 cl->cl_flags |= HFSC_RSC;
1013}
1014
1015static void
1016hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
1017{
1018 sc2isc(fsc, &cl->cl_fsc);
1019 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
1020 cl->cl_flags |= HFSC_FSC;
1021}
1022
1023static void
1024hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
1025 u64 cur_time)
1026{
1027 sc2isc(usc, &cl->cl_usc);
1028 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
1029 cl->cl_flags |= HFSC_USC;
1030}
1031
1032static int
1033hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
1034 struct rtattr **tca, unsigned long *arg)
1035{
1036 struct hfsc_sched *q = qdisc_priv(sch);
1037 struct hfsc_class *cl = (struct hfsc_class *)*arg;
1038 struct hfsc_class *parent = NULL;
1039 struct rtattr *opt = tca[TCA_OPTIONS-1];
1040 struct rtattr *tb[TCA_HFSC_MAX];
1041 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
1042 u64 cur_time;
1043
1044 if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt))
1045 return -EINVAL;
1046
1047 if (tb[TCA_HFSC_RSC-1]) {
1048 if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc))
1049 return -EINVAL;
1050 rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]);
1051 if (rsc->m1 == 0 && rsc->m2 == 0)
1052 rsc = NULL;
1053 }
1054
1055 if (tb[TCA_HFSC_FSC-1]) {
1056 if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc))
1057 return -EINVAL;
1058 fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]);
1059 if (fsc->m1 == 0 && fsc->m2 == 0)
1060 fsc = NULL;
1061 }
1062
1063 if (tb[TCA_HFSC_USC-1]) {
1064 if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc))
1065 return -EINVAL;
1066 usc = RTA_DATA(tb[TCA_HFSC_USC-1]);
1067 if (usc->m1 == 0 && usc->m2 == 0)
1068 usc = NULL;
1069 }
1070
1071 if (cl != NULL) {
1072 if (parentid) {
1073 if (cl->cl_parent && cl->cl_parent->classid != parentid)
1074 return -EINVAL;
1075 if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1076 return -EINVAL;
1077 }
1078 PSCHED_GET_TIME(cur_time);
1079
1080 sch_tree_lock(sch);
1081 if (rsc != NULL)
1082 hfsc_change_rsc(cl, rsc, cur_time);
1083 if (fsc != NULL)
1084 hfsc_change_fsc(cl, fsc);
1085 if (usc != NULL)
1086 hfsc_change_usc(cl, usc, cur_time);
1087
1088 if (cl->qdisc->q.qlen != 0) {
1089 if (cl->cl_flags & HFSC_RSC)
1090 update_ed(cl, qdisc_peek_len(cl->qdisc));
1091 if (cl->cl_flags & HFSC_FSC)
1092 update_vf(cl, 0, cur_time);
1093 }
1094 sch_tree_unlock(sch);
1095
1096#ifdef CONFIG_NET_ESTIMATOR
1097 if (tca[TCA_RATE-1])
1098 gen_replace_estimator(&cl->bstats, &cl->rate_est,
1099 cl->stats_lock, tca[TCA_RATE-1]);
1100#endif
1101 return 0;
1102 }
1103
1104 if (parentid == TC_H_ROOT)
1105 return -EEXIST;
1106
1107 parent = &q->root;
1108 if (parentid) {
1109 parent = hfsc_find_class(parentid, sch);
1110 if (parent == NULL)
1111 return -ENOENT;
1112 }
1113
1114 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1115 return -EINVAL;
1116 if (hfsc_find_class(classid, sch))
1117 return -EEXIST;
1118
1119 if (rsc == NULL && fsc == NULL)
1120 return -EINVAL;
1121
Panagiotis Issaris0da974f2006-07-21 14:51:30 -07001122 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 if (cl == NULL)
1124 return -ENOBUFS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125
1126 if (rsc != NULL)
1127 hfsc_change_rsc(cl, rsc, 0);
1128 if (fsc != NULL)
1129 hfsc_change_fsc(cl, fsc);
1130 if (usc != NULL)
1131 hfsc_change_usc(cl, usc, 0);
1132
1133 cl->refcnt = 1;
1134 cl->classid = classid;
1135 cl->sched = q;
1136 cl->cl_parent = parent;
Patrick McHardy9f9afec2006-11-29 17:35:18 -08001137 cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, classid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138 if (cl->qdisc == NULL)
1139 cl->qdisc = &noop_qdisc;
1140 cl->stats_lock = &sch->dev->queue_lock;
1141 INIT_LIST_HEAD(&cl->children);
1142 cl->vt_tree = RB_ROOT;
1143 cl->cf_tree = RB_ROOT;
1144
1145 sch_tree_lock(sch);
1146 list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1147 list_add_tail(&cl->siblings, &parent->children);
1148 if (parent->level == 0)
1149 hfsc_purge_queue(sch, parent);
1150 hfsc_adjust_levels(parent);
1151 cl->cl_pcvtoff = parent->cl_cvtoff;
1152 sch_tree_unlock(sch);
1153
1154#ifdef CONFIG_NET_ESTIMATOR
1155 if (tca[TCA_RATE-1])
1156 gen_new_estimator(&cl->bstats, &cl->rate_est,
1157 cl->stats_lock, tca[TCA_RATE-1]);
1158#endif
1159 *arg = (unsigned long)cl;
1160 return 0;
1161}
1162
1163static void
1164hfsc_destroy_filters(struct tcf_proto **fl)
1165{
1166 struct tcf_proto *tp;
1167
1168 while ((tp = *fl) != NULL) {
1169 *fl = tp->next;
1170 tcf_destroy(tp);
1171 }
1172}
1173
1174static void
1175hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1176{
1177 struct hfsc_sched *q = qdisc_priv(sch);
1178
1179 hfsc_destroy_filters(&cl->filter_list);
1180 qdisc_destroy(cl->qdisc);
1181#ifdef CONFIG_NET_ESTIMATOR
1182 gen_kill_estimator(&cl->bstats, &cl->rate_est);
1183#endif
1184 if (cl != &q->root)
1185 kfree(cl);
1186}
1187
1188static int
1189hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1190{
1191 struct hfsc_sched *q = qdisc_priv(sch);
1192 struct hfsc_class *cl = (struct hfsc_class *)arg;
1193
1194 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1195 return -EBUSY;
1196
1197 sch_tree_lock(sch);
1198
1199 list_del(&cl->hlist);
1200 list_del(&cl->siblings);
1201 hfsc_adjust_levels(cl->cl_parent);
1202 hfsc_purge_queue(sch, cl);
1203 if (--cl->refcnt == 0)
1204 hfsc_destroy_class(sch, cl);
1205
1206 sch_tree_unlock(sch);
1207 return 0;
1208}
1209
1210static struct hfsc_class *
1211hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1212{
1213 struct hfsc_sched *q = qdisc_priv(sch);
1214 struct hfsc_class *cl;
1215 struct tcf_result res;
1216 struct tcf_proto *tcf;
1217 int result;
1218
1219 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1220 (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1221 if (cl->level == 0)
1222 return cl;
1223
Jamal Hadi Salim29f1df62006-01-08 22:35:55 -08001224 *qerr = NET_XMIT_BYPASS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001225 tcf = q->root.filter_list;
1226 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1227#ifdef CONFIG_NET_CLS_ACT
1228 switch (result) {
1229 case TC_ACT_QUEUED:
1230 case TC_ACT_STOLEN:
1231 *qerr = NET_XMIT_SUCCESS;
1232 case TC_ACT_SHOT:
1233 return NULL;
1234 }
1235#elif defined(CONFIG_NET_CLS_POLICE)
1236 if (result == TC_POLICE_SHOT)
1237 return NULL;
1238#endif
1239 if ((cl = (struct hfsc_class *)res.class) == NULL) {
1240 if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1241 break; /* filter selected invalid classid */
1242 }
1243
1244 if (cl->level == 0)
1245 return cl; /* hit leaf class */
1246
1247 /* apply inner filter chain */
1248 tcf = cl->filter_list;
1249 }
1250
1251 /* classification failed, try default class */
1252 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1253 if (cl == NULL || cl->level > 0)
1254 return NULL;
1255
1256 return cl;
1257}
1258
1259static int
1260hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1261 struct Qdisc **old)
1262{
1263 struct hfsc_class *cl = (struct hfsc_class *)arg;
1264
1265 if (cl == NULL)
1266 return -ENOENT;
1267 if (cl->level > 0)
1268 return -EINVAL;
1269 if (new == NULL) {
Patrick McHardy9f9afec2006-11-29 17:35:18 -08001270 new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1271 cl->classid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 if (new == NULL)
1273 new = &noop_qdisc;
1274 }
1275
1276 sch_tree_lock(sch);
1277 hfsc_purge_queue(sch, cl);
1278 *old = xchg(&cl->qdisc, new);
1279 sch_tree_unlock(sch);
1280 return 0;
1281}
1282
1283static struct Qdisc *
1284hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1285{
1286 struct hfsc_class *cl = (struct hfsc_class *)arg;
1287
1288 if (cl != NULL && cl->level == 0)
1289 return cl->qdisc;
1290
1291 return NULL;
1292}
1293
Patrick McHardyf973b912006-11-29 17:36:43 -08001294static void
1295hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1296{
1297 struct hfsc_class *cl = (struct hfsc_class *)arg;
1298
1299 if (cl->qdisc->q.qlen == 0) {
1300 update_vf(cl, 0, 0);
1301 set_passive(cl);
1302 }
1303}
1304
Linus Torvalds1da177e2005-04-16 15:20:36 -07001305static unsigned long
1306hfsc_get_class(struct Qdisc *sch, u32 classid)
1307{
1308 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1309
1310 if (cl != NULL)
1311 cl->refcnt++;
1312
1313 return (unsigned long)cl;
1314}
1315
1316static void
1317hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1318{
1319 struct hfsc_class *cl = (struct hfsc_class *)arg;
1320
1321 if (--cl->refcnt == 0)
1322 hfsc_destroy_class(sch, cl);
1323}
1324
1325static unsigned long
1326hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1327{
1328 struct hfsc_class *p = (struct hfsc_class *)parent;
1329 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1330
1331 if (cl != NULL) {
1332 if (p != NULL && p->level <= cl->level)
1333 return 0;
1334 cl->filter_cnt++;
1335 }
1336
1337 return (unsigned long)cl;
1338}
1339
1340static void
1341hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1342{
1343 struct hfsc_class *cl = (struct hfsc_class *)arg;
1344
1345 cl->filter_cnt--;
1346}
1347
1348static struct tcf_proto **
1349hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1350{
1351 struct hfsc_sched *q = qdisc_priv(sch);
1352 struct hfsc_class *cl = (struct hfsc_class *)arg;
1353
1354 if (cl == NULL)
1355 cl = &q->root;
1356
1357 return &cl->filter_list;
1358}
1359
1360static int
1361hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1362{
1363 struct tc_service_curve tsc;
1364
1365 tsc.m1 = sm2m(sc->sm1);
1366 tsc.d = dx2d(sc->dx);
1367 tsc.m2 = sm2m(sc->sm2);
1368 RTA_PUT(skb, attr, sizeof(tsc), &tsc);
1369
1370 return skb->len;
1371
1372 rtattr_failure:
1373 return -1;
1374}
1375
1376static inline int
1377hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1378{
1379 if ((cl->cl_flags & HFSC_RSC) &&
1380 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1381 goto rtattr_failure;
1382
1383 if ((cl->cl_flags & HFSC_FSC) &&
1384 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1385 goto rtattr_failure;
1386
1387 if ((cl->cl_flags & HFSC_USC) &&
1388 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1389 goto rtattr_failure;
1390
1391 return skb->len;
1392
1393 rtattr_failure:
1394 return -1;
1395}
1396
1397static int
1398hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1399 struct tcmsg *tcm)
1400{
1401 struct hfsc_class *cl = (struct hfsc_class *)arg;
1402 unsigned char *b = skb->tail;
1403 struct rtattr *rta = (struct rtattr *)b;
1404
1405 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1406 tcm->tcm_handle = cl->classid;
1407 if (cl->level == 0)
1408 tcm->tcm_info = cl->qdisc->handle;
1409
1410 RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
1411 if (hfsc_dump_curves(skb, cl) < 0)
1412 goto rtattr_failure;
1413 rta->rta_len = skb->tail - b;
1414 return skb->len;
1415
1416 rtattr_failure:
1417 skb_trim(skb, b - skb->data);
1418 return -1;
1419}
1420
1421static int
1422hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1423 struct gnet_dump *d)
1424{
1425 struct hfsc_class *cl = (struct hfsc_class *)arg;
1426 struct tc_hfsc_stats xstats;
1427
1428 cl->qstats.qlen = cl->qdisc->q.qlen;
1429 xstats.level = cl->level;
1430 xstats.period = cl->cl_vtperiod;
1431 xstats.work = cl->cl_total;
1432 xstats.rtwork = cl->cl_cumul;
1433
1434 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1435#ifdef CONFIG_NET_ESTIMATOR
1436 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1437#endif
1438 gnet_stats_copy_queue(d, &cl->qstats) < 0)
1439 return -1;
1440
1441 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1442}
1443
1444
1445
1446static void
1447hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1448{
1449 struct hfsc_sched *q = qdisc_priv(sch);
1450 struct hfsc_class *cl;
1451 unsigned int i;
1452
1453 if (arg->stop)
1454 return;
1455
1456 for (i = 0; i < HFSC_HSIZE; i++) {
1457 list_for_each_entry(cl, &q->clhash[i], hlist) {
1458 if (arg->count < arg->skip) {
1459 arg->count++;
1460 continue;
1461 }
1462 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1463 arg->stop = 1;
1464 return;
1465 }
1466 arg->count++;
1467 }
1468 }
1469}
1470
1471static void
1472hfsc_watchdog(unsigned long arg)
1473{
1474 struct Qdisc *sch = (struct Qdisc *)arg;
1475
1476 sch->flags &= ~TCQ_F_THROTTLED;
1477 netif_schedule(sch->dev);
1478}
1479
1480static void
1481hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time)
1482{
1483 struct hfsc_sched *q = qdisc_priv(sch);
1484 struct hfsc_class *cl;
1485 u64 next_time = 0;
1486 long delay;
1487
1488 if ((cl = eltree_get_minel(q)) != NULL)
1489 next_time = cl->cl_e;
1490 if (q->root.cl_cfmin != 0) {
1491 if (next_time == 0 || next_time > q->root.cl_cfmin)
1492 next_time = q->root.cl_cfmin;
1493 }
1494 ASSERT(next_time != 0);
1495 delay = next_time - cur_time;
1496 delay = PSCHED_US2JIFFIE(delay);
1497
1498 sch->flags |= TCQ_F_THROTTLED;
1499 mod_timer(&q->wd_timer, jiffies + delay);
1500}
1501
1502static int
1503hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt)
1504{
1505 struct hfsc_sched *q = qdisc_priv(sch);
1506 struct tc_hfsc_qopt *qopt;
1507 unsigned int i;
1508
1509 if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1510 return -EINVAL;
1511 qopt = RTA_DATA(opt);
1512
1513 sch->stats_lock = &sch->dev->queue_lock;
1514
1515 q->defcls = qopt->defcls;
1516 for (i = 0; i < HFSC_HSIZE; i++)
1517 INIT_LIST_HEAD(&q->clhash[i]);
1518 q->eligible = RB_ROOT;
1519 INIT_LIST_HEAD(&q->droplist);
1520 skb_queue_head_init(&q->requeue);
1521
1522 q->root.refcnt = 1;
1523 q->root.classid = sch->handle;
1524 q->root.sched = q;
Patrick McHardy9f9afec2006-11-29 17:35:18 -08001525 q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1526 sch->handle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001527 if (q->root.qdisc == NULL)
1528 q->root.qdisc = &noop_qdisc;
1529 q->root.stats_lock = &sch->dev->queue_lock;
1530 INIT_LIST_HEAD(&q->root.children);
1531 q->root.vt_tree = RB_ROOT;
1532 q->root.cf_tree = RB_ROOT;
1533
1534 list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1535
1536 init_timer(&q->wd_timer);
1537 q->wd_timer.function = hfsc_watchdog;
1538 q->wd_timer.data = (unsigned long)sch;
1539
1540 return 0;
1541}
1542
1543static int
1544hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt)
1545{
1546 struct hfsc_sched *q = qdisc_priv(sch);
1547 struct tc_hfsc_qopt *qopt;
1548
1549 if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1550 return -EINVAL;
1551 qopt = RTA_DATA(opt);
1552
1553 sch_tree_lock(sch);
1554 q->defcls = qopt->defcls;
1555 sch_tree_unlock(sch);
1556
1557 return 0;
1558}
1559
1560static void
1561hfsc_reset_class(struct hfsc_class *cl)
1562{
1563 cl->cl_total = 0;
1564 cl->cl_cumul = 0;
1565 cl->cl_d = 0;
1566 cl->cl_e = 0;
1567 cl->cl_vt = 0;
1568 cl->cl_vtadj = 0;
1569 cl->cl_vtoff = 0;
1570 cl->cl_cvtmin = 0;
1571 cl->cl_cvtmax = 0;
1572 cl->cl_cvtoff = 0;
1573 cl->cl_pcvtoff = 0;
1574 cl->cl_vtperiod = 0;
1575 cl->cl_parentperiod = 0;
1576 cl->cl_f = 0;
1577 cl->cl_myf = 0;
1578 cl->cl_myfadj = 0;
1579 cl->cl_cfmin = 0;
1580 cl->cl_nactive = 0;
1581
1582 cl->vt_tree = RB_ROOT;
1583 cl->cf_tree = RB_ROOT;
1584 qdisc_reset(cl->qdisc);
1585
1586 if (cl->cl_flags & HFSC_RSC)
1587 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1588 if (cl->cl_flags & HFSC_FSC)
1589 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1590 if (cl->cl_flags & HFSC_USC)
1591 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1592}
1593
1594static void
1595hfsc_reset_qdisc(struct Qdisc *sch)
1596{
1597 struct hfsc_sched *q = qdisc_priv(sch);
1598 struct hfsc_class *cl;
1599 unsigned int i;
1600
1601 for (i = 0; i < HFSC_HSIZE; i++) {
1602 list_for_each_entry(cl, &q->clhash[i], hlist)
1603 hfsc_reset_class(cl);
1604 }
1605 __skb_queue_purge(&q->requeue);
1606 q->eligible = RB_ROOT;
1607 INIT_LIST_HEAD(&q->droplist);
1608 del_timer(&q->wd_timer);
1609 sch->flags &= ~TCQ_F_THROTTLED;
1610 sch->q.qlen = 0;
1611}
1612
1613static void
1614hfsc_destroy_qdisc(struct Qdisc *sch)
1615{
1616 struct hfsc_sched *q = qdisc_priv(sch);
1617 struct hfsc_class *cl, *next;
1618 unsigned int i;
1619
1620 for (i = 0; i < HFSC_HSIZE; i++) {
1621 list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1622 hfsc_destroy_class(sch, cl);
1623 }
1624 __skb_queue_purge(&q->requeue);
1625 del_timer(&q->wd_timer);
1626}
1627
1628static int
1629hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1630{
1631 struct hfsc_sched *q = qdisc_priv(sch);
1632 unsigned char *b = skb->tail;
1633 struct tc_hfsc_qopt qopt;
1634
1635 qopt.defcls = q->defcls;
1636 RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1637 return skb->len;
1638
1639 rtattr_failure:
1640 skb_trim(skb, b - skb->data);
1641 return -1;
1642}
1643
1644static int
1645hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1646{
1647 struct hfsc_class *cl;
1648 unsigned int len;
1649 int err;
1650
1651 cl = hfsc_classify(skb, sch, &err);
1652 if (cl == NULL) {
Jamal Hadi Salim29f1df62006-01-08 22:35:55 -08001653 if (err == NET_XMIT_BYPASS)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654 sch->qstats.drops++;
1655 kfree_skb(skb);
1656 return err;
1657 }
1658
1659 len = skb->len;
1660 err = cl->qdisc->enqueue(skb, cl->qdisc);
1661 if (unlikely(err != NET_XMIT_SUCCESS)) {
1662 cl->qstats.drops++;
1663 sch->qstats.drops++;
1664 return err;
1665 }
1666
1667 if (cl->qdisc->q.qlen == 1)
1668 set_active(cl, len);
1669
1670 cl->bstats.packets++;
1671 cl->bstats.bytes += len;
1672 sch->bstats.packets++;
1673 sch->bstats.bytes += len;
1674 sch->q.qlen++;
1675
1676 return NET_XMIT_SUCCESS;
1677}
1678
1679static struct sk_buff *
1680hfsc_dequeue(struct Qdisc *sch)
1681{
1682 struct hfsc_sched *q = qdisc_priv(sch);
1683 struct hfsc_class *cl;
1684 struct sk_buff *skb;
1685 u64 cur_time;
1686 unsigned int next_len;
1687 int realtime = 0;
1688
1689 if (sch->q.qlen == 0)
1690 return NULL;
1691 if ((skb = __skb_dequeue(&q->requeue)))
1692 goto out;
1693
1694 PSCHED_GET_TIME(cur_time);
1695
1696 /*
1697 * if there are eligible classes, use real-time criteria.
1698 * find the class with the minimum deadline among
1699 * the eligible classes.
1700 */
1701 if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1702 realtime = 1;
1703 } else {
1704 /*
1705 * use link-sharing criteria
1706 * get the class with the minimum vt in the hierarchy
1707 */
1708 cl = vttree_get_minvt(&q->root, cur_time);
1709 if (cl == NULL) {
1710 sch->qstats.overlimits++;
1711 hfsc_schedule_watchdog(sch, cur_time);
1712 return NULL;
1713 }
1714 }
1715
1716 skb = cl->qdisc->dequeue(cl->qdisc);
1717 if (skb == NULL) {
1718 if (net_ratelimit())
1719 printk("HFSC: Non-work-conserving qdisc ?\n");
1720 return NULL;
1721 }
1722
1723 update_vf(cl, skb->len, cur_time);
1724 if (realtime)
1725 cl->cl_cumul += skb->len;
1726
1727 if (cl->qdisc->q.qlen != 0) {
1728 if (cl->cl_flags & HFSC_RSC) {
1729 /* update ed */
1730 next_len = qdisc_peek_len(cl->qdisc);
1731 if (realtime)
1732 update_ed(cl, next_len);
1733 else
1734 update_d(cl, next_len);
1735 }
1736 } else {
1737 /* the class becomes passive */
1738 set_passive(cl);
1739 }
1740
1741 out:
1742 sch->flags &= ~TCQ_F_THROTTLED;
1743 sch->q.qlen--;
1744
1745 return skb;
1746}
1747
1748static int
1749hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1750{
1751 struct hfsc_sched *q = qdisc_priv(sch);
1752
1753 __skb_queue_head(&q->requeue, skb);
1754 sch->q.qlen++;
1755 sch->qstats.requeues++;
1756 return NET_XMIT_SUCCESS;
1757}
1758
1759static unsigned int
1760hfsc_drop(struct Qdisc *sch)
1761{
1762 struct hfsc_sched *q = qdisc_priv(sch);
1763 struct hfsc_class *cl;
1764 unsigned int len;
1765
1766 list_for_each_entry(cl, &q->droplist, dlist) {
1767 if (cl->qdisc->ops->drop != NULL &&
1768 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1769 if (cl->qdisc->q.qlen == 0) {
1770 update_vf(cl, 0, 0);
1771 set_passive(cl);
1772 } else {
1773 list_move_tail(&cl->dlist, &q->droplist);
1774 }
1775 cl->qstats.drops++;
1776 sch->qstats.drops++;
1777 sch->q.qlen--;
1778 return len;
1779 }
1780 }
1781 return 0;
1782}
1783
1784static struct Qdisc_class_ops hfsc_class_ops = {
1785 .change = hfsc_change_class,
1786 .delete = hfsc_delete_class,
1787 .graft = hfsc_graft_class,
1788 .leaf = hfsc_class_leaf,
Patrick McHardyf973b912006-11-29 17:36:43 -08001789 .qlen_notify = hfsc_qlen_notify,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 .get = hfsc_get_class,
1791 .put = hfsc_put_class,
1792 .bind_tcf = hfsc_bind_tcf,
1793 .unbind_tcf = hfsc_unbind_tcf,
1794 .tcf_chain = hfsc_tcf_chain,
1795 .dump = hfsc_dump_class,
1796 .dump_stats = hfsc_dump_class_stats,
1797 .walk = hfsc_walk
1798};
1799
1800static struct Qdisc_ops hfsc_qdisc_ops = {
1801 .id = "hfsc",
1802 .init = hfsc_init_qdisc,
1803 .change = hfsc_change_qdisc,
1804 .reset = hfsc_reset_qdisc,
1805 .destroy = hfsc_destroy_qdisc,
1806 .dump = hfsc_dump_qdisc,
1807 .enqueue = hfsc_enqueue,
1808 .dequeue = hfsc_dequeue,
1809 .requeue = hfsc_requeue,
1810 .drop = hfsc_drop,
1811 .cl_ops = &hfsc_class_ops,
1812 .priv_size = sizeof(struct hfsc_sched),
1813 .owner = THIS_MODULE
1814};
1815
1816static int __init
1817hfsc_init(void)
1818{
1819 return register_qdisc(&hfsc_qdisc_ops);
1820}
1821
1822static void __exit
1823hfsc_cleanup(void)
1824{
1825 unregister_qdisc(&hfsc_qdisc_ops);
1826}
1827
1828MODULE_LICENSE("GPL");
1829module_init(hfsc_init);
1830module_exit(hfsc_cleanup);