blob: 1a64a6a850f38f254d52004b5cce61f725088632 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#include <linux/module.h>
2#include <linux/string.h>
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/init.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006#include <linux/usb.h>
Oliver Neukum51a2f072007-05-25 13:40:56 +02007#include <linux/wait.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -07008#include "hcd.h"
9
10#define to_urb(d) container_of(d, struct urb, kref)
11
12static void urb_destroy(struct kref *kref)
13{
14 struct urb *urb = to_urb(kref);
Oliver Neukum51a2f072007-05-25 13:40:56 +020015
Marcel Holtmann8b3b01c2007-06-13 08:02:11 +020016 if (urb->transfer_flags & URB_FREE_BUFFER)
17 kfree(urb->transfer_buffer);
18
Linus Torvalds1da177e2005-04-16 15:20:36 -070019 kfree(urb);
20}
21
22/**
23 * usb_init_urb - initializes a urb so that it can be used by a USB driver
24 * @urb: pointer to the urb to initialize
25 *
26 * Initializes a urb so that the USB subsystem can use it properly.
27 *
28 * If a urb is created with a call to usb_alloc_urb() it is not
29 * necessary to call this function. Only use this if you allocate the
30 * space for a struct urb on your own. If you call this function, be
31 * careful when freeing the memory for your urb that it is no longer in
32 * use by the USB core.
33 *
34 * Only use this function if you _really_ understand what you are doing.
35 */
36void usb_init_urb(struct urb *urb)
37{
38 if (urb) {
39 memset(urb, 0, sizeof(*urb));
40 kref_init(&urb->kref);
41 spin_lock_init(&urb->lock);
Oliver Neukum51a2f072007-05-25 13:40:56 +020042 INIT_LIST_HEAD(&urb->anchor_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -070043 }
44}
45
46/**
47 * usb_alloc_urb - creates a new urb for a USB driver to use
48 * @iso_packets: number of iso packets for this urb
49 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
50 * valid options for this.
51 *
52 * Creates an urb for the USB driver to use, initializes a few internal
53 * structures, incrementes the usage counter, and returns a pointer to it.
54 *
55 * If no memory is available, NULL is returned.
56 *
57 * If the driver want to use this urb for interrupt, control, or bulk
58 * endpoints, pass '0' as the number of iso packets.
59 *
60 * The driver must call usb_free_urb() when it is finished with the urb.
61 */
Al Viro55016f12005-10-21 03:21:58 -040062struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -070063{
64 struct urb *urb;
65
Tobias Klauserec17cf12006-09-13 21:38:41 +020066 urb = kmalloc(sizeof(struct urb) +
Linus Torvalds1da177e2005-04-16 15:20:36 -070067 iso_packets * sizeof(struct usb_iso_packet_descriptor),
68 mem_flags);
69 if (!urb) {
70 err("alloc_urb: kmalloc failed");
71 return NULL;
72 }
73 usb_init_urb(urb);
74 return urb;
75}
76
77/**
78 * usb_free_urb - frees the memory used by a urb when all users of it are finished
79 * @urb: pointer to the urb to free, may be NULL
80 *
81 * Must be called when a user of a urb is finished with it. When the last user
82 * of the urb calls this function, the memory of the urb is freed.
83 *
84 * Note: The transfer buffer associated with the urb is not freed, that must be
85 * done elsewhere.
86 */
87void usb_free_urb(struct urb *urb)
88{
89 if (urb)
90 kref_put(&urb->kref, urb_destroy);
91}
92
93/**
94 * usb_get_urb - increments the reference count of the urb
95 * @urb: pointer to the urb to modify, may be NULL
96 *
97 * This must be called whenever a urb is transferred from a device driver to a
98 * host controller driver. This allows proper reference counting to happen
99 * for urbs.
100 *
101 * A pointer to the urb with the incremented reference counter is returned.
102 */
103struct urb * usb_get_urb(struct urb *urb)
104{
105 if (urb)
106 kref_get(&urb->kref);
107 return urb;
108}
Oliver Neukum51a2f072007-05-25 13:40:56 +0200109
110/**
111 * usb_anchor_urb - anchors an URB while it is processed
112 * @urb: pointer to the urb to anchor
113 * @anchor: pointer to the anchor
114 *
115 * This can be called to have access to URBs which are to be executed
116 * without bothering to track them
117 */
118void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
119{
120 unsigned long flags;
121
122 spin_lock_irqsave(&anchor->lock, flags);
123 usb_get_urb(urb);
124 list_add_tail(&urb->anchor_list, &anchor->urb_list);
125 urb->anchor = anchor;
126 spin_unlock_irqrestore(&anchor->lock, flags);
127}
128EXPORT_SYMBOL_GPL(usb_anchor_urb);
129
130/**
131 * usb_unanchor_urb - unanchors an URB
132 * @urb: pointer to the urb to anchor
133 *
134 * Call this to stop the system keeping track of this URB
135 */
136void usb_unanchor_urb(struct urb *urb)
137{
138 unsigned long flags;
139 struct usb_anchor *anchor;
140
141 if (!urb)
142 return;
143
144 anchor = urb->anchor;
145 if (!anchor)
146 return;
147
148 spin_lock_irqsave(&anchor->lock, flags);
149 if (unlikely(anchor != urb->anchor)) {
150 /* we've lost the race to another thread */
151 spin_unlock_irqrestore(&anchor->lock, flags);
152 return;
153 }
154 urb->anchor = NULL;
155 list_del(&urb->anchor_list);
156 spin_unlock_irqrestore(&anchor->lock, flags);
157 usb_put_urb(urb);
158 if (list_empty(&anchor->urb_list))
159 wake_up(&anchor->wait);
160}
161EXPORT_SYMBOL_GPL(usb_unanchor_urb);
162
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163/*-------------------------------------------------------------------*/
164
165/**
166 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
167 * @urb: pointer to the urb describing the request
168 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
169 * of valid options for this.
170 *
171 * This submits a transfer request, and transfers control of the URB
172 * describing that request to the USB subsystem. Request completion will
173 * be indicated later, asynchronously, by calling the completion handler.
174 * The three types of completion are success, error, and unlink
Steven Cole093cf722005-05-03 19:07:24 -0600175 * (a software-induced fault, also called "request cancellation").
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176 *
177 * URBs may be submitted in interrupt context.
178 *
179 * The caller must have correctly initialized the URB before submitting
180 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
181 * available to ensure that most fields are correctly initialized, for
182 * the particular kind of transfer, although they will not initialize
183 * any transfer flags.
184 *
185 * Successful submissions return 0; otherwise this routine returns a
186 * negative error number. If the submission is successful, the complete()
187 * callback from the URB will be called exactly once, when the USB core and
188 * Host Controller Driver (HCD) are finished with the URB. When the completion
189 * function is called, control of the URB is returned to the device
190 * driver which issued the request. The completion handler may then
191 * immediately free or reuse that URB.
192 *
193 * With few exceptions, USB device drivers should never access URB fields
194 * provided by usbcore or the HCD until its complete() is called.
195 * The exceptions relate to periodic transfer scheduling. For both
196 * interrupt and isochronous urbs, as part of successful URB submission
197 * urb->interval is modified to reflect the actual transfer period used
198 * (normally some power of two units). And for isochronous urbs,
199 * urb->start_frame is modified to reflect when the URB's transfers were
200 * scheduled to start. Not all isochronous transfer scheduling policies
201 * will work, but most host controller drivers should easily handle ISO
202 * queues going from now until 10-200 msec into the future.
203 *
204 * For control endpoints, the synchronous usb_control_msg() call is
205 * often used (in non-interrupt context) instead of this call.
206 * That is often used through convenience wrappers, for the requests
207 * that are standardized in the USB 2.0 specification. For bulk
208 * endpoints, a synchronous usb_bulk_msg() call is available.
209 *
210 * Request Queuing:
211 *
212 * URBs may be submitted to endpoints before previous ones complete, to
213 * minimize the impact of interrupt latencies and system overhead on data
214 * throughput. With that queuing policy, an endpoint's queue would never
215 * be empty. This is required for continuous isochronous data streams,
216 * and may also be required for some kinds of interrupt transfers. Such
217 * queuing also maximizes bandwidth utilization by letting USB controllers
218 * start work on later requests before driver software has finished the
219 * completion processing for earlier (successful) requests.
220 *
221 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
222 * than one. This was previously a HCD-specific behavior, except for ISO
223 * transfers. Non-isochronous endpoint queues are inactive during cleanup
Steven Cole093cf722005-05-03 19:07:24 -0600224 * after faults (transfer errors or cancellation).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700225 *
226 * Reserved Bandwidth Transfers:
227 *
228 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
229 * using the interval specified in the urb. Submitting the first urb to
230 * the endpoint reserves the bandwidth necessary to make those transfers.
231 * If the USB subsystem can't allocate sufficient bandwidth to perform
232 * the periodic request, submitting such a periodic request should fail.
233 *
234 * Device drivers must explicitly request that repetition, by ensuring that
235 * some URB is always on the endpoint's queue (except possibly for short
236 * periods during completion callacks). When there is no longer an urb
237 * queued, the endpoint's bandwidth reservation is canceled. This means
238 * drivers can use their completion handlers to ensure they keep bandwidth
239 * they need, by reinitializing and resubmitting the just-completed urb
240 * until the driver longer needs that periodic bandwidth.
241 *
242 * Memory Flags:
243 *
244 * The general rules for how to decide which mem_flags to use
245 * are the same as for kmalloc. There are four
246 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
247 * GFP_ATOMIC.
248 *
249 * GFP_NOFS is not ever used, as it has not been implemented yet.
250 *
251 * GFP_ATOMIC is used when
252 * (a) you are inside a completion handler, an interrupt, bottom half,
253 * tasklet or timer, or
254 * (b) you are holding a spinlock or rwlock (does not apply to
255 * semaphores), or
256 * (c) current->state != TASK_RUNNING, this is the case only after
257 * you've changed it.
258 *
259 * GFP_NOIO is used in the block io path and error handling of storage
260 * devices.
261 *
262 * All other situations use GFP_KERNEL.
263 *
264 * Some more specific rules for mem_flags can be inferred, such as
265 * (1) start_xmit, timeout, and receive methods of network drivers must
266 * use GFP_ATOMIC (they are called with a spinlock held);
267 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
268 * called with a spinlock held);
269 * (3) If you use a kernel thread with a network driver you must use
270 * GFP_NOIO, unless (b) or (c) apply;
271 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
272 * apply or your are in a storage driver's block io path;
273 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
274 * (6) changing firmware on a running storage or net device uses
275 * GFP_NOIO, unless b) or c) apply
276 *
277 */
Al Viro55016f12005-10-21 03:21:58 -0400278int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279{
Alan Stern5b653c72007-07-30 17:04:37 -0400280 int xfertype, max;
281 struct usb_device *dev;
282 struct usb_host_endpoint *ep;
283 int is_out;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284
285 if (!urb || urb->hcpriv || !urb->complete)
286 return -EINVAL;
287 if (!(dev = urb->dev) ||
288 (dev->state < USB_STATE_DEFAULT) ||
289 (!dev->bus) || (dev->devnum <= 0))
290 return -ENODEV;
David Brownellb13296c2005-09-27 10:38:54 -0700291 if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
292 || dev->state == USB_STATE_SUSPENDED)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 return -EHOSTUNREACH;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
Alan Stern5b653c72007-07-30 17:04:37 -0400295 /* For now, get the endpoint from the pipe. Eventually drivers
296 * will be required to set urb->ep directly and we will eliminate
297 * urb->pipe.
298 */
299 ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
300 [usb_pipeendpoint(urb->pipe)];
301 if (!ep)
302 return -ENOENT;
303
304 urb->ep = ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305 urb->status = -EINPROGRESS;
306 urb->actual_length = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307
308 /* Lots of sanity checks, so HCDs can rely on clean data
309 * and don't need to duplicate tests
310 */
Alan Stern5b653c72007-07-30 17:04:37 -0400311 xfertype = usb_endpoint_type(&ep->desc);
Alan Sternfea34092007-07-30 17:06:16 -0400312 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
313 struct usb_ctrlrequest *setup =
314 (struct usb_ctrlrequest *) urb->setup_packet;
315
316 if (!setup)
317 return -ENOEXEC;
318 is_out = !(setup->bRequestType & USB_DIR_IN) ||
319 !setup->wLength;
320 } else {
321 is_out = usb_endpoint_dir_out(&ep->desc);
322 }
323
324 /* Cache the direction for later use */
325 urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
326 (is_out ? URB_DIR_OUT : URB_DIR_IN);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700327
Alan Stern5b653c72007-07-30 17:04:37 -0400328 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
329 dev->state < USB_STATE_CONFIGURED)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330 return -ENODEV;
331
Alan Stern5b653c72007-07-30 17:04:37 -0400332 max = le16_to_cpu(ep->desc.wMaxPacketSize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 if (max <= 0) {
334 dev_dbg(&dev->dev,
335 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
Alan Stern5b653c72007-07-30 17:04:37 -0400336 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700337 __FUNCTION__, max);
338 return -EMSGSIZE;
339 }
340
341 /* periodic transfers limit size per frame/uframe,
342 * but drivers only control those sizes for ISO.
343 * while we're checking, initialize return status.
344 */
Alan Stern5b653c72007-07-30 17:04:37 -0400345 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700346 int n, len;
347
348 /* "high bandwidth" mode, 1-3 packets/uframe? */
349 if (dev->speed == USB_SPEED_HIGH) {
350 int mult = 1 + ((max >> 11) & 0x03);
351 max &= 0x07ff;
352 max *= mult;
353 }
354
355 if (urb->number_of_packets <= 0)
356 return -EINVAL;
357 for (n = 0; n < urb->number_of_packets; n++) {
Oliver Neukum92516442007-01-23 15:55:28 -0500358 len = urb->iso_frame_desc[n].length;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359 if (len < 0 || len > max)
360 return -EMSGSIZE;
Oliver Neukum92516442007-01-23 15:55:28 -0500361 urb->iso_frame_desc[n].status = -EXDEV;
362 urb->iso_frame_desc[n].actual_length = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 }
364 }
365
366 /* the I/O buffer must be mapped/unmapped, except when length=0 */
367 if (urb->transfer_buffer_length < 0)
368 return -EMSGSIZE;
369
370#ifdef DEBUG
371 /* stuff that drivers shouldn't do, but which shouldn't
372 * cause problems in HCDs if they get it wrong.
373 */
374 {
375 unsigned int orig_flags = urb->transfer_flags;
376 unsigned int allowed;
377
378 /* enforce simple/standard policy */
Alan Sternb375a042005-07-29 16:11:07 -0400379 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
Alan Sternfea34092007-07-30 17:06:16 -0400380 URB_NO_INTERRUPT | URB_DIR_MASK);
Alan Stern5b653c72007-07-30 17:04:37 -0400381 switch (xfertype) {
382 case USB_ENDPOINT_XFER_BULK:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383 if (is_out)
384 allowed |= URB_ZERO_PACKET;
385 /* FALLTHROUGH */
Alan Stern5b653c72007-07-30 17:04:37 -0400386 case USB_ENDPOINT_XFER_CONTROL:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387 allowed |= URB_NO_FSBR; /* only affects UHCI */
388 /* FALLTHROUGH */
389 default: /* all non-iso endpoints */
390 if (!is_out)
391 allowed |= URB_SHORT_NOT_OK;
392 break;
Alan Stern5b653c72007-07-30 17:04:37 -0400393 case USB_ENDPOINT_XFER_ISOC:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394 allowed |= URB_ISO_ASAP;
395 break;
396 }
397 urb->transfer_flags &= allowed;
398
399 /* fail if submitter gave bogus flags */
400 if (urb->transfer_flags != orig_flags) {
Oliver Neukum92516442007-01-23 15:55:28 -0500401 err("BOGUS urb flags, %x --> %x",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402 orig_flags, urb->transfer_flags);
403 return -EINVAL;
404 }
405 }
406#endif
407 /*
408 * Force periodic transfer intervals to be legal values that are
409 * a power of two (so HCDs don't need to).
410 *
411 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
412 * supports different values... this uses EHCI/UHCI defaults (and
413 * EHCI can use smaller non-default values).
414 */
Alan Stern5b653c72007-07-30 17:04:37 -0400415 switch (xfertype) {
416 case USB_ENDPOINT_XFER_ISOC:
417 case USB_ENDPOINT_XFER_INT:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418 /* too small? */
419 if (urb->interval <= 0)
420 return -EINVAL;
421 /* too big? */
422 switch (dev->speed) {
423 case USB_SPEED_HIGH: /* units are microframes */
424 // NOTE usb handles 2^15
425 if (urb->interval > (1024 * 8))
426 urb->interval = 1024 * 8;
Alan Stern5b653c72007-07-30 17:04:37 -0400427 max = 1024 * 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700428 break;
429 case USB_SPEED_FULL: /* units are frames/msec */
430 case USB_SPEED_LOW:
Alan Stern5b653c72007-07-30 17:04:37 -0400431 if (xfertype == USB_ENDPOINT_XFER_INT) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 if (urb->interval > 255)
433 return -EINVAL;
434 // NOTE ohci only handles up to 32
Alan Stern5b653c72007-07-30 17:04:37 -0400435 max = 128;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 } else {
437 if (urb->interval > 1024)
438 urb->interval = 1024;
439 // NOTE usb and ohci handle up to 2^15
Alan Stern5b653c72007-07-30 17:04:37 -0400440 max = 1024;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 }
442 break;
443 default:
444 return -EINVAL;
445 }
446 /* power of two? */
Alan Stern5b653c72007-07-30 17:04:37 -0400447 while (max > urb->interval)
448 max >>= 1;
449 urb->interval = max;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 }
451
Oliver Neukum92516442007-01-23 15:55:28 -0500452 return usb_hcd_submit_urb(urb, mem_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700453}
454
455/*-------------------------------------------------------------------*/
456
457/**
458 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
459 * @urb: pointer to urb describing a previously submitted request,
460 * may be NULL
461 *
Alan Sternbeafef02007-07-13 15:47:16 -0400462 * This routine cancels an in-progress request. URBs complete only once
463 * per submission, and may be canceled only once per submission.
464 * Successful cancellation means termination of @urb will be expedited
465 * and the completion handler will be called with a status code
466 * indicating that the request has been canceled (rather than any other
467 * code).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 *
Alan Sternbeafef02007-07-13 15:47:16 -0400469 * This request is always asynchronous. Success is indicated by
470 * returning -EINPROGRESS, at which time the URB will probably not yet
471 * have been given back to the device driver. When it is eventually
472 * called, the completion function will see @urb->status == -ECONNRESET.
473 * Failure is indicated by usb_unlink_urb() returning any other value.
474 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
475 * never submitted, or it was unlinked before, or the hardware is already
476 * finished with it), even if the completion handler has not yet run.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477 *
478 * Unlinking and Endpoint Queues:
479 *
Alan Sternbeafef02007-07-13 15:47:16 -0400480 * [The behaviors and guarantees described below do not apply to virtual
481 * root hubs but only to endpoint queues for physical USB devices.]
482 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483 * Host Controller Drivers (HCDs) place all the URBs for a particular
484 * endpoint in a queue. Normally the queue advances as the controller
Alan Stern8835f662005-04-18 17:39:30 -0700485 * hardware processes each request. But when an URB terminates with an
Alan Sternbeafef02007-07-13 15:47:16 -0400486 * error its queue generally stops (see below), at least until that URB's
487 * completion routine returns. It is guaranteed that a stopped queue
488 * will not restart until all its unlinked URBs have been fully retired,
489 * with their completion routines run, even if that's not until some time
490 * after the original completion handler returns. The same behavior and
491 * guarantee apply when an URB terminates because it was unlinked.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 *
Alan Sternbeafef02007-07-13 15:47:16 -0400493 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
494 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
495 * and -EREMOTEIO. Control endpoint queues behave the same way except
496 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
497 * for isochronous endpoints are treated differently, because they must
498 * advance at fixed rates. Such queues do not stop when an URB
499 * encounters an error or is unlinked. An unlinked isochronous URB may
500 * leave a gap in the stream of packets; it is undefined whether such
501 * gaps can be filled in.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700502 *
Alan Sternbeafef02007-07-13 15:47:16 -0400503 * Note that early termination of an URB because a short packet was
504 * received will generate a -EREMOTEIO error if and only if the
505 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
506 * drivers can build deep queues for large or complex bulk transfers
507 * and clean them up reliably after any sort of aborted transfer by
508 * unlinking all pending URBs at the first fault.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 *
Alan Sternbeafef02007-07-13 15:47:16 -0400510 * When a control URB terminates with an error other than -EREMOTEIO, it
511 * is quite likely that the status stage of the transfer will not take
512 * place.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513 */
514int usb_unlink_urb(struct urb *urb)
515{
516 if (!urb)
517 return -EINVAL;
Alan Sterna6d2bb92006-08-30 11:27:36 -0400518 if (!(urb->dev && urb->dev->bus))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 return -ENODEV;
Alan Sterna6d2bb92006-08-30 11:27:36 -0400520 return usb_hcd_unlink_urb(urb, -ECONNRESET);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
523/**
524 * usb_kill_urb - cancel a transfer request and wait for it to finish
525 * @urb: pointer to URB describing a previously submitted request,
526 * may be NULL
527 *
528 * This routine cancels an in-progress request. It is guaranteed that
529 * upon return all completion handlers will have finished and the URB
530 * will be totally idle and available for reuse. These features make
531 * this an ideal way to stop I/O in a disconnect() callback or close()
532 * function. If the request has not already finished or been unlinked
533 * the completion handler will see urb->status == -ENOENT.
534 *
535 * While the routine is running, attempts to resubmit the URB will fail
536 * with error -EPERM. Thus even if the URB's completion handler always
537 * tries to resubmit, it will not succeed and the URB will become idle.
538 *
539 * This routine may not be used in an interrupt context (such as a bottom
540 * half or a completion handler), or when holding a spinlock, or in other
541 * situations where the caller can't schedule().
542 */
543void usb_kill_urb(struct urb *urb)
544{
Greg Kroah-Hartmane9aa7952006-01-23 17:17:21 -0500545 might_sleep();
Alan Sterna6d2bb92006-08-30 11:27:36 -0400546 if (!(urb && urb->dev && urb->dev->bus))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547 return;
548 spin_lock_irq(&urb->lock);
549 ++urb->reject;
550 spin_unlock_irq(&urb->lock);
551
Alan Sterna6d2bb92006-08-30 11:27:36 -0400552 usb_hcd_unlink_urb(urb, -ENOENT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
554
555 spin_lock_irq(&urb->lock);
556 --urb->reject;
557 spin_unlock_irq(&urb->lock);
558}
559
Oliver Neukum51a2f072007-05-25 13:40:56 +0200560/**
561 * usb_kill_anchored_urbs - cancel transfer requests en masse
562 * @anchor: anchor the requests are bound to
563 *
564 * this allows all outstanding URBs to be killed starting
565 * from the back of the queue
566 */
567void usb_kill_anchored_urbs(struct usb_anchor *anchor)
568{
569 struct urb *victim;
570
571 spin_lock_irq(&anchor->lock);
572 while (!list_empty(&anchor->urb_list)) {
573 victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list);
574 /* we must make sure the URB isn't freed before we kill it*/
575 usb_get_urb(victim);
576 spin_unlock_irq(&anchor->lock);
577 /* this will unanchor the URB */
578 usb_kill_urb(victim);
579 usb_put_urb(victim);
580 spin_lock_irq(&anchor->lock);
581 }
582 spin_unlock_irq(&anchor->lock);
583}
584EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
585
586/**
587 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
588 * @anchor: the anchor you want to become unused
589 * @timeout: how long you are willing to wait in milliseconds
590 *
591 * Call this is you want to be sure all an anchor's
592 * URBs have finished
593 */
594int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
595 unsigned int timeout)
596{
597 return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
598 msecs_to_jiffies(timeout));
599}
600EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
601
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602EXPORT_SYMBOL(usb_init_urb);
603EXPORT_SYMBOL(usb_alloc_urb);
604EXPORT_SYMBOL(usb_free_urb);
605EXPORT_SYMBOL(usb_get_urb);
606EXPORT_SYMBOL(usb_submit_urb);
607EXPORT_SYMBOL(usb_unlink_urb);
608EXPORT_SYMBOL(usb_kill_urb);