blob: d92c5c597e16261d6acc97bbe9d87872552ef135 [file] [log] [blame]
Zang Roy-r619115e123b82006-11-08 19:49:13 -08001/*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19*******************************************************************************/
20
21/* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33#include <linux/module.h>
34#include <linux/types.h>
35#include <linux/init.h>
36#include <linux/net.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/skbuff.h>
40#include <linux/slab.h>
Zang Roy-r619115e123b82006-11-08 19:49:13 -080041#include <linux/spinlock.h>
42#include <linux/delay.h>
43#include <linux/crc32.h>
44#include <linux/mii.h>
45#include <linux/device.h>
46#include <linux/pci.h>
47#include <linux/rtnetlink.h>
48#include <linux/timer.h>
49#include <linux/platform_device.h>
50#include <linux/etherdevice.h>
51
52#include <asm/system.h>
53#include <asm/io.h>
54#include <asm/tsi108.h>
55
56#include "tsi108_eth.h"
57
58#define MII_READ_DELAY 10000 /* max link wait time in msec */
59
60#define TSI108_RXRING_LEN 256
61
62/* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
65 */
66#define TSI108_RXBUF_SIZE 1536
67
68#define TSI108_TXRING_LEN 256
69
70#define TSI108_TX_INT_FREQ 64
71
72/* Check the phy status every half a second. */
73#define CHECK_PHY_INTERVAL (HZ/2)
74
75static int tsi108_init_one(struct platform_device *pdev);
76static int tsi108_ether_remove(struct platform_device *pdev);
77
78struct tsi108_prv_data {
79 void __iomem *regs; /* Base of normal regs */
80 void __iomem *phyregs; /* Base of register bank used for PHY access */
81
82 unsigned int phy; /* Index of PHY for this interface */
83 unsigned int irq_num;
84 unsigned int id;
85
86 struct timer_list timer;/* Timer that triggers the check phy function */
87 unsigned int rxtail; /* Next entry in rxring to read */
88 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
89 unsigned int rxfree; /* Number of free, allocated RX buffers */
90
91 unsigned int rxpending; /* Non-zero if there are still descriptors
92 * to be processed from a previous descriptor
93 * interrupt condition that has been cleared */
94
95 unsigned int txtail; /* Next TX descriptor to check status on */
96 unsigned int txhead; /* Next TX descriptor to use */
97
98 /* Number of free TX descriptors. This could be calculated from
99 * rxhead and rxtail if one descriptor were left unused to disambiguate
100 * full and empty conditions, but it's simpler to just keep track
101 * explicitly. */
102
103 unsigned int txfree;
104
105 unsigned int phy_ok; /* The PHY is currently powered on. */
106
107 /* PHY status (duplex is 1 for half, 2 for full,
108 * so that the default 0 indicates that neither has
109 * yet been configured). */
110
111 unsigned int link_up;
112 unsigned int speed;
113 unsigned int duplex;
114
115 tx_desc *txring;
116 rx_desc *rxring;
117 struct sk_buff *txskbs[TSI108_TXRING_LEN];
118 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
119
120 dma_addr_t txdma, rxdma;
121
122 /* txlock nests in misclock and phy_lock */
123
124 spinlock_t txlock, misclock;
125
126 /* stats is used to hold the upper bits of each hardware counter,
127 * and tmpstats is used to hold the full values for returning
128 * to the caller of get_stats(). They must be separate in case
129 * an overflow interrupt occurs before the stats are consumed.
130 */
131
132 struct net_device_stats stats;
133 struct net_device_stats tmpstats;
134
135 /* These stats are kept separate in hardware, thus require individual
136 * fields for handling carry. They are combined in get_stats.
137 */
138
139 unsigned long rx_fcs; /* Add to rx_frame_errors */
140 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
141 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
142 unsigned long rx_underruns; /* Add to rx_length_errors */
143 unsigned long rx_overruns; /* Add to rx_length_errors */
144
145 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
146 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
147
148 unsigned long mc_hash[16];
149 u32 msg_enable; /* debug message level */
150 struct mii_if_info mii_if;
151 unsigned int init_media;
152};
153
154/* Structure for a device driver */
155
156static struct platform_driver tsi_eth_driver = {
157 .probe = tsi108_init_one,
158 .remove = tsi108_ether_remove,
159 .driver = {
160 .name = "tsi-ethernet",
161 },
162};
163
164static void tsi108_timed_checker(unsigned long dev_ptr);
165
166static void dump_eth_one(struct net_device *dev)
167{
168 struct tsi108_prv_data *data = netdev_priv(dev);
169
170 printk("Dumping %s...\n", dev->name);
171 printk("intstat %x intmask %x phy_ok %d"
172 " link %d speed %d duplex %d\n",
173 TSI_READ(TSI108_EC_INTSTAT),
174 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
175 data->link_up, data->speed, data->duplex);
176
177 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
178 data->txhead, data->txtail, data->txfree,
179 TSI_READ(TSI108_EC_TXSTAT),
180 TSI_READ(TSI108_EC_TXESTAT),
181 TSI_READ(TSI108_EC_TXERR));
182
183 printk("RX: head %d, tail %d, free %d, stat %x,"
184 " estat %x, err %x, pending %d\n\n",
185 data->rxhead, data->rxtail, data->rxfree,
186 TSI_READ(TSI108_EC_RXSTAT),
187 TSI_READ(TSI108_EC_RXESTAT),
188 TSI_READ(TSI108_EC_RXERR), data->rxpending);
189}
190
191/* Synchronization is needed between the thread and up/down events.
192 * Note that the PHY is accessed through the same registers for both
193 * interfaces, so this can't be made interface-specific.
194 */
195
196static DEFINE_SPINLOCK(phy_lock);
197
198static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
199{
200 unsigned i;
201
202 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
203 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
204 (reg << TSI108_MAC_MII_ADDR_REG));
205 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
206 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
207 for (i = 0; i < 100; i++) {
208 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
209 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
210 break;
211 udelay(10);
212 }
213
214 if (i == 100)
215 return 0xffff;
216 else
217 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
218}
219
220static void tsi108_write_mii(struct tsi108_prv_data *data,
221 int reg, u16 val)
222{
223 unsigned i = 100;
224 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
225 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
226 (reg << TSI108_MAC_MII_ADDR_REG));
227 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
228 while (i--) {
229 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
230 TSI108_MAC_MII_IND_BUSY))
231 break;
232 udelay(10);
233 }
234}
235
236static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
237{
238 struct tsi108_prv_data *data = netdev_priv(dev);
239 return tsi108_read_mii(data, reg);
240}
241
242static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
243{
244 struct tsi108_prv_data *data = netdev_priv(dev);
245 tsi108_write_mii(data, reg, val);
246}
247
248static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
249 int reg, u16 val)
250{
251 unsigned i = 1000;
252 TSI_WRITE(TSI108_MAC_MII_ADDR,
253 (0x1e << TSI108_MAC_MII_ADDR_PHY)
254 | (reg << TSI108_MAC_MII_ADDR_REG));
255 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
256 while(i--) {
257 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
258 return;
259 udelay(10);
260 }
261 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
262}
263
264static int mii_speed(struct mii_if_info *mii)
265{
266 int advert, lpa, val, media;
267 int lpa2 = 0;
268 int speed;
269
270 if (!mii_link_ok(mii))
271 return 0;
272
273 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
274 if ((val & BMSR_ANEGCOMPLETE) == 0)
275 return 0;
276
277 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
278 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
279 media = mii_nway_result(advert & lpa);
280
281 if (mii->supports_gmii)
282 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
283
284 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
285 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
286 return speed;
287}
288
289static void tsi108_check_phy(struct net_device *dev)
290{
291 struct tsi108_prv_data *data = netdev_priv(dev);
292 u32 mac_cfg2_reg, portctrl_reg;
293 u32 duplex;
294 u32 speed;
295 unsigned long flags;
296
297 /* Do a dummy read, as for some reason the first read
298 * after a link becomes up returns link down, even if
299 * it's been a while since the link came up.
300 */
301
302 spin_lock_irqsave(&phy_lock, flags);
303
304 if (!data->phy_ok)
305 goto out;
306
307 tsi108_read_mii(data, MII_BMSR);
308
309 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
310 data->init_media = 0;
311
312 if (netif_carrier_ok(dev)) {
313
314 speed = mii_speed(&data->mii_if);
315
316 if ((speed != data->speed) || duplex) {
317
318 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
319 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
320
321 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
322
323 if (speed == 1000) {
324 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
325 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
326 } else {
327 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
328 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
329 }
330
331 data->speed = speed;
332
333 if (data->mii_if.full_duplex) {
334 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
335 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
336 data->duplex = 2;
337 } else {
338 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
339 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
340 data->duplex = 1;
341 }
342
343 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
344 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
345
346 if (data->link_up == 0) {
347 /* The manual says it can take 3-4 usecs for the speed change
348 * to take effect.
349 */
350 udelay(5);
351
352 spin_lock(&data->txlock);
353 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
354 netif_wake_queue(dev);
355
356 data->link_up = 1;
357 spin_unlock(&data->txlock);
358 }
359 }
360
361 } else {
362 if (data->link_up == 1) {
363 netif_stop_queue(dev);
364 data->link_up = 0;
365 printk(KERN_NOTICE "%s : link is down\n", dev->name);
366 }
367
368 goto out;
369 }
370
371
372out:
373 spin_unlock_irqrestore(&phy_lock, flags);
374}
375
376static inline void
377tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
378 unsigned long *upper)
379{
380 if (carry & carry_bit)
381 *upper += carry_shift;
382}
383
384static void tsi108_stat_carry(struct net_device *dev)
385{
386 struct tsi108_prv_data *data = netdev_priv(dev);
387 u32 carry1, carry2;
388
389 spin_lock_irq(&data->misclock);
390
391 carry1 = TSI_READ(TSI108_STAT_CARRY1);
392 carry2 = TSI_READ(TSI108_STAT_CARRY2);
393
394 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
395 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
396
397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
398 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
399
400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
401 TSI108_STAT_RXPKTS_CARRY,
402 &data->stats.rx_packets);
403
404 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
405 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
406
407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
408 TSI108_STAT_RXMCAST_CARRY,
409 &data->stats.multicast);
410
411 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
412 TSI108_STAT_RXALIGN_CARRY,
413 &data->stats.rx_frame_errors);
414
415 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
416 TSI108_STAT_RXLENGTH_CARRY,
417 &data->stats.rx_length_errors);
418
419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
420 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
421
422 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
423 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
424
425 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
426 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
427
428 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
429 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
430
431 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
432 TSI108_STAT_RXDROP_CARRY,
433 &data->stats.rx_missed_errors);
434
435 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
436 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
437
438 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
439 TSI108_STAT_TXPKTS_CARRY,
440 &data->stats.tx_packets);
441
442 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
443 TSI108_STAT_TXEXDEF_CARRY,
444 &data->stats.tx_aborted_errors);
445
446 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
447 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
448
449 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
450 TSI108_STAT_TXTCOL_CARRY,
451 &data->stats.collisions);
452
453 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
454 TSI108_STAT_TXPAUSEDROP_CARRY,
455 &data->tx_pause_drop);
456
457 spin_unlock_irq(&data->misclock);
458}
459
460/* Read a stat counter atomically with respect to carries.
461 * data->misclock must be held.
462 */
463static inline unsigned long
464tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
465 int carry_shift, unsigned long *upper)
466{
467 int carryreg;
468 unsigned long val;
469
470 if (reg < 0xb0)
471 carryreg = TSI108_STAT_CARRY1;
472 else
473 carryreg = TSI108_STAT_CARRY2;
474
475 again:
476 val = TSI_READ(reg) | *upper;
477
478 /* Check to see if it overflowed, but the interrupt hasn't
479 * been serviced yet. If so, handle the carry here, and
480 * try again.
481 */
482
483 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
484 *upper += carry_shift;
485 TSI_WRITE(carryreg, carry_bit);
486 goto again;
487 }
488
489 return val;
490}
491
492static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
493{
494 unsigned long excol;
495
496 struct tsi108_prv_data *data = netdev_priv(dev);
497 spin_lock_irq(&data->misclock);
498
499 data->tmpstats.rx_packets =
500 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
501 TSI108_STAT_CARRY1_RXPKTS,
502 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
503
504 data->tmpstats.tx_packets =
505 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
506 TSI108_STAT_CARRY2_TXPKTS,
507 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
508
509 data->tmpstats.rx_bytes =
510 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
511 TSI108_STAT_CARRY1_RXBYTES,
512 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
513
514 data->tmpstats.tx_bytes =
515 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
516 TSI108_STAT_CARRY2_TXBYTES,
517 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
518
519 data->tmpstats.multicast =
520 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
521 TSI108_STAT_CARRY1_RXMCAST,
522 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
523
524 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
525 TSI108_STAT_CARRY2_TXEXCOL,
526 TSI108_STAT_TXEXCOL_CARRY,
527 &data->tx_coll_abort);
528
529 data->tmpstats.collisions =
530 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
531 TSI108_STAT_CARRY2_TXTCOL,
532 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
533
534 data->tmpstats.collisions += excol;
535
536 data->tmpstats.rx_length_errors =
537 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
538 TSI108_STAT_CARRY1_RXLENGTH,
539 TSI108_STAT_RXLENGTH_CARRY,
540 &data->stats.rx_length_errors);
541
542 data->tmpstats.rx_length_errors +=
543 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
544 TSI108_STAT_CARRY1_RXRUNT,
545 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
546
547 data->tmpstats.rx_length_errors +=
548 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
549 TSI108_STAT_CARRY1_RXJUMBO,
550 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
551
552 data->tmpstats.rx_frame_errors =
553 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
554 TSI108_STAT_CARRY1_RXALIGN,
555 TSI108_STAT_RXALIGN_CARRY,
556 &data->stats.rx_frame_errors);
557
558 data->tmpstats.rx_frame_errors +=
559 tsi108_read_stat(data, TSI108_STAT_RXFCS,
560 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
561 &data->rx_fcs);
562
563 data->tmpstats.rx_frame_errors +=
564 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
565 TSI108_STAT_CARRY1_RXFRAG,
566 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
567
568 data->tmpstats.rx_missed_errors =
569 tsi108_read_stat(data, TSI108_STAT_RXDROP,
570 TSI108_STAT_CARRY1_RXDROP,
571 TSI108_STAT_RXDROP_CARRY,
572 &data->stats.rx_missed_errors);
573
574 /* These three are maintained by software. */
575 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
576 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
577
578 data->tmpstats.tx_aborted_errors =
579 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
580 TSI108_STAT_CARRY2_TXEXDEF,
581 TSI108_STAT_TXEXDEF_CARRY,
582 &data->stats.tx_aborted_errors);
583
584 data->tmpstats.tx_aborted_errors +=
585 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
586 TSI108_STAT_CARRY2_TXPAUSE,
587 TSI108_STAT_TXPAUSEDROP_CARRY,
588 &data->tx_pause_drop);
589
590 data->tmpstats.tx_aborted_errors += excol;
591
592 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
593 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
594 data->tmpstats.rx_crc_errors +
595 data->tmpstats.rx_frame_errors +
596 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
597
598 spin_unlock_irq(&data->misclock);
599 return &data->tmpstats;
600}
601
602static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
603{
604 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
605 TSI108_EC_RXQ_PTRHIGH_VALID);
606
607 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
608 | TSI108_EC_RXCTRL_QUEUE0);
609}
610
611static void tsi108_restart_tx(struct tsi108_prv_data * data)
612{
613 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
614 TSI108_EC_TXQ_PTRHIGH_VALID);
615
616 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
617 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
618}
619
620/* txlock must be held by caller, with IRQs disabled, and
621 * with permission to re-enable them when the lock is dropped.
622 */
623static void tsi108_complete_tx(struct net_device *dev)
624{
625 struct tsi108_prv_data *data = netdev_priv(dev);
626 int tx;
627 struct sk_buff *skb;
628 int release = 0;
629
630 while (!data->txfree || data->txhead != data->txtail) {
631 tx = data->txtail;
632
633 if (data->txring[tx].misc & TSI108_TX_OWN)
634 break;
635
636 skb = data->txskbs[tx];
637
638 if (!(data->txring[tx].misc & TSI108_TX_OK))
639 printk("%s: bad tx packet, misc %x\n",
640 dev->name, data->txring[tx].misc);
641
642 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
643 data->txfree++;
644
645 if (data->txring[tx].misc & TSI108_TX_EOF) {
646 dev_kfree_skb_any(skb);
647 release++;
648 }
649 }
650
651 if (release) {
652 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
653 netif_wake_queue(dev);
654 }
655}
656
657static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
658{
659 struct tsi108_prv_data *data = netdev_priv(dev);
660 int frags = skb_shinfo(skb)->nr_frags + 1;
661 int i;
662
663 if (!data->phy_ok && net_ratelimit())
664 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
665
666 if (!data->link_up) {
667 printk(KERN_ERR "%s: Transmit while link is down!\n",
668 dev->name);
669 netif_stop_queue(dev);
670 return NETDEV_TX_BUSY;
671 }
672
673 if (data->txfree < MAX_SKB_FRAGS + 1) {
674 netif_stop_queue(dev);
675
676 if (net_ratelimit())
677 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
678 dev->name);
679 return NETDEV_TX_BUSY;
680 }
681
682 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
683 netif_stop_queue(dev);
684 }
685
686 spin_lock_irq(&data->txlock);
687
688 for (i = 0; i < frags; i++) {
689 int misc = 0;
690 int tx = data->txhead;
691
692 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
693 * the interrupt bit. TX descriptor-complete interrupts are
694 * enabled when the queue fills up, and masked when there is
695 * still free space. This way, when saturating the outbound
696 * link, the tx interrupts are kept to a reasonable level.
697 * When the queue is not full, reclamation of skbs still occurs
698 * as new packets are transmitted, or on a queue-empty
699 * interrupt.
700 */
701
702 if ((tx % TSI108_TX_INT_FREQ == 0) &&
703 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
704 misc = TSI108_TX_INT;
705
706 data->txskbs[tx] = skb;
707
708 if (i == 0) {
709 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
710 skb->len - skb->data_len, DMA_TO_DEVICE);
711 data->txring[tx].len = skb->len - skb->data_len;
712 misc |= TSI108_TX_SOF;
713 } else {
714 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
715
716 data->txring[tx].buf0 =
717 dma_map_page(NULL, frag->page, frag->page_offset,
718 frag->size, DMA_TO_DEVICE);
719 data->txring[tx].len = frag->size;
720 }
721
722 if (i == frags - 1)
723 misc |= TSI108_TX_EOF;
724
725 if (netif_msg_pktdata(data)) {
726 int i;
727 printk("%s: Tx Frame contents (%d)\n", dev->name,
728 skb->len);
729 for (i = 0; i < skb->len; i++)
730 printk(" %2.2x", skb->data[i]);
731 printk(".\n");
732 }
733 data->txring[tx].misc = misc | TSI108_TX_OWN;
734
735 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
736 data->txfree--;
737 }
738
739 tsi108_complete_tx(dev);
740
741 /* This must be done after the check for completed tx descriptors,
742 * so that the tail pointer is correct.
743 */
744
745 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
746 tsi108_restart_tx(data);
747
748 spin_unlock_irq(&data->txlock);
749 return NETDEV_TX_OK;
750}
751
752static int tsi108_complete_rx(struct net_device *dev, int budget)
753{
754 struct tsi108_prv_data *data = netdev_priv(dev);
755 int done = 0;
756
757 while (data->rxfree && done != budget) {
758 int rx = data->rxtail;
759 struct sk_buff *skb;
760
761 if (data->rxring[rx].misc & TSI108_RX_OWN)
762 break;
763
764 skb = data->rxskbs[rx];
765 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
766 data->rxfree--;
767 done++;
768
769 if (data->rxring[rx].misc & TSI108_RX_BAD) {
770 spin_lock_irq(&data->misclock);
771
772 if (data->rxring[rx].misc & TSI108_RX_CRC)
773 data->stats.rx_crc_errors++;
774 if (data->rxring[rx].misc & TSI108_RX_OVER)
775 data->stats.rx_fifo_errors++;
776
777 spin_unlock_irq(&data->misclock);
778
779 dev_kfree_skb_any(skb);
780 continue;
781 }
782 if (netif_msg_pktdata(data)) {
783 int i;
784 printk("%s: Rx Frame contents (%d)\n",
785 dev->name, data->rxring[rx].len);
786 for (i = 0; i < data->rxring[rx].len; i++)
787 printk(" %2.2x", skb->data[i]);
788 printk(".\n");
789 }
790
791 skb->dev = dev;
792 skb_put(skb, data->rxring[rx].len);
793 skb->protocol = eth_type_trans(skb, dev);
794 netif_receive_skb(skb);
795 dev->last_rx = jiffies;
796 }
797
798 return done;
799}
800
801static int tsi108_refill_rx(struct net_device *dev, int budget)
802{
803 struct tsi108_prv_data *data = netdev_priv(dev);
804 int done = 0;
805
806 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
807 int rx = data->rxhead;
808 struct sk_buff *skb;
809
810 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
811 if (!skb)
812 break;
813
814 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
815
816 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
817 TSI108_RX_SKB_SIZE,
818 DMA_FROM_DEVICE);
819
820 /* Sometimes the hardware sets blen to zero after packet
821 * reception, even though the manual says that it's only ever
822 * modified by the driver.
823 */
824
825 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
826 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
827
828 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
829 data->rxfree++;
830 done++;
831 }
832
833 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
834 TSI108_EC_RXSTAT_QUEUE0))
835 tsi108_restart_rx(data, dev);
836
837 return done;
838}
839
840static int tsi108_poll(struct net_device *dev, int *budget)
841{
842 struct tsi108_prv_data *data = netdev_priv(dev);
843 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
844 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
845 int total_budget = min(*budget, dev->quota);
846 int num_received = 0, num_filled = 0, budget_used;
847
848 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
849 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
850
851 TSI_WRITE(TSI108_EC_RXESTAT, estat);
852 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
853
854 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
855 num_received = tsi108_complete_rx(dev, total_budget);
856
857 /* This should normally fill no more slots than the number of
858 * packets received in tsi108_complete_rx(). The exception
859 * is when we previously ran out of memory for RX SKBs. In that
860 * case, it's helpful to obey the budget, not only so that the
861 * CPU isn't hogged, but so that memory (which may still be low)
862 * is not hogged by one device.
863 *
864 * A work unit is considered to be two SKBs to allow us to catch
865 * up when the ring has shrunk due to out-of-memory but we're
866 * still removing the full budget's worth of packets each time.
867 */
868
869 if (data->rxfree < TSI108_RXRING_LEN)
870 num_filled = tsi108_refill_rx(dev, total_budget * 2);
871
872 if (intstat & TSI108_INT_RXERROR) {
873 u32 err = TSI_READ(TSI108_EC_RXERR);
874 TSI_WRITE(TSI108_EC_RXERR, err);
875
876 if (err) {
877 if (net_ratelimit())
878 printk(KERN_DEBUG "%s: RX error %x\n",
879 dev->name, err);
880
881 if (!(TSI_READ(TSI108_EC_RXSTAT) &
882 TSI108_EC_RXSTAT_QUEUE0))
883 tsi108_restart_rx(data, dev);
884 }
885 }
886
887 if (intstat & TSI108_INT_RXOVERRUN) {
888 spin_lock_irq(&data->misclock);
889 data->stats.rx_fifo_errors++;
890 spin_unlock_irq(&data->misclock);
891 }
892
893 budget_used = max(num_received, num_filled / 2);
894
895 *budget -= budget_used;
896 dev->quota -= budget_used;
897
898 if (budget_used != total_budget) {
899 data->rxpending = 0;
900 netif_rx_complete(dev);
901
902 TSI_WRITE(TSI108_EC_INTMASK,
903 TSI_READ(TSI108_EC_INTMASK)
904 & ~(TSI108_INT_RXQUEUE0
905 | TSI108_INT_RXTHRESH |
906 TSI108_INT_RXOVERRUN |
907 TSI108_INT_RXERROR |
908 TSI108_INT_RXWAIT));
909
910 /* IRQs are level-triggered, so no need to re-check */
911 return 0;
912 } else {
913 data->rxpending = 1;
914 }
915
916 return 1;
917}
918
919static void tsi108_rx_int(struct net_device *dev)
920{
921 struct tsi108_prv_data *data = netdev_priv(dev);
922
923 /* A race could cause dev to already be scheduled, so it's not an
924 * error if that happens (and interrupts shouldn't be re-masked,
925 * because that can cause harmful races, if poll has already
926 * unmasked them but not cleared LINK_STATE_SCHED).
927 *
928 * This can happen if this code races with tsi108_poll(), which masks
929 * the interrupts after tsi108_irq_one() read the mask, but before
930 * netif_rx_schedule is called. It could also happen due to calls
931 * from tsi108_check_rxring().
932 */
933
934 if (netif_rx_schedule_prep(dev)) {
935 /* Mask, rather than ack, the receive interrupts. The ack
936 * will happen in tsi108_poll().
937 */
938
939 TSI_WRITE(TSI108_EC_INTMASK,
940 TSI_READ(TSI108_EC_INTMASK) |
941 TSI108_INT_RXQUEUE0
942 | TSI108_INT_RXTHRESH |
943 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
944 TSI108_INT_RXWAIT);
945 __netif_rx_schedule(dev);
946 } else {
947 if (!netif_running(dev)) {
948 /* This can happen if an interrupt occurs while the
949 * interface is being brought down, as the START
950 * bit is cleared before the stop function is called.
951 *
952 * In this case, the interrupts must be masked, or
953 * they will continue indefinitely.
954 *
955 * There's a race here if the interface is brought down
956 * and then up in rapid succession, as the device could
957 * be made running after the above check and before
958 * the masking below. This will only happen if the IRQ
959 * thread has a lower priority than the task brining
960 * up the interface. Fixing this race would likely
961 * require changes in generic code.
962 */
963
964 TSI_WRITE(TSI108_EC_INTMASK,
965 TSI_READ
966 (TSI108_EC_INTMASK) |
967 TSI108_INT_RXQUEUE0 |
968 TSI108_INT_RXTHRESH |
969 TSI108_INT_RXOVERRUN |
970 TSI108_INT_RXERROR |
971 TSI108_INT_RXWAIT);
972 }
973 }
974}
975
976/* If the RX ring has run out of memory, try periodically
977 * to allocate some more, as otherwise poll would never
978 * get called (apart from the initial end-of-queue condition).
979 *
980 * This is called once per second (by default) from the thread.
981 */
982
983static void tsi108_check_rxring(struct net_device *dev)
984{
985 struct tsi108_prv_data *data = netdev_priv(dev);
986
987 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
988 * directly, so as to keep the receive path single-threaded
989 * (and thus not needing a lock).
990 */
991
992 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
993 tsi108_rx_int(dev);
994}
995
996static void tsi108_tx_int(struct net_device *dev)
997{
998 struct tsi108_prv_data *data = netdev_priv(dev);
999 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
1000
1001 TSI_WRITE(TSI108_EC_TXESTAT, estat);
1002 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
1003 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
1004 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
1005 u32 err = TSI_READ(TSI108_EC_TXERR);
1006 TSI_WRITE(TSI108_EC_TXERR, err);
1007
1008 if (err && net_ratelimit())
1009 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1010 }
1011
1012 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1013 spin_lock(&data->txlock);
1014 tsi108_complete_tx(dev);
1015 spin_unlock(&data->txlock);
1016 }
1017}
1018
1019
1020static irqreturn_t tsi108_irq(int irq, void *dev_id)
1021{
1022 struct net_device *dev = dev_id;
1023 struct tsi108_prv_data *data = netdev_priv(dev);
1024 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1025
1026 if (!(stat & TSI108_INT_ANY))
1027 return IRQ_NONE; /* Not our interrupt */
1028
1029 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1030
1031 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1032 TSI108_INT_TXERROR))
1033 tsi108_tx_int(dev);
1034 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1035 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1036 TSI108_INT_RXERROR))
1037 tsi108_rx_int(dev);
1038
1039 if (stat & TSI108_INT_SFN) {
1040 if (net_ratelimit())
1041 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1042 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1043 }
1044
1045 if (stat & TSI108_INT_STATCARRY) {
1046 tsi108_stat_carry(dev);
1047 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1048 }
1049
1050 return IRQ_HANDLED;
1051}
1052
1053static void tsi108_stop_ethernet(struct net_device *dev)
1054{
1055 struct tsi108_prv_data *data = netdev_priv(dev);
1056 int i = 1000;
1057 /* Disable all TX and RX queues ... */
1058 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1059 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1060
1061 /* ...and wait for them to become idle */
1062 while(i--) {
1063 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1064 break;
1065 udelay(10);
1066 }
1067 i = 1000;
1068 while(i--){
1069 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1070 return;
1071 udelay(10);
1072 }
1073 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1074}
1075
1076static void tsi108_reset_ether(struct tsi108_prv_data * data)
1077{
1078 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1079 udelay(100);
1080 TSI_WRITE(TSI108_MAC_CFG1, 0);
1081
1082 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1083 udelay(100);
1084 TSI_WRITE(TSI108_EC_PORTCTRL,
1085 TSI_READ(TSI108_EC_PORTCTRL) &
1086 ~TSI108_EC_PORTCTRL_STATRST);
1087
1088 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1089 udelay(100);
1090 TSI_WRITE(TSI108_EC_TXCFG,
1091 TSI_READ(TSI108_EC_TXCFG) &
1092 ~TSI108_EC_TXCFG_RST);
1093
1094 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1095 udelay(100);
1096 TSI_WRITE(TSI108_EC_RXCFG,
1097 TSI_READ(TSI108_EC_RXCFG) &
1098 ~TSI108_EC_RXCFG_RST);
1099
1100 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1101 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1102 TSI108_MAC_MII_MGMT_RST);
1103 udelay(100);
1104 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1105 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1106 ~(TSI108_MAC_MII_MGMT_RST |
1107 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1108}
1109
1110static int tsi108_get_mac(struct net_device *dev)
1111{
1112 struct tsi108_prv_data *data = netdev_priv(dev);
1113 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1114 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1115
1116 /* Note that the octets are reversed from what the manual says,
1117 * producing an even weirder ordering...
1118 */
1119 if (word2 == 0 && word1 == 0) {
1120 dev->dev_addr[0] = 0x00;
1121 dev->dev_addr[1] = 0x06;
1122 dev->dev_addr[2] = 0xd2;
1123 dev->dev_addr[3] = 0x00;
1124 dev->dev_addr[4] = 0x00;
1125 if (0x8 == data->phy)
1126 dev->dev_addr[5] = 0x01;
1127 else
1128 dev->dev_addr[5] = 0x02;
1129
1130 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1131
1132 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1133 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1134
1135 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1136 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1137 } else {
1138 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1139 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1140 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1141 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1142 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1143 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1144 }
1145
1146 if (!is_valid_ether_addr(dev->dev_addr)) {
1147 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1148 return -EINVAL;
1149 }
1150
1151 return 0;
1152}
1153
1154static int tsi108_set_mac(struct net_device *dev, void *addr)
1155{
1156 struct tsi108_prv_data *data = netdev_priv(dev);
1157 u32 word1, word2;
1158 int i;
1159
1160 if (!is_valid_ether_addr(addr))
1161 return -EINVAL;
1162
1163 for (i = 0; i < 6; i++)
1164 /* +2 is for the offset of the HW addr type */
1165 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1166
1167 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1168
1169 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1170 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1171
1172 spin_lock_irq(&data->misclock);
1173 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1174 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1175 spin_lock(&data->txlock);
1176
1177 if (data->txfree && data->link_up)
1178 netif_wake_queue(dev);
1179
1180 spin_unlock(&data->txlock);
1181 spin_unlock_irq(&data->misclock);
1182 return 0;
1183}
1184
1185/* Protected by dev->xmit_lock. */
1186static void tsi108_set_rx_mode(struct net_device *dev)
1187{
1188 struct tsi108_prv_data *data = netdev_priv(dev);
1189 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1190
1191 if (dev->flags & IFF_PROMISC) {
1192 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1193 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1194 goto out;
1195 }
1196
1197 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1198
1199 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1200 int i;
1201 struct dev_mc_list *mc = dev->mc_list;
1202 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1203
1204 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1205
1206 while (mc) {
1207 u32 hash, crc;
1208
1209 if (mc->dmi_addrlen == 6) {
1210 crc = ether_crc(6, mc->dmi_addr);
1211 hash = crc >> 23;
1212
1213 __set_bit(hash, &data->mc_hash[0]);
1214 } else {
1215 printk(KERN_ERR
1216 "%s: got multicast address of length %d "
1217 "instead of 6.\n", dev->name,
1218 mc->dmi_addrlen);
1219 }
1220
1221 mc = mc->next;
1222 }
1223
1224 TSI_WRITE(TSI108_EC_HASHADDR,
1225 TSI108_EC_HASHADDR_AUTOINC |
1226 TSI108_EC_HASHADDR_MCAST);
1227
1228 for (i = 0; i < 16; i++) {
1229 /* The manual says that the hardware may drop
1230 * back-to-back writes to the data register.
1231 */
1232 udelay(1);
1233 TSI_WRITE(TSI108_EC_HASHDATA,
1234 data->mc_hash[i]);
1235 }
1236 }
1237
1238 out:
1239 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1240}
1241
1242static void tsi108_init_phy(struct net_device *dev)
1243{
1244 struct tsi108_prv_data *data = netdev_priv(dev);
1245 u32 i = 0;
1246 u16 phyval = 0;
1247 unsigned long flags;
1248
1249 spin_lock_irqsave(&phy_lock, flags);
1250
1251 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1252 while (i--){
1253 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1254 break;
1255 udelay(10);
1256 }
1257 if (i == 0)
1258 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1259
1260#if (TSI108_PHY_TYPE == PHY_BCM54XX) /* Broadcom BCM54xx PHY */
1261 tsi108_write_mii(data, 0x09, 0x0300);
1262 tsi108_write_mii(data, 0x10, 0x1020);
1263 tsi108_write_mii(data, 0x1c, 0x8c00);
1264#endif
1265
1266 tsi108_write_mii(data,
1267 MII_BMCR,
1268 BMCR_ANENABLE | BMCR_ANRESTART);
1269 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1270 cpu_relax();
1271
1272 /* Set G/MII mode and receive clock select in TBI control #2. The
1273 * second port won't work if this isn't done, even though we don't
1274 * use TBI mode.
1275 */
1276
1277 tsi108_write_tbi(data, 0x11, 0x30);
1278
1279 /* FIXME: It seems to take more than 2 back-to-back reads to the
1280 * PHY_STAT register before the link up status bit is set.
1281 */
1282
1283 data->link_up = 1;
1284
1285 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1286 BMSR_LSTATUS)) {
1287 if (i++ > (MII_READ_DELAY / 10)) {
1288 data->link_up = 0;
1289 break;
1290 }
1291 spin_unlock_irqrestore(&phy_lock, flags);
1292 msleep(10);
1293 spin_lock_irqsave(&phy_lock, flags);
1294 }
1295
1296 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1297 data->phy_ok = 1;
1298 data->init_media = 1;
1299 spin_unlock_irqrestore(&phy_lock, flags);
1300}
1301
1302static void tsi108_kill_phy(struct net_device *dev)
1303{
1304 struct tsi108_prv_data *data = netdev_priv(dev);
1305 unsigned long flags;
1306
1307 spin_lock_irqsave(&phy_lock, flags);
1308 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1309 data->phy_ok = 0;
1310 spin_unlock_irqrestore(&phy_lock, flags);
1311}
1312
1313static int tsi108_open(struct net_device *dev)
1314{
1315 int i;
1316 struct tsi108_prv_data *data = netdev_priv(dev);
1317 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1318 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1319
1320 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1321 if (i != 0) {
1322 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1323 data->id, data->irq_num);
1324 return i;
1325 } else {
1326 dev->irq = data->irq_num;
1327 printk(KERN_NOTICE
1328 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1329 data->id, dev->irq, dev->name);
1330 }
1331
1332 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1333 &data->rxdma, GFP_KERNEL);
1334
1335 if (!data->rxring) {
1336 printk(KERN_DEBUG
1337 "TSI108_ETH: failed to allocate memory for rxring!\n");
1338 return -ENOMEM;
1339 } else {
1340 memset(data->rxring, 0, rxring_size);
1341 }
1342
1343 data->txring = dma_alloc_coherent(NULL, txring_size,
1344 &data->txdma, GFP_KERNEL);
1345
1346 if (!data->txring) {
1347 printk(KERN_DEBUG
1348 "TSI108_ETH: failed to allocate memory for txring!\n");
1349 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1350 return -ENOMEM;
1351 } else {
1352 memset(data->txring, 0, txring_size);
1353 }
1354
1355 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1356 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1357 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1358 data->rxring[i].vlan = 0;
1359 }
1360
1361 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1362
1363 data->rxtail = 0;
1364 data->rxhead = 0;
1365
1366 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1367 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1368
1369 if (!skb) {
1370 /* Bah. No memory for now, but maybe we'll get
1371 * some more later.
1372 * For now, we'll live with the smaller ring.
1373 */
1374 printk(KERN_WARNING
1375 "%s: Could only allocate %d receive skb(s).\n",
1376 dev->name, i);
1377 data->rxhead = i;
1378 break;
1379 }
1380
1381 data->rxskbs[i] = skb;
1382 /* Align the payload on a 4-byte boundary */
1383 skb_reserve(skb, 2);
1384 data->rxskbs[i] = skb;
1385 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1386 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1387 }
1388
1389 data->rxfree = i;
1390 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1391
1392 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1393 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1394 data->txring[i].misc = 0;
1395 }
1396
1397 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1398 data->txtail = 0;
1399 data->txhead = 0;
1400 data->txfree = TSI108_TXRING_LEN;
1401 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1402 tsi108_init_phy(dev);
1403
1404 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1405 mod_timer(&data->timer, jiffies + 1);
1406
1407 tsi108_restart_rx(data, dev);
1408
1409 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1410
1411 TSI_WRITE(TSI108_EC_INTMASK,
1412 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1413 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1414 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1415 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1416
1417 TSI_WRITE(TSI108_MAC_CFG1,
1418 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1419 netif_start_queue(dev);
1420 return 0;
1421}
1422
1423static int tsi108_close(struct net_device *dev)
1424{
1425 struct tsi108_prv_data *data = netdev_priv(dev);
1426
1427 netif_stop_queue(dev);
1428
1429 del_timer_sync(&data->timer);
1430
1431 tsi108_stop_ethernet(dev);
1432 tsi108_kill_phy(dev);
1433 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1434 TSI_WRITE(TSI108_MAC_CFG1, 0);
1435
1436 /* Check for any pending TX packets, and drop them. */
1437
1438 while (!data->txfree || data->txhead != data->txtail) {
1439 int tx = data->txtail;
1440 struct sk_buff *skb;
1441 skb = data->txskbs[tx];
1442 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1443 data->txfree++;
1444 dev_kfree_skb(skb);
1445 }
1446
1447 synchronize_irq(data->irq_num);
1448 free_irq(data->irq_num, dev);
1449
1450 /* Discard the RX ring. */
1451
1452 while (data->rxfree) {
1453 int rx = data->rxtail;
1454 struct sk_buff *skb;
1455
1456 skb = data->rxskbs[rx];
1457 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1458 data->rxfree--;
1459 dev_kfree_skb(skb);
1460 }
1461
1462 dma_free_coherent(0,
1463 TSI108_RXRING_LEN * sizeof(rx_desc),
1464 data->rxring, data->rxdma);
1465 dma_free_coherent(0,
1466 TSI108_TXRING_LEN * sizeof(tx_desc),
1467 data->txring, data->txdma);
1468
1469 return 0;
1470}
1471
1472static void tsi108_init_mac(struct net_device *dev)
1473{
1474 struct tsi108_prv_data *data = netdev_priv(dev);
1475
1476 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1477 TSI108_MAC_CFG2_PADCRC);
1478
1479 TSI_WRITE(TSI108_EC_TXTHRESH,
1480 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1481 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1482
1483 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1484 ~(TSI108_STAT_CARRY1_RXBYTES |
1485 TSI108_STAT_CARRY1_RXPKTS |
1486 TSI108_STAT_CARRY1_RXFCS |
1487 TSI108_STAT_CARRY1_RXMCAST |
1488 TSI108_STAT_CARRY1_RXALIGN |
1489 TSI108_STAT_CARRY1_RXLENGTH |
1490 TSI108_STAT_CARRY1_RXRUNT |
1491 TSI108_STAT_CARRY1_RXJUMBO |
1492 TSI108_STAT_CARRY1_RXFRAG |
1493 TSI108_STAT_CARRY1_RXJABBER |
1494 TSI108_STAT_CARRY1_RXDROP));
1495
1496 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1497 ~(TSI108_STAT_CARRY2_TXBYTES |
1498 TSI108_STAT_CARRY2_TXPKTS |
1499 TSI108_STAT_CARRY2_TXEXDEF |
1500 TSI108_STAT_CARRY2_TXEXCOL |
1501 TSI108_STAT_CARRY2_TXTCOL |
1502 TSI108_STAT_CARRY2_TXPAUSE));
1503
1504 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1505 TSI_WRITE(TSI108_MAC_CFG1, 0);
1506
1507 TSI_WRITE(TSI108_EC_RXCFG,
1508 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1509
1510 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1511 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1512 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1513 TSI108_EC_TXQ_CFG_SFNPORT));
1514
1515 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1516 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1517 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1518 TSI108_EC_RXQ_CFG_SFNPORT));
1519
1520 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1521 TSI108_EC_TXQ_BUFCFG_BURST256 |
1522 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1523 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1524
1525 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1526 TSI108_EC_RXQ_BUFCFG_BURST256 |
1527 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1528 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1529
1530 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1531}
1532
1533static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1534{
1535 struct tsi108_prv_data *data = netdev_priv(dev);
1536 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1537}
1538
1539static int
1540tsi108_init_one(struct platform_device *pdev)
1541{
1542 struct net_device *dev = NULL;
1543 struct tsi108_prv_data *data = NULL;
1544 hw_info *einfo;
1545 int err = 0;
1546
1547 einfo = pdev->dev.platform_data;
1548
1549 if (NULL == einfo) {
1550 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1551 pdev->id);
1552 return -ENODEV;
1553 }
1554
1555 /* Create an ethernet device instance */
1556
1557 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1558 if (!dev) {
1559 printk("tsi108_eth: Could not allocate a device structure\n");
1560 return -ENOMEM;
1561 }
1562
1563 printk("tsi108_eth%d: probe...\n", pdev->id);
1564 data = netdev_priv(dev);
1565
1566 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1567 pdev->id, einfo->regs, einfo->phyregs,
1568 einfo->phy, einfo->irq_num);
1569
1570 data->regs = ioremap(einfo->regs, 0x400);
1571 if (NULL == data->regs) {
1572 err = -ENOMEM;
1573 goto regs_fail;
1574 }
1575
1576 data->phyregs = ioremap(einfo->phyregs, 0x400);
1577 if (NULL == data->phyregs) {
1578 err = -ENOMEM;
1579 goto regs_fail;
1580 }
1581/* MII setup */
1582 data->mii_if.dev = dev;
1583 data->mii_if.mdio_read = tsi108_mdio_read;
1584 data->mii_if.mdio_write = tsi108_mdio_write;
1585 data->mii_if.phy_id = einfo->phy;
1586 data->mii_if.phy_id_mask = 0x1f;
1587 data->mii_if.reg_num_mask = 0x1f;
1588 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1589
1590 data->phy = einfo->phy;
1591 data->irq_num = einfo->irq_num;
1592 data->id = pdev->id;
1593 dev->open = tsi108_open;
1594 dev->stop = tsi108_close;
1595 dev->hard_start_xmit = tsi108_send_packet;
1596 dev->set_mac_address = tsi108_set_mac;
1597 dev->set_multicast_list = tsi108_set_rx_mode;
1598 dev->get_stats = tsi108_get_stats;
1599 dev->poll = tsi108_poll;
1600 dev->do_ioctl = tsi108_do_ioctl;
1601 dev->weight = 64; /* 64 is more suitable for GigE interface - klai */
1602
1603 /* Apparently, the Linux networking code won't use scatter-gather
1604 * if the hardware doesn't do checksums. However, it's faster
1605 * to checksum in place and use SG, as (among other reasons)
1606 * the cache won't be dirtied (which then has to be flushed
1607 * before DMA). The checksumming is done by the driver (via
1608 * a new function skb_csum_dev() in net/core/skbuff.c).
1609 */
1610
1611 dev->features = NETIF_F_HIGHDMA;
1612 SET_MODULE_OWNER(dev);
1613
1614 spin_lock_init(&data->txlock);
1615 spin_lock_init(&data->misclock);
1616
1617 tsi108_reset_ether(data);
1618 tsi108_kill_phy(dev);
1619
1620 if ((err = tsi108_get_mac(dev)) != 0) {
1621 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1622 dev->name);
1623 goto register_fail;
1624 }
1625
1626 tsi108_init_mac(dev);
1627 err = register_netdev(dev);
1628 if (err) {
1629 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1630 dev->name);
1631 goto register_fail;
1632 }
1633
1634 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: "
1635 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
1636 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1637 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1638#ifdef DEBUG
1639 data->msg_enable = DEBUG;
1640 dump_eth_one(dev);
1641#endif
1642
1643 return 0;
1644
1645register_fail:
1646 iounmap(data->regs);
1647 iounmap(data->phyregs);
1648
1649regs_fail:
1650 free_netdev(dev);
1651 return err;
1652}
1653
1654/* There's no way to either get interrupts from the PHY when
1655 * something changes, or to have the Tsi108 automatically communicate
1656 * with the PHY to reconfigure itself.
1657 *
1658 * Thus, we have to do it using a timer.
1659 */
1660
1661static void tsi108_timed_checker(unsigned long dev_ptr)
1662{
1663 struct net_device *dev = (struct net_device *)dev_ptr;
1664 struct tsi108_prv_data *data = netdev_priv(dev);
1665
1666 tsi108_check_phy(dev);
1667 tsi108_check_rxring(dev);
1668 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1669}
1670
1671static int tsi108_ether_init(void)
1672{
1673 int ret;
1674 ret = platform_driver_register (&tsi_eth_driver);
1675 if (ret < 0){
1676 printk("tsi108_ether_init: error initializing ethernet "
1677 "device\n");
1678 return ret;
1679 }
1680 return 0;
1681}
1682
1683static int tsi108_ether_remove(struct platform_device *pdev)
1684{
1685 struct net_device *dev = platform_get_drvdata(pdev);
1686 struct tsi108_prv_data *priv = netdev_priv(dev);
1687
1688 unregister_netdev(dev);
1689 tsi108_stop_ethernet(dev);
1690 platform_set_drvdata(pdev, NULL);
1691 iounmap(priv->regs);
1692 iounmap(priv->phyregs);
1693 free_netdev(dev);
1694
1695 return 0;
1696}
1697static void tsi108_ether_exit(void)
1698{
1699 platform_driver_unregister(&tsi_eth_driver);
1700}
1701
1702module_init(tsi108_ether_init);
1703module_exit(tsi108_ether_exit);
1704
1705MODULE_AUTHOR("Tundra Semiconductor Corporation");
1706MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1707MODULE_LICENSE("GPL");