GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/unicore32/mm/mmu.c |
| 3 | * |
| 4 | * Code specific to PKUnity SoC and UniCore ISA |
| 5 | * |
| 6 | * Copyright (C) 2001-2010 GUAN Xue-tao |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/errno.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/mman.h> |
| 17 | #include <linux/nodemask.h> |
| 18 | #include <linux/memblock.h> |
| 19 | #include <linux/fs.h> |
| 20 | #include <linux/bootmem.h> |
| 21 | #include <linux/io.h> |
| 22 | |
| 23 | #include <asm/cputype.h> |
| 24 | #include <asm/sections.h> |
| 25 | #include <asm/setup.h> |
| 26 | #include <asm/sizes.h> |
| 27 | #include <asm/tlb.h> |
Tejun Heo | 1c16d24 | 2011-12-08 10:22:06 -0800 | [diff] [blame] | 28 | #include <asm/memblock.h> |
GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 29 | |
| 30 | #include <mach/map.h> |
| 31 | |
| 32 | #include "mm.h" |
| 33 | |
GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 34 | /* |
| 35 | * empty_zero_page is a special page that is used for |
| 36 | * zero-initialized data and COW. |
| 37 | */ |
| 38 | struct page *empty_zero_page; |
| 39 | EXPORT_SYMBOL(empty_zero_page); |
| 40 | |
| 41 | /* |
| 42 | * The pmd table for the upper-most set of pages. |
| 43 | */ |
| 44 | pmd_t *top_pmd; |
| 45 | |
| 46 | pgprot_t pgprot_user; |
| 47 | EXPORT_SYMBOL(pgprot_user); |
| 48 | |
| 49 | pgprot_t pgprot_kernel; |
| 50 | EXPORT_SYMBOL(pgprot_kernel); |
| 51 | |
| 52 | static int __init noalign_setup(char *__unused) |
| 53 | { |
| 54 | cr_alignment &= ~CR_A; |
| 55 | cr_no_alignment &= ~CR_A; |
| 56 | set_cr(cr_alignment); |
| 57 | return 1; |
| 58 | } |
| 59 | __setup("noalign", noalign_setup); |
| 60 | |
| 61 | void adjust_cr(unsigned long mask, unsigned long set) |
| 62 | { |
| 63 | unsigned long flags; |
| 64 | |
| 65 | mask &= ~CR_A; |
| 66 | |
| 67 | set &= mask; |
| 68 | |
| 69 | local_irq_save(flags); |
| 70 | |
| 71 | cr_no_alignment = (cr_no_alignment & ~mask) | set; |
| 72 | cr_alignment = (cr_alignment & ~mask) | set; |
| 73 | |
| 74 | set_cr((get_cr() & ~mask) | set); |
| 75 | |
| 76 | local_irq_restore(flags); |
| 77 | } |
| 78 | |
| 79 | struct map_desc { |
| 80 | unsigned long virtual; |
| 81 | unsigned long pfn; |
| 82 | unsigned long length; |
| 83 | unsigned int type; |
| 84 | }; |
| 85 | |
| 86 | #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \ |
| 87 | PTE_DIRTY | PTE_READ | PTE_WRITE) |
| 88 | #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \ |
| 89 | PMD_SECT_READ | PMD_SECT_WRITE) |
| 90 | |
| 91 | static struct mem_type mem_types[] = { |
| 92 | [MT_DEVICE] = { /* Strongly ordered */ |
| 93 | .prot_pte = PROT_PTE_DEVICE, |
| 94 | .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, |
| 95 | .prot_sect = PROT_SECT_DEVICE, |
| 96 | }, |
| 97 | /* |
| 98 | * MT_KUSER: pte for vecpage -- cacheable, |
| 99 | * and sect for unigfx mmap -- noncacheable |
| 100 | */ |
| 101 | [MT_KUSER] = { |
| 102 | .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | |
| 103 | PTE_CACHEABLE | PTE_READ | PTE_EXEC, |
| 104 | .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, |
| 105 | .prot_sect = PROT_SECT_DEVICE, |
| 106 | }, |
| 107 | [MT_HIGH_VECTORS] = { |
| 108 | .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | |
| 109 | PTE_CACHEABLE | PTE_READ | PTE_WRITE | |
| 110 | PTE_EXEC, |
| 111 | .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, |
| 112 | }, |
| 113 | [MT_MEMORY] = { |
| 114 | .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | |
| 115 | PTE_WRITE | PTE_EXEC, |
| 116 | .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, |
| 117 | .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | |
| 118 | PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC, |
| 119 | }, |
| 120 | [MT_ROM] = { |
| 121 | .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | |
| 122 | PMD_SECT_READ, |
| 123 | }, |
| 124 | }; |
| 125 | |
| 126 | const struct mem_type *get_mem_type(unsigned int type) |
| 127 | { |
| 128 | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; |
| 129 | } |
| 130 | EXPORT_SYMBOL(get_mem_type); |
| 131 | |
| 132 | /* |
| 133 | * Adjust the PMD section entries according to the CPU in use. |
| 134 | */ |
| 135 | static void __init build_mem_type_table(void) |
| 136 | { |
| 137 | pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE); |
| 138 | pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG | |
| 139 | PTE_DIRTY | PTE_READ | PTE_WRITE | |
| 140 | PTE_EXEC | PTE_CACHEABLE); |
| 141 | } |
| 142 | |
| 143 | #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| 144 | |
| 145 | static void __init *early_alloc(unsigned long sz) |
| 146 | { |
| 147 | void *ptr = __va(memblock_alloc(sz, sz)); |
| 148 | memset(ptr, 0, sz); |
| 149 | return ptr; |
| 150 | } |
| 151 | |
| 152 | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, |
| 153 | unsigned long prot) |
| 154 | { |
| 155 | if (pmd_none(*pmd)) { |
| 156 | pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t)); |
| 157 | __pmd_populate(pmd, __pa(pte) | prot); |
| 158 | } |
| 159 | BUG_ON(pmd_bad(*pmd)); |
| 160 | return pte_offset_kernel(pmd, addr); |
| 161 | } |
| 162 | |
| 163 | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, |
| 164 | unsigned long end, unsigned long pfn, |
| 165 | const struct mem_type *type) |
| 166 | { |
| 167 | pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); |
| 168 | do { |
| 169 | set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte))); |
| 170 | pfn++; |
| 171 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 172 | } |
| 173 | |
| 174 | static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, |
| 175 | unsigned long end, unsigned long phys, |
| 176 | const struct mem_type *type) |
| 177 | { |
| 178 | pmd_t *pmd = pmd_offset((pud_t *)pgd, addr); |
| 179 | |
| 180 | /* |
| 181 | * Try a section mapping - end, addr and phys must all be aligned |
| 182 | * to a section boundary. |
| 183 | */ |
| 184 | if (((addr | end | phys) & ~SECTION_MASK) == 0) { |
| 185 | pmd_t *p = pmd; |
| 186 | |
| 187 | do { |
| 188 | set_pmd(pmd, __pmd(phys | type->prot_sect)); |
| 189 | phys += SECTION_SIZE; |
| 190 | } while (pmd++, addr += SECTION_SIZE, addr != end); |
| 191 | |
| 192 | flush_pmd_entry(p); |
| 193 | } else { |
| 194 | /* |
| 195 | * No need to loop; pte's aren't interested in the |
| 196 | * individual L1 entries. |
| 197 | */ |
| 198 | alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Create the page directory entries and any necessary |
| 204 | * page tables for the mapping specified by `md'. We |
| 205 | * are able to cope here with varying sizes and address |
| 206 | * offsets, and we take full advantage of sections. |
| 207 | */ |
| 208 | static void __init create_mapping(struct map_desc *md) |
| 209 | { |
| 210 | unsigned long phys, addr, length, end; |
| 211 | const struct mem_type *type; |
| 212 | pgd_t *pgd; |
| 213 | |
| 214 | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| 215 | printk(KERN_WARNING "BUG: not creating mapping for " |
| 216 | "0x%08llx at 0x%08lx in user region\n", |
| 217 | __pfn_to_phys((u64)md->pfn), md->virtual); |
| 218 | return; |
| 219 | } |
| 220 | |
| 221 | if ((md->type == MT_DEVICE || md->type == MT_ROM) && |
| 222 | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { |
| 223 | printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " |
| 224 | "overlaps vmalloc space\n", |
| 225 | __pfn_to_phys((u64)md->pfn), md->virtual); |
| 226 | } |
| 227 | |
| 228 | type = &mem_types[md->type]; |
| 229 | |
| 230 | addr = md->virtual & PAGE_MASK; |
| 231 | phys = (unsigned long)__pfn_to_phys(md->pfn); |
| 232 | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| 233 | |
| 234 | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { |
| 235 | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " |
| 236 | "be mapped using pages, ignoring.\n", |
| 237 | __pfn_to_phys(md->pfn), addr); |
| 238 | return; |
| 239 | } |
| 240 | |
| 241 | pgd = pgd_offset_k(addr); |
| 242 | end = addr + length; |
| 243 | do { |
| 244 | unsigned long next = pgd_addr_end(addr, end); |
| 245 | |
| 246 | alloc_init_section(pgd, addr, next, phys, type); |
| 247 | |
| 248 | phys += next - addr; |
| 249 | addr = next; |
| 250 | } while (pgd++, addr != end); |
| 251 | } |
| 252 | |
| 253 | static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M); |
| 254 | |
| 255 | /* |
| 256 | * vmalloc=size forces the vmalloc area to be exactly 'size' |
| 257 | * bytes. This can be used to increase (or decrease) the vmalloc |
| 258 | * area - the default is 128m. |
| 259 | */ |
| 260 | static int __init early_vmalloc(char *arg) |
| 261 | { |
| 262 | unsigned long vmalloc_reserve = memparse(arg, NULL); |
| 263 | |
| 264 | if (vmalloc_reserve < SZ_16M) { |
| 265 | vmalloc_reserve = SZ_16M; |
| 266 | printk(KERN_WARNING |
| 267 | "vmalloc area too small, limiting to %luMB\n", |
| 268 | vmalloc_reserve >> 20); |
| 269 | } |
| 270 | |
| 271 | if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { |
| 272 | vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); |
| 273 | printk(KERN_WARNING |
| 274 | "vmalloc area is too big, limiting to %luMB\n", |
| 275 | vmalloc_reserve >> 20); |
| 276 | } |
| 277 | |
| 278 | vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); |
| 279 | return 0; |
| 280 | } |
| 281 | early_param("vmalloc", early_vmalloc); |
| 282 | |
| 283 | static phys_addr_t lowmem_limit __initdata = SZ_1G; |
| 284 | |
| 285 | static void __init sanity_check_meminfo(void) |
| 286 | { |
| 287 | int i, j; |
| 288 | |
| 289 | lowmem_limit = __pa(vmalloc_min - 1) + 1; |
| 290 | memblock_set_current_limit(lowmem_limit); |
| 291 | |
| 292 | for (i = 0, j = 0; i < meminfo.nr_banks; i++) { |
| 293 | struct membank *bank = &meminfo.bank[j]; |
| 294 | *bank = meminfo.bank[i]; |
| 295 | j++; |
| 296 | } |
| 297 | meminfo.nr_banks = j; |
| 298 | } |
| 299 | |
| 300 | static inline void prepare_page_table(void) |
| 301 | { |
| 302 | unsigned long addr; |
| 303 | phys_addr_t end; |
| 304 | |
| 305 | /* |
| 306 | * Clear out all the mappings below the kernel image. |
| 307 | */ |
| 308 | for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) |
| 309 | pmd_clear(pmd_off_k(addr)); |
| 310 | |
| 311 | for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) |
| 312 | pmd_clear(pmd_off_k(addr)); |
| 313 | |
| 314 | /* |
| 315 | * Find the end of the first block of lowmem. |
| 316 | */ |
| 317 | end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; |
| 318 | if (end >= lowmem_limit) |
| 319 | end = lowmem_limit; |
| 320 | |
| 321 | /* |
| 322 | * Clear out all the kernel space mappings, except for the first |
| 323 | * memory bank, up to the end of the vmalloc region. |
| 324 | */ |
| 325 | for (addr = __phys_to_virt(end); |
| 326 | addr < VMALLOC_END; addr += PGDIR_SIZE) |
| 327 | pmd_clear(pmd_off_k(addr)); |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Reserve the special regions of memory |
| 332 | */ |
| 333 | void __init uc32_mm_memblock_reserve(void) |
| 334 | { |
| 335 | /* |
| 336 | * Reserve the page tables. These are already in use, |
| 337 | * and can only be in node 0. |
| 338 | */ |
| 339 | memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); |
GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Set up device the mappings. Since we clear out the page tables for all |
| 344 | * mappings above VMALLOC_END, we will remove any debug device mappings. |
| 345 | * This means you have to be careful how you debug this function, or any |
| 346 | * called function. This means you can't use any function or debugging |
| 347 | * method which may touch any device, otherwise the kernel _will_ crash. |
| 348 | */ |
| 349 | static void __init devicemaps_init(void) |
| 350 | { |
| 351 | struct map_desc map; |
| 352 | unsigned long addr; |
| 353 | void *vectors; |
| 354 | |
| 355 | /* |
| 356 | * Allocate the vector page early. |
| 357 | */ |
| 358 | vectors = early_alloc(PAGE_SIZE); |
| 359 | |
| 360 | for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) |
| 361 | pmd_clear(pmd_off_k(addr)); |
| 362 | |
| 363 | /* |
GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 364 | * Create a mapping for the machine vectors at the high-vectors |
| 365 | * location (0xffff0000). If we aren't using high-vectors, also |
| 366 | * create a mapping at the low-vectors virtual address. |
| 367 | */ |
| 368 | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| 369 | map.virtual = VECTORS_BASE; |
| 370 | map.length = PAGE_SIZE; |
| 371 | map.type = MT_HIGH_VECTORS; |
| 372 | create_mapping(&map); |
| 373 | |
| 374 | /* |
| 375 | * Create a mapping for the kuser page at the special |
| 376 | * location (0xbfff0000) to the same vectors location. |
| 377 | */ |
| 378 | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| 379 | map.virtual = KUSER_VECPAGE_BASE; |
| 380 | map.length = PAGE_SIZE; |
| 381 | map.type = MT_KUSER; |
| 382 | create_mapping(&map); |
| 383 | |
| 384 | /* |
| 385 | * Finally flush the caches and tlb to ensure that we're in a |
| 386 | * consistent state wrt the writebuffer. This also ensures that |
| 387 | * any write-allocated cache lines in the vector page are written |
| 388 | * back. After this point, we can start to touch devices again. |
| 389 | */ |
| 390 | local_flush_tlb_all(); |
| 391 | flush_cache_all(); |
| 392 | } |
| 393 | |
| 394 | static void __init map_lowmem(void) |
| 395 | { |
| 396 | struct memblock_region *reg; |
| 397 | |
| 398 | /* Map all the lowmem memory banks. */ |
| 399 | for_each_memblock(memory, reg) { |
| 400 | phys_addr_t start = reg->base; |
| 401 | phys_addr_t end = start + reg->size; |
| 402 | struct map_desc map; |
| 403 | |
| 404 | if (end > lowmem_limit) |
| 405 | end = lowmem_limit; |
| 406 | if (start >= end) |
| 407 | break; |
| 408 | |
| 409 | map.pfn = __phys_to_pfn(start); |
| 410 | map.virtual = __phys_to_virt(start); |
| 411 | map.length = end - start; |
| 412 | map.type = MT_MEMORY; |
| 413 | |
| 414 | create_mapping(&map); |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * paging_init() sets up the page tables, initialises the zone memory |
| 420 | * maps, and sets up the zero page, bad page and bad page tables. |
| 421 | */ |
| 422 | void __init paging_init(void) |
| 423 | { |
| 424 | void *zero_page; |
| 425 | |
| 426 | build_mem_type_table(); |
| 427 | sanity_check_meminfo(); |
| 428 | prepare_page_table(); |
| 429 | map_lowmem(); |
| 430 | devicemaps_init(); |
| 431 | |
| 432 | top_pmd = pmd_off_k(0xffff0000); |
| 433 | |
| 434 | /* allocate the zero page. */ |
| 435 | zero_page = early_alloc(PAGE_SIZE); |
| 436 | |
| 437 | bootmem_init(); |
| 438 | |
| 439 | empty_zero_page = virt_to_page(zero_page); |
| 440 | __flush_dcache_page(NULL, empty_zero_page); |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * In order to soft-boot, we need to insert a 1:1 mapping in place of |
| 445 | * the user-mode pages. This will then ensure that we have predictable |
| 446 | * results when turning the mmu off |
| 447 | */ |
Robin Holt | c97a700 | 2013-07-08 16:01:36 -0700 | [diff] [blame] | 448 | void setup_mm_for_reboot(void) |
GuanXuetao | 56372b0 | 2011-01-15 18:17:56 +0800 | [diff] [blame] | 449 | { |
| 450 | unsigned long base_pmdval; |
| 451 | pgd_t *pgd; |
| 452 | int i; |
| 453 | |
| 454 | /* |
| 455 | * We need to access to user-mode page tables here. For kernel threads |
| 456 | * we don't have any user-mode mappings so we use the context that we |
| 457 | * "borrowed". |
| 458 | */ |
| 459 | pgd = current->active_mm->pgd; |
| 460 | |
| 461 | base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT; |
| 462 | |
| 463 | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { |
| 464 | unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; |
| 465 | pmd_t *pmd; |
| 466 | |
| 467 | pmd = pmd_off(pgd, i << PGDIR_SHIFT); |
| 468 | set_pmd(pmd, __pmd(pmdval)); |
| 469 | flush_pmd_entry(pmd); |
| 470 | } |
| 471 | |
| 472 | local_flush_tlb_all(); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * Take care of architecture specific things when placing a new PTE into |
| 477 | * a page table, or changing an existing PTE. Basically, there are two |
| 478 | * things that we need to take care of: |
| 479 | * |
| 480 | * 1. If PG_dcache_clean is not set for the page, we need to ensure |
| 481 | * that any cache entries for the kernels virtual memory |
| 482 | * range are written back to the page. |
| 483 | * 2. If we have multiple shared mappings of the same space in |
| 484 | * an object, we need to deal with the cache aliasing issues. |
| 485 | * |
| 486 | * Note that the pte lock will be held. |
| 487 | */ |
| 488 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, |
| 489 | pte_t *ptep) |
| 490 | { |
| 491 | unsigned long pfn = pte_pfn(*ptep); |
| 492 | struct address_space *mapping; |
| 493 | struct page *page; |
| 494 | |
| 495 | if (!pfn_valid(pfn)) |
| 496 | return; |
| 497 | |
| 498 | /* |
| 499 | * The zero page is never written to, so never has any dirty |
| 500 | * cache lines, and therefore never needs to be flushed. |
| 501 | */ |
| 502 | page = pfn_to_page(pfn); |
| 503 | if (page == ZERO_PAGE(0)) |
| 504 | return; |
| 505 | |
| 506 | mapping = page_mapping(page); |
| 507 | if (!test_and_set_bit(PG_dcache_clean, &page->flags)) |
| 508 | __flush_dcache_page(mapping, page); |
| 509 | if (mapping) |
| 510 | if (vma->vm_flags & VM_EXEC) |
| 511 | __flush_icache_all(); |
| 512 | } |