blob: f65b3de590a96ff2ecc7df6b7a4b9020a641e549 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8 *
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
24 *
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
35 */
36
37/*
38 * The functions in this file will not compile correctly with gcc 2.4.x
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/types.h>
44#include <linux/kernel.h>
45#include <linux/sched.h>
46#include <linux/mm.h>
47#include <linux/interrupt.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/slab.h>
51#include <linux/netdevice.h>
52#ifdef CONFIG_NET_CLS_ACT
53#include <net/pkt_sched.h>
54#endif
55#include <linux/string.h>
56#include <linux/skbuff.h>
57#include <linux/cache.h>
58#include <linux/rtnetlink.h>
59#include <linux/init.h>
60#include <linux/highmem.h>
61
62#include <net/protocol.h>
63#include <net/dst.h>
64#include <net/sock.h>
65#include <net/checksum.h>
66#include <net/xfrm.h>
67
68#include <asm/uaccess.h>
69#include <asm/system.h>
70
71static kmem_cache_t *skbuff_head_cache;
72
73/*
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
76 * reliable.
77 */
78
79/**
80 * skb_over_panic - private function
81 * @skb: buffer
82 * @sz: size
83 * @here: address
84 *
85 * Out of line support code for skb_put(). Not user callable.
86 */
87void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88{
Patrick McHardy26095452005-04-21 16:43:02 -070089 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
Linus Torvalds1da177e2005-04-16 15:20:36 -070093 BUG();
94}
95
96/**
97 * skb_under_panic - private function
98 * @skb: buffer
99 * @sz: size
100 * @here: address
101 *
102 * Out of line support code for skb_push(). Not user callable.
103 */
104
105void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106{
Patrick McHardy26095452005-04-21 16:43:02 -0700107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111 BUG();
112}
113
114/* Allocate a new skbuff. We do this ourselves so we can fill in a few
115 * 'private' fields and also do memory statistics to find all the
116 * [BEEP] leaks.
117 *
118 */
119
120/**
121 * alloc_skb - allocate a network buffer
122 * @size: size to allocate
123 * @gfp_mask: allocation mask
124 *
125 * Allocate a new &sk_buff. The returned buffer has no headroom and a
126 * tail room of size bytes. The object has a reference count of one.
127 * The return is the buffer. On a failure the return is %NULL.
128 *
129 * Buffers may only be allocated from interrupts using a @gfp_mask of
130 * %GFP_ATOMIC.
131 */
132struct sk_buff *alloc_skb(unsigned int size, int gfp_mask)
133{
134 struct sk_buff *skb;
135 u8 *data;
136
137 /* Get the HEAD */
138 skb = kmem_cache_alloc(skbuff_head_cache,
139 gfp_mask & ~__GFP_DMA);
140 if (!skb)
141 goto out;
142
143 /* Get the DATA. Size must match skb_add_mtu(). */
144 size = SKB_DATA_ALIGN(size);
145 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
146 if (!data)
147 goto nodata;
148
149 memset(skb, 0, offsetof(struct sk_buff, truesize));
150 skb->truesize = size + sizeof(struct sk_buff);
151 atomic_set(&skb->users, 1);
152 skb->head = data;
153 skb->data = data;
154 skb->tail = data;
155 skb->end = data + size;
156
157 atomic_set(&(skb_shinfo(skb)->dataref), 1);
158 skb_shinfo(skb)->nr_frags = 0;
159 skb_shinfo(skb)->tso_size = 0;
160 skb_shinfo(skb)->tso_segs = 0;
161 skb_shinfo(skb)->frag_list = NULL;
162out:
163 return skb;
164nodata:
165 kmem_cache_free(skbuff_head_cache, skb);
166 skb = NULL;
167 goto out;
168}
169
170/**
171 * alloc_skb_from_cache - allocate a network buffer
172 * @cp: kmem_cache from which to allocate the data area
173 * (object size must be big enough for @size bytes + skb overheads)
174 * @size: size to allocate
175 * @gfp_mask: allocation mask
176 *
177 * Allocate a new &sk_buff. The returned buffer has no headroom and
178 * tail room of size bytes. The object has a reference count of one.
179 * The return is the buffer. On a failure the return is %NULL.
180 *
181 * Buffers may only be allocated from interrupts using a @gfp_mask of
182 * %GFP_ATOMIC.
183 */
184struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
185 unsigned int size, int gfp_mask)
186{
187 struct sk_buff *skb;
188 u8 *data;
189
190 /* Get the HEAD */
191 skb = kmem_cache_alloc(skbuff_head_cache,
192 gfp_mask & ~__GFP_DMA);
193 if (!skb)
194 goto out;
195
196 /* Get the DATA. */
197 size = SKB_DATA_ALIGN(size);
198 data = kmem_cache_alloc(cp, gfp_mask);
199 if (!data)
200 goto nodata;
201
202 memset(skb, 0, offsetof(struct sk_buff, truesize));
203 skb->truesize = size + sizeof(struct sk_buff);
204 atomic_set(&skb->users, 1);
205 skb->head = data;
206 skb->data = data;
207 skb->tail = data;
208 skb->end = data + size;
209
210 atomic_set(&(skb_shinfo(skb)->dataref), 1);
211 skb_shinfo(skb)->nr_frags = 0;
212 skb_shinfo(skb)->tso_size = 0;
213 skb_shinfo(skb)->tso_segs = 0;
214 skb_shinfo(skb)->frag_list = NULL;
215out:
216 return skb;
217nodata:
218 kmem_cache_free(skbuff_head_cache, skb);
219 skb = NULL;
220 goto out;
221}
222
223
224static void skb_drop_fraglist(struct sk_buff *skb)
225{
226 struct sk_buff *list = skb_shinfo(skb)->frag_list;
227
228 skb_shinfo(skb)->frag_list = NULL;
229
230 do {
231 struct sk_buff *this = list;
232 list = list->next;
233 kfree_skb(this);
234 } while (list);
235}
236
237static void skb_clone_fraglist(struct sk_buff *skb)
238{
239 struct sk_buff *list;
240
241 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
242 skb_get(list);
243}
244
245void skb_release_data(struct sk_buff *skb)
246{
247 if (!skb->cloned ||
248 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
249 &skb_shinfo(skb)->dataref)) {
250 if (skb_shinfo(skb)->nr_frags) {
251 int i;
252 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
253 put_page(skb_shinfo(skb)->frags[i].page);
254 }
255
256 if (skb_shinfo(skb)->frag_list)
257 skb_drop_fraglist(skb);
258
259 kfree(skb->head);
260 }
261}
262
263/*
264 * Free an skbuff by memory without cleaning the state.
265 */
266void kfree_skbmem(struct sk_buff *skb)
267{
268 skb_release_data(skb);
269 kmem_cache_free(skbuff_head_cache, skb);
270}
271
272/**
273 * __kfree_skb - private function
274 * @skb: buffer
275 *
276 * Free an sk_buff. Release anything attached to the buffer.
277 * Clean the state. This is an internal helper function. Users should
278 * always call kfree_skb
279 */
280
281void __kfree_skb(struct sk_buff *skb)
282{
Stephen Hemminger9c2b3322005-04-19 22:39:42 -0700283 BUG_ON(skb->list != NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284
285 dst_release(skb->dst);
286#ifdef CONFIG_XFRM
287 secpath_put(skb->sp);
288#endif
Stephen Hemminger9c2b3322005-04-19 22:39:42 -0700289 if (skb->destructor) {
290 WARN_ON(in_irq());
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 skb->destructor(skb);
292 }
293#ifdef CONFIG_NETFILTER
294 nf_conntrack_put(skb->nfct);
295#ifdef CONFIG_BRIDGE_NETFILTER
296 nf_bridge_put(skb->nf_bridge);
297#endif
298#endif
299/* XXX: IS this still necessary? - JHS */
300#ifdef CONFIG_NET_SCHED
301 skb->tc_index = 0;
302#ifdef CONFIG_NET_CLS_ACT
303 skb->tc_verd = 0;
304 skb->tc_classid = 0;
305#endif
306#endif
307
308 kfree_skbmem(skb);
309}
310
311/**
312 * skb_clone - duplicate an sk_buff
313 * @skb: buffer to clone
314 * @gfp_mask: allocation priority
315 *
316 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
317 * copies share the same packet data but not structure. The new
318 * buffer has a reference count of 1. If the allocation fails the
319 * function returns %NULL otherwise the new buffer is returned.
320 *
321 * If this function is called from an interrupt gfp_mask() must be
322 * %GFP_ATOMIC.
323 */
324
325struct sk_buff *skb_clone(struct sk_buff *skb, int gfp_mask)
326{
327 struct sk_buff *n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
328
329 if (!n)
330 return NULL;
331
332#define C(x) n->x = skb->x
333
334 n->next = n->prev = NULL;
335 n->list = NULL;
336 n->sk = NULL;
337 C(stamp);
338 C(dev);
339 C(real_dev);
340 C(h);
341 C(nh);
342 C(mac);
343 C(dst);
344 dst_clone(skb->dst);
345 C(sp);
346#ifdef CONFIG_INET
347 secpath_get(skb->sp);
348#endif
349 memcpy(n->cb, skb->cb, sizeof(skb->cb));
350 C(len);
351 C(data_len);
352 C(csum);
353 C(local_df);
354 n->cloned = 1;
355 n->nohdr = 0;
356 C(pkt_type);
357 C(ip_summed);
358 C(priority);
359 C(protocol);
360 C(security);
361 n->destructor = NULL;
362#ifdef CONFIG_NETFILTER
363 C(nfmark);
364 C(nfcache);
365 C(nfct);
366 nf_conntrack_get(skb->nfct);
367 C(nfctinfo);
368#ifdef CONFIG_NETFILTER_DEBUG
369 C(nf_debug);
370#endif
371#ifdef CONFIG_BRIDGE_NETFILTER
372 C(nf_bridge);
373 nf_bridge_get(skb->nf_bridge);
374#endif
375#endif /*CONFIG_NETFILTER*/
376#if defined(CONFIG_HIPPI)
377 C(private);
378#endif
379#ifdef CONFIG_NET_SCHED
380 C(tc_index);
381#ifdef CONFIG_NET_CLS_ACT
382 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
383 n->tc_verd = CLR_TC_OK2MUNGE(skb->tc_verd);
384 n->tc_verd = CLR_TC_MUNGED(skb->tc_verd);
385 C(input_dev);
386 C(tc_classid);
387#endif
388
389#endif
390 C(truesize);
391 atomic_set(&n->users, 1);
392 C(head);
393 C(data);
394 C(tail);
395 C(end);
396
397 atomic_inc(&(skb_shinfo(skb)->dataref));
398 skb->cloned = 1;
399
400 return n;
401}
402
403static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
404{
405 /*
406 * Shift between the two data areas in bytes
407 */
408 unsigned long offset = new->data - old->data;
409
410 new->list = NULL;
411 new->sk = NULL;
412 new->dev = old->dev;
413 new->real_dev = old->real_dev;
414 new->priority = old->priority;
415 new->protocol = old->protocol;
416 new->dst = dst_clone(old->dst);
417#ifdef CONFIG_INET
418 new->sp = secpath_get(old->sp);
419#endif
420 new->h.raw = old->h.raw + offset;
421 new->nh.raw = old->nh.raw + offset;
422 new->mac.raw = old->mac.raw + offset;
423 memcpy(new->cb, old->cb, sizeof(old->cb));
424 new->local_df = old->local_df;
425 new->pkt_type = old->pkt_type;
426 new->stamp = old->stamp;
427 new->destructor = NULL;
428 new->security = old->security;
429#ifdef CONFIG_NETFILTER
430 new->nfmark = old->nfmark;
431 new->nfcache = old->nfcache;
432 new->nfct = old->nfct;
433 nf_conntrack_get(old->nfct);
434 new->nfctinfo = old->nfctinfo;
435#ifdef CONFIG_NETFILTER_DEBUG
436 new->nf_debug = old->nf_debug;
437#endif
438#ifdef CONFIG_BRIDGE_NETFILTER
439 new->nf_bridge = old->nf_bridge;
440 nf_bridge_get(old->nf_bridge);
441#endif
442#endif
443#ifdef CONFIG_NET_SCHED
444#ifdef CONFIG_NET_CLS_ACT
445 new->tc_verd = old->tc_verd;
446#endif
447 new->tc_index = old->tc_index;
448#endif
449 atomic_set(&new->users, 1);
450 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
451 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
452}
453
454/**
455 * skb_copy - create private copy of an sk_buff
456 * @skb: buffer to copy
457 * @gfp_mask: allocation priority
458 *
459 * Make a copy of both an &sk_buff and its data. This is used when the
460 * caller wishes to modify the data and needs a private copy of the
461 * data to alter. Returns %NULL on failure or the pointer to the buffer
462 * on success. The returned buffer has a reference count of 1.
463 *
464 * As by-product this function converts non-linear &sk_buff to linear
465 * one, so that &sk_buff becomes completely private and caller is allowed
466 * to modify all the data of returned buffer. This means that this
467 * function is not recommended for use in circumstances when only
468 * header is going to be modified. Use pskb_copy() instead.
469 */
470
471struct sk_buff *skb_copy(const struct sk_buff *skb, int gfp_mask)
472{
473 int headerlen = skb->data - skb->head;
474 /*
475 * Allocate the copy buffer
476 */
477 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
478 gfp_mask);
479 if (!n)
480 return NULL;
481
482 /* Set the data pointer */
483 skb_reserve(n, headerlen);
484 /* Set the tail pointer and length */
485 skb_put(n, skb->len);
486 n->csum = skb->csum;
487 n->ip_summed = skb->ip_summed;
488
489 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
490 BUG();
491
492 copy_skb_header(n, skb);
493 return n;
494}
495
496
497/**
498 * pskb_copy - create copy of an sk_buff with private head.
499 * @skb: buffer to copy
500 * @gfp_mask: allocation priority
501 *
502 * Make a copy of both an &sk_buff and part of its data, located
503 * in header. Fragmented data remain shared. This is used when
504 * the caller wishes to modify only header of &sk_buff and needs
505 * private copy of the header to alter. Returns %NULL on failure
506 * or the pointer to the buffer on success.
507 * The returned buffer has a reference count of 1.
508 */
509
510struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask)
511{
512 /*
513 * Allocate the copy buffer
514 */
515 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
516
517 if (!n)
518 goto out;
519
520 /* Set the data pointer */
521 skb_reserve(n, skb->data - skb->head);
522 /* Set the tail pointer and length */
523 skb_put(n, skb_headlen(skb));
524 /* Copy the bytes */
525 memcpy(n->data, skb->data, n->len);
526 n->csum = skb->csum;
527 n->ip_summed = skb->ip_summed;
528
529 n->data_len = skb->data_len;
530 n->len = skb->len;
531
532 if (skb_shinfo(skb)->nr_frags) {
533 int i;
534
535 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
536 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
537 get_page(skb_shinfo(n)->frags[i].page);
538 }
539 skb_shinfo(n)->nr_frags = i;
540 }
541
542 if (skb_shinfo(skb)->frag_list) {
543 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
544 skb_clone_fraglist(n);
545 }
546
547 copy_skb_header(n, skb);
548out:
549 return n;
550}
551
552/**
553 * pskb_expand_head - reallocate header of &sk_buff
554 * @skb: buffer to reallocate
555 * @nhead: room to add at head
556 * @ntail: room to add at tail
557 * @gfp_mask: allocation priority
558 *
559 * Expands (or creates identical copy, if &nhead and &ntail are zero)
560 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
561 * reference count of 1. Returns zero in the case of success or error,
562 * if expansion failed. In the last case, &sk_buff is not changed.
563 *
564 * All the pointers pointing into skb header may change and must be
565 * reloaded after call to this function.
566 */
567
568int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask)
569{
570 int i;
571 u8 *data;
572 int size = nhead + (skb->end - skb->head) + ntail;
573 long off;
574
575 if (skb_shared(skb))
576 BUG();
577
578 size = SKB_DATA_ALIGN(size);
579
580 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
581 if (!data)
582 goto nodata;
583
584 /* Copy only real data... and, alas, header. This should be
585 * optimized for the cases when header is void. */
586 memcpy(data + nhead, skb->head, skb->tail - skb->head);
587 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
588
589 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
590 get_page(skb_shinfo(skb)->frags[i].page);
591
592 if (skb_shinfo(skb)->frag_list)
593 skb_clone_fraglist(skb);
594
595 skb_release_data(skb);
596
597 off = (data + nhead) - skb->head;
598
599 skb->head = data;
600 skb->end = data + size;
601 skb->data += off;
602 skb->tail += off;
603 skb->mac.raw += off;
604 skb->h.raw += off;
605 skb->nh.raw += off;
606 skb->cloned = 0;
607 skb->nohdr = 0;
608 atomic_set(&skb_shinfo(skb)->dataref, 1);
609 return 0;
610
611nodata:
612 return -ENOMEM;
613}
614
615/* Make private copy of skb with writable head and some headroom */
616
617struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
618{
619 struct sk_buff *skb2;
620 int delta = headroom - skb_headroom(skb);
621
622 if (delta <= 0)
623 skb2 = pskb_copy(skb, GFP_ATOMIC);
624 else {
625 skb2 = skb_clone(skb, GFP_ATOMIC);
626 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
627 GFP_ATOMIC)) {
628 kfree_skb(skb2);
629 skb2 = NULL;
630 }
631 }
632 return skb2;
633}
634
635
636/**
637 * skb_copy_expand - copy and expand sk_buff
638 * @skb: buffer to copy
639 * @newheadroom: new free bytes at head
640 * @newtailroom: new free bytes at tail
641 * @gfp_mask: allocation priority
642 *
643 * Make a copy of both an &sk_buff and its data and while doing so
644 * allocate additional space.
645 *
646 * This is used when the caller wishes to modify the data and needs a
647 * private copy of the data to alter as well as more space for new fields.
648 * Returns %NULL on failure or the pointer to the buffer
649 * on success. The returned buffer has a reference count of 1.
650 *
651 * You must pass %GFP_ATOMIC as the allocation priority if this function
652 * is called from an interrupt.
653 *
654 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
655 * only by netfilter in the cases when checksum is recalculated? --ANK
656 */
657struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
658 int newheadroom, int newtailroom, int gfp_mask)
659{
660 /*
661 * Allocate the copy buffer
662 */
663 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
664 gfp_mask);
665 int head_copy_len, head_copy_off;
666
667 if (!n)
668 return NULL;
669
670 skb_reserve(n, newheadroom);
671
672 /* Set the tail pointer and length */
673 skb_put(n, skb->len);
674
675 head_copy_len = skb_headroom(skb);
676 head_copy_off = 0;
677 if (newheadroom <= head_copy_len)
678 head_copy_len = newheadroom;
679 else
680 head_copy_off = newheadroom - head_copy_len;
681
682 /* Copy the linear header and data. */
683 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
684 skb->len + head_copy_len))
685 BUG();
686
687 copy_skb_header(n, skb);
688
689 return n;
690}
691
692/**
693 * skb_pad - zero pad the tail of an skb
694 * @skb: buffer to pad
695 * @pad: space to pad
696 *
697 * Ensure that a buffer is followed by a padding area that is zero
698 * filled. Used by network drivers which may DMA or transfer data
699 * beyond the buffer end onto the wire.
700 *
701 * May return NULL in out of memory cases.
702 */
703
704struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
705{
706 struct sk_buff *nskb;
707
708 /* If the skbuff is non linear tailroom is always zero.. */
709 if (skb_tailroom(skb) >= pad) {
710 memset(skb->data+skb->len, 0, pad);
711 return skb;
712 }
713
714 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
715 kfree_skb(skb);
716 if (nskb)
717 memset(nskb->data+nskb->len, 0, pad);
718 return nskb;
719}
720
721/* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
722 * If realloc==0 and trimming is impossible without change of data,
723 * it is BUG().
724 */
725
726int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
727{
728 int offset = skb_headlen(skb);
729 int nfrags = skb_shinfo(skb)->nr_frags;
730 int i;
731
732 for (i = 0; i < nfrags; i++) {
733 int end = offset + skb_shinfo(skb)->frags[i].size;
734 if (end > len) {
735 if (skb_cloned(skb)) {
736 if (!realloc)
737 BUG();
738 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
739 return -ENOMEM;
740 }
741 if (len <= offset) {
742 put_page(skb_shinfo(skb)->frags[i].page);
743 skb_shinfo(skb)->nr_frags--;
744 } else {
745 skb_shinfo(skb)->frags[i].size = len - offset;
746 }
747 }
748 offset = end;
749 }
750
751 if (offset < len) {
752 skb->data_len -= skb->len - len;
753 skb->len = len;
754 } else {
755 if (len <= skb_headlen(skb)) {
756 skb->len = len;
757 skb->data_len = 0;
758 skb->tail = skb->data + len;
759 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
760 skb_drop_fraglist(skb);
761 } else {
762 skb->data_len -= skb->len - len;
763 skb->len = len;
764 }
765 }
766
767 return 0;
768}
769
770/**
771 * __pskb_pull_tail - advance tail of skb header
772 * @skb: buffer to reallocate
773 * @delta: number of bytes to advance tail
774 *
775 * The function makes a sense only on a fragmented &sk_buff,
776 * it expands header moving its tail forward and copying necessary
777 * data from fragmented part.
778 *
779 * &sk_buff MUST have reference count of 1.
780 *
781 * Returns %NULL (and &sk_buff does not change) if pull failed
782 * or value of new tail of skb in the case of success.
783 *
784 * All the pointers pointing into skb header may change and must be
785 * reloaded after call to this function.
786 */
787
788/* Moves tail of skb head forward, copying data from fragmented part,
789 * when it is necessary.
790 * 1. It may fail due to malloc failure.
791 * 2. It may change skb pointers.
792 *
793 * It is pretty complicated. Luckily, it is called only in exceptional cases.
794 */
795unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
796{
797 /* If skb has not enough free space at tail, get new one
798 * plus 128 bytes for future expansions. If we have enough
799 * room at tail, reallocate without expansion only if skb is cloned.
800 */
801 int i, k, eat = (skb->tail + delta) - skb->end;
802
803 if (eat > 0 || skb_cloned(skb)) {
804 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
805 GFP_ATOMIC))
806 return NULL;
807 }
808
809 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
810 BUG();
811
812 /* Optimization: no fragments, no reasons to preestimate
813 * size of pulled pages. Superb.
814 */
815 if (!skb_shinfo(skb)->frag_list)
816 goto pull_pages;
817
818 /* Estimate size of pulled pages. */
819 eat = delta;
820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
821 if (skb_shinfo(skb)->frags[i].size >= eat)
822 goto pull_pages;
823 eat -= skb_shinfo(skb)->frags[i].size;
824 }
825
826 /* If we need update frag list, we are in troubles.
827 * Certainly, it possible to add an offset to skb data,
828 * but taking into account that pulling is expected to
829 * be very rare operation, it is worth to fight against
830 * further bloating skb head and crucify ourselves here instead.
831 * Pure masohism, indeed. 8)8)
832 */
833 if (eat) {
834 struct sk_buff *list = skb_shinfo(skb)->frag_list;
835 struct sk_buff *clone = NULL;
836 struct sk_buff *insp = NULL;
837
838 do {
839 if (!list)
840 BUG();
841
842 if (list->len <= eat) {
843 /* Eaten as whole. */
844 eat -= list->len;
845 list = list->next;
846 insp = list;
847 } else {
848 /* Eaten partially. */
849
850 if (skb_shared(list)) {
851 /* Sucks! We need to fork list. :-( */
852 clone = skb_clone(list, GFP_ATOMIC);
853 if (!clone)
854 return NULL;
855 insp = list->next;
856 list = clone;
857 } else {
858 /* This may be pulled without
859 * problems. */
860 insp = list;
861 }
862 if (!pskb_pull(list, eat)) {
863 if (clone)
864 kfree_skb(clone);
865 return NULL;
866 }
867 break;
868 }
869 } while (eat);
870
871 /* Free pulled out fragments. */
872 while ((list = skb_shinfo(skb)->frag_list) != insp) {
873 skb_shinfo(skb)->frag_list = list->next;
874 kfree_skb(list);
875 }
876 /* And insert new clone at head. */
877 if (clone) {
878 clone->next = list;
879 skb_shinfo(skb)->frag_list = clone;
880 }
881 }
882 /* Success! Now we may commit changes to skb data. */
883
884pull_pages:
885 eat = delta;
886 k = 0;
887 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
888 if (skb_shinfo(skb)->frags[i].size <= eat) {
889 put_page(skb_shinfo(skb)->frags[i].page);
890 eat -= skb_shinfo(skb)->frags[i].size;
891 } else {
892 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
893 if (eat) {
894 skb_shinfo(skb)->frags[k].page_offset += eat;
895 skb_shinfo(skb)->frags[k].size -= eat;
896 eat = 0;
897 }
898 k++;
899 }
900 }
901 skb_shinfo(skb)->nr_frags = k;
902
903 skb->tail += delta;
904 skb->data_len -= delta;
905
906 return skb->tail;
907}
908
909/* Copy some data bits from skb to kernel buffer. */
910
911int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
912{
913 int i, copy;
914 int start = skb_headlen(skb);
915
916 if (offset > (int)skb->len - len)
917 goto fault;
918
919 /* Copy header. */
920 if ((copy = start - offset) > 0) {
921 if (copy > len)
922 copy = len;
923 memcpy(to, skb->data + offset, copy);
924 if ((len -= copy) == 0)
925 return 0;
926 offset += copy;
927 to += copy;
928 }
929
930 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
931 int end;
932
933 BUG_TRAP(start <= offset + len);
934
935 end = start + skb_shinfo(skb)->frags[i].size;
936 if ((copy = end - offset) > 0) {
937 u8 *vaddr;
938
939 if (copy > len)
940 copy = len;
941
942 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
943 memcpy(to,
944 vaddr + skb_shinfo(skb)->frags[i].page_offset+
945 offset - start, copy);
946 kunmap_skb_frag(vaddr);
947
948 if ((len -= copy) == 0)
949 return 0;
950 offset += copy;
951 to += copy;
952 }
953 start = end;
954 }
955
956 if (skb_shinfo(skb)->frag_list) {
957 struct sk_buff *list = skb_shinfo(skb)->frag_list;
958
959 for (; list; list = list->next) {
960 int end;
961
962 BUG_TRAP(start <= offset + len);
963
964 end = start + list->len;
965 if ((copy = end - offset) > 0) {
966 if (copy > len)
967 copy = len;
968 if (skb_copy_bits(list, offset - start,
969 to, copy))
970 goto fault;
971 if ((len -= copy) == 0)
972 return 0;
973 offset += copy;
974 to += copy;
975 }
976 start = end;
977 }
978 }
979 if (!len)
980 return 0;
981
982fault:
983 return -EFAULT;
984}
985
Herbert Xu357b40a2005-04-19 22:30:14 -0700986/**
987 * skb_store_bits - store bits from kernel buffer to skb
988 * @skb: destination buffer
989 * @offset: offset in destination
990 * @from: source buffer
991 * @len: number of bytes to copy
992 *
993 * Copy the specified number of bytes from the source buffer to the
994 * destination skb. This function handles all the messy bits of
995 * traversing fragment lists and such.
996 */
997
998int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
999{
1000 int i, copy;
1001 int start = skb_headlen(skb);
1002
1003 if (offset > (int)skb->len - len)
1004 goto fault;
1005
1006 if ((copy = start - offset) > 0) {
1007 if (copy > len)
1008 copy = len;
1009 memcpy(skb->data + offset, from, copy);
1010 if ((len -= copy) == 0)
1011 return 0;
1012 offset += copy;
1013 from += copy;
1014 }
1015
1016 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1017 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1018 int end;
1019
1020 BUG_TRAP(start <= offset + len);
1021
1022 end = start + frag->size;
1023 if ((copy = end - offset) > 0) {
1024 u8 *vaddr;
1025
1026 if (copy > len)
1027 copy = len;
1028
1029 vaddr = kmap_skb_frag(frag);
1030 memcpy(vaddr + frag->page_offset + offset - start,
1031 from, copy);
1032 kunmap_skb_frag(vaddr);
1033
1034 if ((len -= copy) == 0)
1035 return 0;
1036 offset += copy;
1037 from += copy;
1038 }
1039 start = end;
1040 }
1041
1042 if (skb_shinfo(skb)->frag_list) {
1043 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1044
1045 for (; list; list = list->next) {
1046 int end;
1047
1048 BUG_TRAP(start <= offset + len);
1049
1050 end = start + list->len;
1051 if ((copy = end - offset) > 0) {
1052 if (copy > len)
1053 copy = len;
1054 if (skb_store_bits(list, offset - start,
1055 from, copy))
1056 goto fault;
1057 if ((len -= copy) == 0)
1058 return 0;
1059 offset += copy;
1060 from += copy;
1061 }
1062 start = end;
1063 }
1064 }
1065 if (!len)
1066 return 0;
1067
1068fault:
1069 return -EFAULT;
1070}
1071
1072EXPORT_SYMBOL(skb_store_bits);
1073
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074/* Checksum skb data. */
1075
1076unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1077 int len, unsigned int csum)
1078{
1079 int start = skb_headlen(skb);
1080 int i, copy = start - offset;
1081 int pos = 0;
1082
1083 /* Checksum header. */
1084 if (copy > 0) {
1085 if (copy > len)
1086 copy = len;
1087 csum = csum_partial(skb->data + offset, copy, csum);
1088 if ((len -= copy) == 0)
1089 return csum;
1090 offset += copy;
1091 pos = copy;
1092 }
1093
1094 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1095 int end;
1096
1097 BUG_TRAP(start <= offset + len);
1098
1099 end = start + skb_shinfo(skb)->frags[i].size;
1100 if ((copy = end - offset) > 0) {
1101 unsigned int csum2;
1102 u8 *vaddr;
1103 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1104
1105 if (copy > len)
1106 copy = len;
1107 vaddr = kmap_skb_frag(frag);
1108 csum2 = csum_partial(vaddr + frag->page_offset +
1109 offset - start, copy, 0);
1110 kunmap_skb_frag(vaddr);
1111 csum = csum_block_add(csum, csum2, pos);
1112 if (!(len -= copy))
1113 return csum;
1114 offset += copy;
1115 pos += copy;
1116 }
1117 start = end;
1118 }
1119
1120 if (skb_shinfo(skb)->frag_list) {
1121 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1122
1123 for (; list; list = list->next) {
1124 int end;
1125
1126 BUG_TRAP(start <= offset + len);
1127
1128 end = start + list->len;
1129 if ((copy = end - offset) > 0) {
1130 unsigned int csum2;
1131 if (copy > len)
1132 copy = len;
1133 csum2 = skb_checksum(list, offset - start,
1134 copy, 0);
1135 csum = csum_block_add(csum, csum2, pos);
1136 if ((len -= copy) == 0)
1137 return csum;
1138 offset += copy;
1139 pos += copy;
1140 }
1141 start = end;
1142 }
1143 }
1144 if (len)
1145 BUG();
1146
1147 return csum;
1148}
1149
1150/* Both of above in one bottle. */
1151
1152unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1153 u8 *to, int len, unsigned int csum)
1154{
1155 int start = skb_headlen(skb);
1156 int i, copy = start - offset;
1157 int pos = 0;
1158
1159 /* Copy header. */
1160 if (copy > 0) {
1161 if (copy > len)
1162 copy = len;
1163 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1164 copy, csum);
1165 if ((len -= copy) == 0)
1166 return csum;
1167 offset += copy;
1168 to += copy;
1169 pos = copy;
1170 }
1171
1172 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1173 int end;
1174
1175 BUG_TRAP(start <= offset + len);
1176
1177 end = start + skb_shinfo(skb)->frags[i].size;
1178 if ((copy = end - offset) > 0) {
1179 unsigned int csum2;
1180 u8 *vaddr;
1181 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1182
1183 if (copy > len)
1184 copy = len;
1185 vaddr = kmap_skb_frag(frag);
1186 csum2 = csum_partial_copy_nocheck(vaddr +
1187 frag->page_offset +
1188 offset - start, to,
1189 copy, 0);
1190 kunmap_skb_frag(vaddr);
1191 csum = csum_block_add(csum, csum2, pos);
1192 if (!(len -= copy))
1193 return csum;
1194 offset += copy;
1195 to += copy;
1196 pos += copy;
1197 }
1198 start = end;
1199 }
1200
1201 if (skb_shinfo(skb)->frag_list) {
1202 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1203
1204 for (; list; list = list->next) {
1205 unsigned int csum2;
1206 int end;
1207
1208 BUG_TRAP(start <= offset + len);
1209
1210 end = start + list->len;
1211 if ((copy = end - offset) > 0) {
1212 if (copy > len)
1213 copy = len;
1214 csum2 = skb_copy_and_csum_bits(list,
1215 offset - start,
1216 to, copy, 0);
1217 csum = csum_block_add(csum, csum2, pos);
1218 if ((len -= copy) == 0)
1219 return csum;
1220 offset += copy;
1221 to += copy;
1222 pos += copy;
1223 }
1224 start = end;
1225 }
1226 }
1227 if (len)
1228 BUG();
1229 return csum;
1230}
1231
1232void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1233{
1234 unsigned int csum;
1235 long csstart;
1236
1237 if (skb->ip_summed == CHECKSUM_HW)
1238 csstart = skb->h.raw - skb->data;
1239 else
1240 csstart = skb_headlen(skb);
1241
1242 if (csstart > skb_headlen(skb))
1243 BUG();
1244
1245 memcpy(to, skb->data, csstart);
1246
1247 csum = 0;
1248 if (csstart != skb->len)
1249 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1250 skb->len - csstart, 0);
1251
1252 if (skb->ip_summed == CHECKSUM_HW) {
1253 long csstuff = csstart + skb->csum;
1254
1255 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1256 }
1257}
1258
1259/**
1260 * skb_dequeue - remove from the head of the queue
1261 * @list: list to dequeue from
1262 *
1263 * Remove the head of the list. The list lock is taken so the function
1264 * may be used safely with other locking list functions. The head item is
1265 * returned or %NULL if the list is empty.
1266 */
1267
1268struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1269{
1270 unsigned long flags;
1271 struct sk_buff *result;
1272
1273 spin_lock_irqsave(&list->lock, flags);
1274 result = __skb_dequeue(list);
1275 spin_unlock_irqrestore(&list->lock, flags);
1276 return result;
1277}
1278
1279/**
1280 * skb_dequeue_tail - remove from the tail of the queue
1281 * @list: list to dequeue from
1282 *
1283 * Remove the tail of the list. The list lock is taken so the function
1284 * may be used safely with other locking list functions. The tail item is
1285 * returned or %NULL if the list is empty.
1286 */
1287struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1288{
1289 unsigned long flags;
1290 struct sk_buff *result;
1291
1292 spin_lock_irqsave(&list->lock, flags);
1293 result = __skb_dequeue_tail(list);
1294 spin_unlock_irqrestore(&list->lock, flags);
1295 return result;
1296}
1297
1298/**
1299 * skb_queue_purge - empty a list
1300 * @list: list to empty
1301 *
1302 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1303 * the list and one reference dropped. This function takes the list
1304 * lock and is atomic with respect to other list locking functions.
1305 */
1306void skb_queue_purge(struct sk_buff_head *list)
1307{
1308 struct sk_buff *skb;
1309 while ((skb = skb_dequeue(list)) != NULL)
1310 kfree_skb(skb);
1311}
1312
1313/**
1314 * skb_queue_head - queue a buffer at the list head
1315 * @list: list to use
1316 * @newsk: buffer to queue
1317 *
1318 * Queue a buffer at the start of the list. This function takes the
1319 * list lock and can be used safely with other locking &sk_buff functions
1320 * safely.
1321 *
1322 * A buffer cannot be placed on two lists at the same time.
1323 */
1324void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1325{
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&list->lock, flags);
1329 __skb_queue_head(list, newsk);
1330 spin_unlock_irqrestore(&list->lock, flags);
1331}
1332
1333/**
1334 * skb_queue_tail - queue a buffer at the list tail
1335 * @list: list to use
1336 * @newsk: buffer to queue
1337 *
1338 * Queue a buffer at the tail of the list. This function takes the
1339 * list lock and can be used safely with other locking &sk_buff functions
1340 * safely.
1341 *
1342 * A buffer cannot be placed on two lists at the same time.
1343 */
1344void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1345{
1346 unsigned long flags;
1347
1348 spin_lock_irqsave(&list->lock, flags);
1349 __skb_queue_tail(list, newsk);
1350 spin_unlock_irqrestore(&list->lock, flags);
1351}
1352/**
1353 * skb_unlink - remove a buffer from a list
1354 * @skb: buffer to remove
1355 *
1356 * Place a packet after a given packet in a list. The list locks are taken
1357 * and this function is atomic with respect to other list locked calls
1358 *
1359 * Works even without knowing the list it is sitting on, which can be
1360 * handy at times. It also means that THE LIST MUST EXIST when you
1361 * unlink. Thus a list must have its contents unlinked before it is
1362 * destroyed.
1363 */
1364void skb_unlink(struct sk_buff *skb)
1365{
1366 struct sk_buff_head *list = skb->list;
1367
1368 if (list) {
1369 unsigned long flags;
1370
1371 spin_lock_irqsave(&list->lock, flags);
1372 if (skb->list == list)
1373 __skb_unlink(skb, skb->list);
1374 spin_unlock_irqrestore(&list->lock, flags);
1375 }
1376}
1377
1378
1379/**
1380 * skb_append - append a buffer
1381 * @old: buffer to insert after
1382 * @newsk: buffer to insert
1383 *
1384 * Place a packet after a given packet in a list. The list locks are taken
1385 * and this function is atomic with respect to other list locked calls.
1386 * A buffer cannot be placed on two lists at the same time.
1387 */
1388
1389void skb_append(struct sk_buff *old, struct sk_buff *newsk)
1390{
1391 unsigned long flags;
1392
1393 spin_lock_irqsave(&old->list->lock, flags);
1394 __skb_append(old, newsk);
1395 spin_unlock_irqrestore(&old->list->lock, flags);
1396}
1397
1398
1399/**
1400 * skb_insert - insert a buffer
1401 * @old: buffer to insert before
1402 * @newsk: buffer to insert
1403 *
1404 * Place a packet before a given packet in a list. The list locks are taken
1405 * and this function is atomic with respect to other list locked calls
1406 * A buffer cannot be placed on two lists at the same time.
1407 */
1408
1409void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
1410{
1411 unsigned long flags;
1412
1413 spin_lock_irqsave(&old->list->lock, flags);
1414 __skb_insert(newsk, old->prev, old, old->list);
1415 spin_unlock_irqrestore(&old->list->lock, flags);
1416}
1417
1418#if 0
1419/*
1420 * Tune the memory allocator for a new MTU size.
1421 */
1422void skb_add_mtu(int mtu)
1423{
1424 /* Must match allocation in alloc_skb */
1425 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1426
1427 kmem_add_cache_size(mtu);
1428}
1429#endif
1430
1431static inline void skb_split_inside_header(struct sk_buff *skb,
1432 struct sk_buff* skb1,
1433 const u32 len, const int pos)
1434{
1435 int i;
1436
1437 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1438
1439 /* And move data appendix as is. */
1440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1441 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1442
1443 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1444 skb_shinfo(skb)->nr_frags = 0;
1445 skb1->data_len = skb->data_len;
1446 skb1->len += skb1->data_len;
1447 skb->data_len = 0;
1448 skb->len = len;
1449 skb->tail = skb->data + len;
1450}
1451
1452static inline void skb_split_no_header(struct sk_buff *skb,
1453 struct sk_buff* skb1,
1454 const u32 len, int pos)
1455{
1456 int i, k = 0;
1457 const int nfrags = skb_shinfo(skb)->nr_frags;
1458
1459 skb_shinfo(skb)->nr_frags = 0;
1460 skb1->len = skb1->data_len = skb->len - len;
1461 skb->len = len;
1462 skb->data_len = len - pos;
1463
1464 for (i = 0; i < nfrags; i++) {
1465 int size = skb_shinfo(skb)->frags[i].size;
1466
1467 if (pos + size > len) {
1468 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1469
1470 if (pos < len) {
1471 /* Split frag.
1472 * We have two variants in this case:
1473 * 1. Move all the frag to the second
1474 * part, if it is possible. F.e.
1475 * this approach is mandatory for TUX,
1476 * where splitting is expensive.
1477 * 2. Split is accurately. We make this.
1478 */
1479 get_page(skb_shinfo(skb)->frags[i].page);
1480 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1481 skb_shinfo(skb1)->frags[0].size -= len - pos;
1482 skb_shinfo(skb)->frags[i].size = len - pos;
1483 skb_shinfo(skb)->nr_frags++;
1484 }
1485 k++;
1486 } else
1487 skb_shinfo(skb)->nr_frags++;
1488 pos += size;
1489 }
1490 skb_shinfo(skb1)->nr_frags = k;
1491}
1492
1493/**
1494 * skb_split - Split fragmented skb to two parts at length len.
1495 * @skb: the buffer to split
1496 * @skb1: the buffer to receive the second part
1497 * @len: new length for skb
1498 */
1499void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1500{
1501 int pos = skb_headlen(skb);
1502
1503 if (len < pos) /* Split line is inside header. */
1504 skb_split_inside_header(skb, skb1, len, pos);
1505 else /* Second chunk has no header, nothing to copy. */
1506 skb_split_no_header(skb, skb1, len, pos);
1507}
1508
1509void __init skb_init(void)
1510{
1511 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1512 sizeof(struct sk_buff),
1513 0,
1514 SLAB_HWCACHE_ALIGN,
1515 NULL, NULL);
1516 if (!skbuff_head_cache)
1517 panic("cannot create skbuff cache");
1518}
1519
1520EXPORT_SYMBOL(___pskb_trim);
1521EXPORT_SYMBOL(__kfree_skb);
1522EXPORT_SYMBOL(__pskb_pull_tail);
1523EXPORT_SYMBOL(alloc_skb);
1524EXPORT_SYMBOL(pskb_copy);
1525EXPORT_SYMBOL(pskb_expand_head);
1526EXPORT_SYMBOL(skb_checksum);
1527EXPORT_SYMBOL(skb_clone);
1528EXPORT_SYMBOL(skb_clone_fraglist);
1529EXPORT_SYMBOL(skb_copy);
1530EXPORT_SYMBOL(skb_copy_and_csum_bits);
1531EXPORT_SYMBOL(skb_copy_and_csum_dev);
1532EXPORT_SYMBOL(skb_copy_bits);
1533EXPORT_SYMBOL(skb_copy_expand);
1534EXPORT_SYMBOL(skb_over_panic);
1535EXPORT_SYMBOL(skb_pad);
1536EXPORT_SYMBOL(skb_realloc_headroom);
1537EXPORT_SYMBOL(skb_under_panic);
1538EXPORT_SYMBOL(skb_dequeue);
1539EXPORT_SYMBOL(skb_dequeue_tail);
1540EXPORT_SYMBOL(skb_insert);
1541EXPORT_SYMBOL(skb_queue_purge);
1542EXPORT_SYMBOL(skb_queue_head);
1543EXPORT_SYMBOL(skb_queue_tail);
1544EXPORT_SYMBOL(skb_unlink);
1545EXPORT_SYMBOL(skb_append);
1546EXPORT_SYMBOL(skb_split);