blob: 18c51c37a9a35e825427519ebd90e51dd25c308c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
Tony Lucka1ecf7f2005-05-18 16:06:00 -070014 * Copyright (C) 1999-2005 Hewlett Packard Co
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/smp_lock.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/pagemap.h>
39#include <linux/mount.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <linux/bitops.h>
Dipankar Sarmabadf1662005-09-09 13:04:10 -070041#include <linux/rcupdate.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070042
43#include <asm/errno.h>
44#include <asm/intrinsics.h>
45#include <asm/page.h>
46#include <asm/perfmon.h>
47#include <asm/processor.h>
48#include <asm/signal.h>
49#include <asm/system.h>
50#include <asm/uaccess.h>
51#include <asm/delay.h>
52
53#ifdef CONFIG_PERFMON
54/*
55 * perfmon context state
56 */
57#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
61
62#define PFM_INVALID_ACTIVATION (~0UL)
63
64/*
65 * depth of message queue
66 */
67#define PFM_MAX_MSGS 32
68#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
69
70/*
71 * type of a PMU register (bitmask).
72 * bitmask structure:
73 * bit0 : register implemented
74 * bit1 : end marker
75 * bit2-3 : reserved
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
79 * bit8-31: reserved
80 */
81#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82#define PFM_REG_IMPL 0x1 /* register implemented */
83#define PFM_REG_END 0x2 /* end marker */
84#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
89
90#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
92
93#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
94
95/* i assumed unsigned */
96#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
98
99/* XXX: these assume that register i is implemented */
100#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
104
105#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
109
110#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
112
113#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115#define PFM_CTX_TASK(h) (h)->ctx_task
116
117#define PMU_PMC_OI 5 /* position of pmc.oi bit */
118
119/* XXX: does not support more than 64 PMDs */
120#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
122
123#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
124
125#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128#define PFM_CODE_RR 0 /* requesting code range restriction */
129#define PFM_DATA_RR 1 /* requestion data range restriction */
130
131#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
134
135#define RDEP(x) (1UL<<(x))
136
137/*
138 * context protection macros
139 * in SMP:
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
142 * in UP:
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 *
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
148 *
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
154 */
155#define PROTECT_CTX(c, f) \
156 do { \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
160 } while(0)
161
162#define UNPROTECT_CTX(c, f) \
163 do { \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
166 } while(0)
167
168#define PROTECT_CTX_NOPRINT(c, f) \
169 do { \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
171 } while(0)
172
173
174#define UNPROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
177 } while(0)
178
179
180#define PROTECT_CTX_NOIRQ(c) \
181 do { \
182 spin_lock(&(c)->ctx_lock); \
183 } while(0)
184
185#define UNPROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_unlock(&(c)->ctx_lock); \
188 } while(0)
189
190
191#ifdef CONFIG_SMP
192
193#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
196
197#else /* !CONFIG_SMP */
198#define SET_ACTIVATION(t) do {} while(0)
199#define GET_ACTIVATION(t) do {} while(0)
200#define INC_ACTIVATION(t) do {} while(0)
201#endif /* CONFIG_SMP */
202
203#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
206
207#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
209
210#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
211
212/*
213 * cmp0 must be the value of pmc0
214 */
215#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
216
217#define PFMFS_MAGIC 0xa0b4d889
218
219/*
220 * debugging
221 */
222#define PFM_DEBUGGING 1
223#ifdef PFM_DEBUGGING
224#define DPRINT(a) \
225 do { \
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
227 } while (0)
228
229#define DPRINT_ovfl(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233#endif
234
235/*
236 * 64-bit software counter structure
237 *
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
239 */
240typedef struct {
241 unsigned long val; /* virtual 64bit counter value */
242 unsigned long lval; /* last reset value */
243 unsigned long long_reset; /* reset value on sampling overflow */
244 unsigned long short_reset; /* reset value on overflow */
245 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed; /* seed for random-number generator */
248 unsigned long mask; /* mask for random-number generator */
249 unsigned int flags; /* notify/do not notify */
250 unsigned long eventid; /* overflow event identifier */
251} pfm_counter_t;
252
253/*
254 * context flags
255 */
256typedef struct {
257 unsigned int block:1; /* when 1, task will blocked on user notifications */
258 unsigned int system:1; /* do system wide monitoring */
259 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling:1; /* true if using a custom format */
261 unsigned int excl_idle:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg:1; /* no message sent on overflow */
265 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved:22;
267} pfm_context_flags_t;
268
269#define PFM_TRAP_REASON_NONE 0x0 /* default value */
270#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
272
273
274/*
275 * perfmon context: encapsulates all the state of a monitoring session
276 */
277
278typedef struct pfm_context {
279 spinlock_t ctx_lock; /* context protection */
280
281 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
283
284 struct task_struct *ctx_task; /* task to which context is attached */
285
286 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
287
288 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
289
290 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
293
294 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
297
298 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
299
300 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
304
305 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
306
307 u64 ctx_saved_psr_up; /* only contains psr.up value */
308
309 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
312
313 int ctx_fd; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
315
316 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
317 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size; /* size of sampling buffer */
319 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
320
321 wait_queue_head_t ctx_msgq_wait;
322 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
323 int ctx_msgq_head;
324 int ctx_msgq_tail;
325 struct fasync_struct *ctx_async_queue;
326
327 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
328} pfm_context_t;
329
330/*
331 * magic number used to verify that structure is really
332 * a perfmon context
333 */
334#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
335
336#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
337
338#ifdef CONFIG_SMP
339#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
341#else
342#define SET_LAST_CPU(ctx, v) do {} while(0)
343#define GET_LAST_CPU(ctx) do {} while(0)
344#endif
345
346
347#define ctx_fl_block ctx_flags.block
348#define ctx_fl_system ctx_flags.system
349#define ctx_fl_using_dbreg ctx_flags.using_dbreg
350#define ctx_fl_is_sampling ctx_flags.is_sampling
351#define ctx_fl_excl_idle ctx_flags.excl_idle
352#define ctx_fl_going_zombie ctx_flags.going_zombie
353#define ctx_fl_trap_reason ctx_flags.trap_reason
354#define ctx_fl_no_msg ctx_flags.no_msg
355#define ctx_fl_can_restart ctx_flags.can_restart
356
357#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
359
360/*
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
363 */
364typedef struct {
365 spinlock_t pfs_lock; /* lock the structure */
366
367 unsigned int pfs_task_sessions; /* number of per task sessions */
368 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
371 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
372} pfm_session_t;
373
374/*
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
378 */
379typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
380typedef struct {
381 unsigned int type;
382 int pm_pos;
383 unsigned long default_value; /* power-on default value */
384 unsigned long reserved_mask; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check;
386 pfm_reg_check_t write_check;
387 unsigned long dep_pmd[4];
388 unsigned long dep_pmc[4];
389} pfm_reg_desc_t;
390
391/* assume cnum is a valid monitor */
392#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
393
394/*
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
397 *
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
405 */
406typedef struct {
407 unsigned long ovfl_val; /* overflow value for counters */
408
409 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
411
412 unsigned int num_pmcs; /* number of PMCS: computed at init time */
413 unsigned int num_pmds; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
416
417 char *pmu_name; /* PMU family name */
418 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
419 unsigned int flags; /* pmu specific flags */
420 unsigned int num_ibrs; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs; /* number of DBRS: computed at init time */
422 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
425} pmu_config_t;
426/*
427 * PMU specific flags
428 */
429#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
430
431/*
432 * debug register related type definitions
433 */
434typedef struct {
435 unsigned long ibr_mask:56;
436 unsigned long ibr_plm:4;
437 unsigned long ibr_ig:3;
438 unsigned long ibr_x:1;
439} ibr_mask_reg_t;
440
441typedef struct {
442 unsigned long dbr_mask:56;
443 unsigned long dbr_plm:4;
444 unsigned long dbr_ig:2;
445 unsigned long dbr_w:1;
446 unsigned long dbr_r:1;
447} dbr_mask_reg_t;
448
449typedef union {
450 unsigned long val;
451 ibr_mask_reg_t ibr;
452 dbr_mask_reg_t dbr;
453} dbreg_t;
454
455
456/*
457 * perfmon command descriptions
458 */
459typedef struct {
460 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
461 char *cmd_name;
462 int cmd_flags;
463 unsigned int cmd_narg;
464 size_t cmd_argsize;
465 int (*cmd_getsize)(void *arg, size_t *sz);
466} pfm_cmd_desc_t;
467
468#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
472
473
474#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
479
480#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
481
482typedef struct {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls;
490 unsigned long pfm_smpl_handler_cycles;
491 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
492} pfm_stats_t;
493
494/*
495 * perfmon internal variables
496 */
497static pfm_stats_t pfm_stats[NR_CPUS];
498static pfm_session_t pfm_sessions; /* global sessions information */
499
Ingo Molnara9f6a0d2005-09-09 13:10:41 -0700500static DEFINE_SPINLOCK(pfm_alt_install_check);
Tony Lucka1ecf7f2005-05-18 16:06:00 -0700501static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
502
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503static struct proc_dir_entry *perfmon_dir;
504static pfm_uuid_t pfm_null_uuid = {0,};
505
506static spinlock_t pfm_buffer_fmt_lock;
507static LIST_HEAD(pfm_buffer_fmt_list);
508
509static pmu_config_t *pmu_conf;
510
511/* sysctl() controls */
Stephane Eranian49449302005-04-25 13:08:30 -0700512pfm_sysctl_t pfm_sysctl;
513EXPORT_SYMBOL(pfm_sysctl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514
515static ctl_table pfm_ctl_table[]={
516 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 { 0, },
521};
522static ctl_table pfm_sysctl_dir[] = {
523 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
524 {0,},
525};
526static ctl_table pfm_sysctl_root[] = {
527 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
528 {0,},
529};
530static struct ctl_table_header *pfm_sysctl_header;
531
532static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
533static int pfm_flush(struct file *filp);
534
535#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
536#define pfm_get_cpu_data(a,b) per_cpu(a, b)
537
538static inline void
539pfm_put_task(struct task_struct *task)
540{
541 if (task != current) put_task_struct(task);
542}
543
544static inline void
545pfm_set_task_notify(struct task_struct *task)
546{
547 struct thread_info *info;
548
549 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
550 set_bit(TIF_NOTIFY_RESUME, &info->flags);
551}
552
553static inline void
554pfm_clear_task_notify(void)
555{
556 clear_thread_flag(TIF_NOTIFY_RESUME);
557}
558
559static inline void
560pfm_reserve_page(unsigned long a)
561{
562 SetPageReserved(vmalloc_to_page((void *)a));
563}
564static inline void
565pfm_unreserve_page(unsigned long a)
566{
567 ClearPageReserved(vmalloc_to_page((void*)a));
568}
569
570static inline unsigned long
571pfm_protect_ctx_ctxsw(pfm_context_t *x)
572{
573 spin_lock(&(x)->ctx_lock);
574 return 0UL;
575}
576
Peter Chubb24b8e0c2005-09-15 15:36:35 +1000577static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
579{
580 spin_unlock(&(x)->ctx_lock);
581}
582
583static inline unsigned int
584pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
585{
586 return do_munmap(mm, addr, len);
587}
588
589static inline unsigned long
590pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
591{
592 return get_unmapped_area(file, addr, len, pgoff, flags);
593}
594
595
596static struct super_block *
597pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
598{
599 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
600}
601
602static struct file_system_type pfm_fs_type = {
603 .name = "pfmfs",
604 .get_sb = pfmfs_get_sb,
605 .kill_sb = kill_anon_super,
606};
607
608DEFINE_PER_CPU(unsigned long, pfm_syst_info);
609DEFINE_PER_CPU(struct task_struct *, pmu_owner);
610DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
611DEFINE_PER_CPU(unsigned long, pmu_activation_number);
Tony Luckfffcc152005-05-31 10:38:32 -0700612EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613
614
615/* forward declaration */
616static struct file_operations pfm_file_ops;
617
618/*
619 * forward declarations
620 */
621#ifndef CONFIG_SMP
622static void pfm_lazy_save_regs (struct task_struct *ta);
623#endif
624
625void dump_pmu_state(const char *);
626static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
627
628#include "perfmon_itanium.h"
629#include "perfmon_mckinley.h"
630#include "perfmon_generic.h"
631
632static pmu_config_t *pmu_confs[]={
633 &pmu_conf_mck,
634 &pmu_conf_ita,
635 &pmu_conf_gen, /* must be last */
636 NULL
637};
638
639
640static int pfm_end_notify_user(pfm_context_t *ctx);
641
642static inline void
643pfm_clear_psr_pp(void)
644{
645 ia64_rsm(IA64_PSR_PP);
646 ia64_srlz_i();
647}
648
649static inline void
650pfm_set_psr_pp(void)
651{
652 ia64_ssm(IA64_PSR_PP);
653 ia64_srlz_i();
654}
655
656static inline void
657pfm_clear_psr_up(void)
658{
659 ia64_rsm(IA64_PSR_UP);
660 ia64_srlz_i();
661}
662
663static inline void
664pfm_set_psr_up(void)
665{
666 ia64_ssm(IA64_PSR_UP);
667 ia64_srlz_i();
668}
669
670static inline unsigned long
671pfm_get_psr(void)
672{
673 unsigned long tmp;
674 tmp = ia64_getreg(_IA64_REG_PSR);
675 ia64_srlz_i();
676 return tmp;
677}
678
679static inline void
680pfm_set_psr_l(unsigned long val)
681{
682 ia64_setreg(_IA64_REG_PSR_L, val);
683 ia64_srlz_i();
684}
685
686static inline void
687pfm_freeze_pmu(void)
688{
689 ia64_set_pmc(0,1UL);
690 ia64_srlz_d();
691}
692
693static inline void
694pfm_unfreeze_pmu(void)
695{
696 ia64_set_pmc(0,0UL);
697 ia64_srlz_d();
698}
699
700static inline void
701pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
702{
703 int i;
704
705 for (i=0; i < nibrs; i++) {
706 ia64_set_ibr(i, ibrs[i]);
707 ia64_dv_serialize_instruction();
708 }
709 ia64_srlz_i();
710}
711
712static inline void
713pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
714{
715 int i;
716
717 for (i=0; i < ndbrs; i++) {
718 ia64_set_dbr(i, dbrs[i]);
719 ia64_dv_serialize_data();
720 }
721 ia64_srlz_d();
722}
723
724/*
725 * PMD[i] must be a counter. no check is made
726 */
727static inline unsigned long
728pfm_read_soft_counter(pfm_context_t *ctx, int i)
729{
730 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
731}
732
733/*
734 * PMD[i] must be a counter. no check is made
735 */
736static inline void
737pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
738{
739 unsigned long ovfl_val = pmu_conf->ovfl_val;
740
741 ctx->ctx_pmds[i].val = val & ~ovfl_val;
742 /*
743 * writing to unimplemented part is ignore, so we do not need to
744 * mask off top part
745 */
746 ia64_set_pmd(i, val & ovfl_val);
747}
748
749static pfm_msg_t *
750pfm_get_new_msg(pfm_context_t *ctx)
751{
752 int idx, next;
753
754 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
755
756 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
757 if (next == ctx->ctx_msgq_head) return NULL;
758
759 idx = ctx->ctx_msgq_tail;
760 ctx->ctx_msgq_tail = next;
761
762 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
763
764 return ctx->ctx_msgq+idx;
765}
766
767static pfm_msg_t *
768pfm_get_next_msg(pfm_context_t *ctx)
769{
770 pfm_msg_t *msg;
771
772 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
773
774 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
775
776 /*
777 * get oldest message
778 */
779 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
780
781 /*
782 * and move forward
783 */
784 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
785
786 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
787
788 return msg;
789}
790
791static void
792pfm_reset_msgq(pfm_context_t *ctx)
793{
794 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
795 DPRINT(("ctx=%p msgq reset\n", ctx));
796}
797
798static void *
799pfm_rvmalloc(unsigned long size)
800{
801 void *mem;
802 unsigned long addr;
803
804 size = PAGE_ALIGN(size);
805 mem = vmalloc(size);
806 if (mem) {
807 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
808 memset(mem, 0, size);
809 addr = (unsigned long)mem;
810 while (size > 0) {
811 pfm_reserve_page(addr);
812 addr+=PAGE_SIZE;
813 size-=PAGE_SIZE;
814 }
815 }
816 return mem;
817}
818
819static void
820pfm_rvfree(void *mem, unsigned long size)
821{
822 unsigned long addr;
823
824 if (mem) {
825 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
826 addr = (unsigned long) mem;
827 while ((long) size > 0) {
828 pfm_unreserve_page(addr);
829 addr+=PAGE_SIZE;
830 size-=PAGE_SIZE;
831 }
832 vfree(mem);
833 }
834 return;
835}
836
837static pfm_context_t *
838pfm_context_alloc(void)
839{
840 pfm_context_t *ctx;
841
842 /*
843 * allocate context descriptor
844 * must be able to free with interrupts disabled
845 */
846 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
847 if (ctx) {
848 memset(ctx, 0, sizeof(pfm_context_t));
849 DPRINT(("alloc ctx @%p\n", ctx));
850 }
851 return ctx;
852}
853
854static void
855pfm_context_free(pfm_context_t *ctx)
856{
857 if (ctx) {
858 DPRINT(("free ctx @%p\n", ctx));
859 kfree(ctx);
860 }
861}
862
863static void
864pfm_mask_monitoring(struct task_struct *task)
865{
866 pfm_context_t *ctx = PFM_GET_CTX(task);
867 struct thread_struct *th = &task->thread;
868 unsigned long mask, val, ovfl_mask;
869 int i;
870
871 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
872
873 ovfl_mask = pmu_conf->ovfl_val;
874 /*
875 * monitoring can only be masked as a result of a valid
876 * counter overflow. In UP, it means that the PMU still
877 * has an owner. Note that the owner can be different
878 * from the current task. However the PMU state belongs
879 * to the owner.
880 * In SMP, a valid overflow only happens when task is
881 * current. Therefore if we come here, we know that
882 * the PMU state belongs to the current task, therefore
883 * we can access the live registers.
884 *
885 * So in both cases, the live register contains the owner's
886 * state. We can ONLY touch the PMU registers and NOT the PSR.
887 *
888 * As a consequence to this call, the thread->pmds[] array
889 * contains stale information which must be ignored
890 * when context is reloaded AND monitoring is active (see
891 * pfm_restart).
892 */
893 mask = ctx->ctx_used_pmds[0];
894 for (i = 0; mask; i++, mask>>=1) {
895 /* skip non used pmds */
896 if ((mask & 0x1) == 0) continue;
897 val = ia64_get_pmd(i);
898
899 if (PMD_IS_COUNTING(i)) {
900 /*
901 * we rebuild the full 64 bit value of the counter
902 */
903 ctx->ctx_pmds[i].val += (val & ovfl_mask);
904 } else {
905 ctx->ctx_pmds[i].val = val;
906 }
907 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
908 i,
909 ctx->ctx_pmds[i].val,
910 val & ovfl_mask));
911 }
912 /*
913 * mask monitoring by setting the privilege level to 0
914 * we cannot use psr.pp/psr.up for this, it is controlled by
915 * the user
916 *
917 * if task is current, modify actual registers, otherwise modify
918 * thread save state, i.e., what will be restored in pfm_load_regs()
919 */
920 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
921 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
922 if ((mask & 0x1) == 0UL) continue;
923 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
924 th->pmcs[i] &= ~0xfUL;
925 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
926 }
927 /*
928 * make all of this visible
929 */
930 ia64_srlz_d();
931}
932
933/*
934 * must always be done with task == current
935 *
936 * context must be in MASKED state when calling
937 */
938static void
939pfm_restore_monitoring(struct task_struct *task)
940{
941 pfm_context_t *ctx = PFM_GET_CTX(task);
942 struct thread_struct *th = &task->thread;
943 unsigned long mask, ovfl_mask;
944 unsigned long psr, val;
945 int i, is_system;
946
947 is_system = ctx->ctx_fl_system;
948 ovfl_mask = pmu_conf->ovfl_val;
949
950 if (task != current) {
951 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
952 return;
953 }
954 if (ctx->ctx_state != PFM_CTX_MASKED) {
955 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
956 task->pid, current->pid, ctx->ctx_state);
957 return;
958 }
959 psr = pfm_get_psr();
960 /*
961 * monitoring is masked via the PMC.
962 * As we restore their value, we do not want each counter to
963 * restart right away. We stop monitoring using the PSR,
964 * restore the PMC (and PMD) and then re-establish the psr
965 * as it was. Note that there can be no pending overflow at
966 * this point, because monitoring was MASKED.
967 *
968 * system-wide session are pinned and self-monitoring
969 */
970 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
971 /* disable dcr pp */
972 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
973 pfm_clear_psr_pp();
974 } else {
975 pfm_clear_psr_up();
976 }
977 /*
978 * first, we restore the PMD
979 */
980 mask = ctx->ctx_used_pmds[0];
981 for (i = 0; mask; i++, mask>>=1) {
982 /* skip non used pmds */
983 if ((mask & 0x1) == 0) continue;
984
985 if (PMD_IS_COUNTING(i)) {
986 /*
987 * we split the 64bit value according to
988 * counter width
989 */
990 val = ctx->ctx_pmds[i].val & ovfl_mask;
991 ctx->ctx_pmds[i].val &= ~ovfl_mask;
992 } else {
993 val = ctx->ctx_pmds[i].val;
994 }
995 ia64_set_pmd(i, val);
996
997 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
998 i,
999 ctx->ctx_pmds[i].val,
1000 val));
1001 }
1002 /*
1003 * restore the PMCs
1004 */
1005 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1006 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1007 if ((mask & 0x1) == 0UL) continue;
1008 th->pmcs[i] = ctx->ctx_pmcs[i];
1009 ia64_set_pmc(i, th->pmcs[i]);
1010 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1011 }
1012 ia64_srlz_d();
1013
1014 /*
1015 * must restore DBR/IBR because could be modified while masked
1016 * XXX: need to optimize
1017 */
1018 if (ctx->ctx_fl_using_dbreg) {
1019 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1020 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1021 }
1022
1023 /*
1024 * now restore PSR
1025 */
1026 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1027 /* enable dcr pp */
1028 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1029 ia64_srlz_i();
1030 }
1031 pfm_set_psr_l(psr);
1032}
1033
1034static inline void
1035pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1036{
1037 int i;
1038
1039 ia64_srlz_d();
1040
1041 for (i=0; mask; i++, mask>>=1) {
1042 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1043 }
1044}
1045
1046/*
1047 * reload from thread state (used for ctxw only)
1048 */
1049static inline void
1050pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1051{
1052 int i;
1053 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1054
1055 for (i=0; mask; i++, mask>>=1) {
1056 if ((mask & 0x1) == 0) continue;
1057 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1058 ia64_set_pmd(i, val);
1059 }
1060 ia64_srlz_d();
1061}
1062
1063/*
1064 * propagate PMD from context to thread-state
1065 */
1066static inline void
1067pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1068{
1069 struct thread_struct *thread = &task->thread;
1070 unsigned long ovfl_val = pmu_conf->ovfl_val;
1071 unsigned long mask = ctx->ctx_all_pmds[0];
1072 unsigned long val;
1073 int i;
1074
1075 DPRINT(("mask=0x%lx\n", mask));
1076
1077 for (i=0; mask; i++, mask>>=1) {
1078
1079 val = ctx->ctx_pmds[i].val;
1080
1081 /*
1082 * We break up the 64 bit value into 2 pieces
1083 * the lower bits go to the machine state in the
1084 * thread (will be reloaded on ctxsw in).
1085 * The upper part stays in the soft-counter.
1086 */
1087 if (PMD_IS_COUNTING(i)) {
1088 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1089 val &= ovfl_val;
1090 }
1091 thread->pmds[i] = val;
1092
1093 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1094 i,
1095 thread->pmds[i],
1096 ctx->ctx_pmds[i].val));
1097 }
1098}
1099
1100/*
1101 * propagate PMC from context to thread-state
1102 */
1103static inline void
1104pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1105{
1106 struct thread_struct *thread = &task->thread;
1107 unsigned long mask = ctx->ctx_all_pmcs[0];
1108 int i;
1109
1110 DPRINT(("mask=0x%lx\n", mask));
1111
1112 for (i=0; mask; i++, mask>>=1) {
1113 /* masking 0 with ovfl_val yields 0 */
1114 thread->pmcs[i] = ctx->ctx_pmcs[i];
1115 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1116 }
1117}
1118
1119
1120
1121static inline void
1122pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1123{
1124 int i;
1125
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 ia64_set_pmc(i, pmcs[i]);
1129 }
1130 ia64_srlz_d();
1131}
1132
1133static inline int
1134pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1135{
1136 return memcmp(a, b, sizeof(pfm_uuid_t));
1137}
1138
1139static inline int
1140pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1141{
1142 int ret = 0;
1143 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1144 return ret;
1145}
1146
1147static inline int
1148pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1149{
1150 int ret = 0;
1151 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1152 return ret;
1153}
1154
1155
1156static inline int
1157pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1158 int cpu, void *arg)
1159{
1160 int ret = 0;
1161 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1162 return ret;
1163}
1164
1165static inline int
1166pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1167 int cpu, void *arg)
1168{
1169 int ret = 0;
1170 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1171 return ret;
1172}
1173
1174static inline int
1175pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1176{
1177 int ret = 0;
1178 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1179 return ret;
1180}
1181
1182static inline int
1183pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1184{
1185 int ret = 0;
1186 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1187 return ret;
1188}
1189
1190static pfm_buffer_fmt_t *
1191__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1192{
1193 struct list_head * pos;
1194 pfm_buffer_fmt_t * entry;
1195
1196 list_for_each(pos, &pfm_buffer_fmt_list) {
1197 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1198 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1199 return entry;
1200 }
1201 return NULL;
1202}
1203
1204/*
1205 * find a buffer format based on its uuid
1206 */
1207static pfm_buffer_fmt_t *
1208pfm_find_buffer_fmt(pfm_uuid_t uuid)
1209{
1210 pfm_buffer_fmt_t * fmt;
1211 spin_lock(&pfm_buffer_fmt_lock);
1212 fmt = __pfm_find_buffer_fmt(uuid);
1213 spin_unlock(&pfm_buffer_fmt_lock);
1214 return fmt;
1215}
1216
1217int
1218pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1219{
1220 int ret = 0;
1221
1222 /* some sanity checks */
1223 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1224
1225 /* we need at least a handler */
1226 if (fmt->fmt_handler == NULL) return -EINVAL;
1227
1228 /*
1229 * XXX: need check validity of fmt_arg_size
1230 */
1231
1232 spin_lock(&pfm_buffer_fmt_lock);
1233
1234 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1235 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1236 ret = -EBUSY;
1237 goto out;
1238 }
1239 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1240 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1241
1242out:
1243 spin_unlock(&pfm_buffer_fmt_lock);
1244 return ret;
1245}
1246EXPORT_SYMBOL(pfm_register_buffer_fmt);
1247
1248int
1249pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1250{
1251 pfm_buffer_fmt_t *fmt;
1252 int ret = 0;
1253
1254 spin_lock(&pfm_buffer_fmt_lock);
1255
1256 fmt = __pfm_find_buffer_fmt(uuid);
1257 if (!fmt) {
1258 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1259 ret = -EINVAL;
1260 goto out;
1261 }
1262 list_del_init(&fmt->fmt_list);
1263 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1264
1265out:
1266 spin_unlock(&pfm_buffer_fmt_lock);
1267 return ret;
1268
1269}
1270EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1271
Stephane Eranian8df5a502005-04-11 13:45:00 -07001272extern void update_pal_halt_status(int);
1273
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274static int
1275pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1276{
1277 unsigned long flags;
1278 /*
1279 * validy checks on cpu_mask have been done upstream
1280 */
1281 LOCK_PFS(flags);
1282
1283 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1284 pfm_sessions.pfs_sys_sessions,
1285 pfm_sessions.pfs_task_sessions,
1286 pfm_sessions.pfs_sys_use_dbregs,
1287 is_syswide,
1288 cpu));
1289
1290 if (is_syswide) {
1291 /*
1292 * cannot mix system wide and per-task sessions
1293 */
1294 if (pfm_sessions.pfs_task_sessions > 0UL) {
1295 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1296 pfm_sessions.pfs_task_sessions));
1297 goto abort;
1298 }
1299
1300 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1301
1302 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1303
1304 pfm_sessions.pfs_sys_session[cpu] = task;
1305
1306 pfm_sessions.pfs_sys_sessions++ ;
1307
1308 } else {
1309 if (pfm_sessions.pfs_sys_sessions) goto abort;
1310 pfm_sessions.pfs_task_sessions++;
1311 }
1312
1313 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1314 pfm_sessions.pfs_sys_sessions,
1315 pfm_sessions.pfs_task_sessions,
1316 pfm_sessions.pfs_sys_use_dbregs,
1317 is_syswide,
1318 cpu));
1319
Stephane Eranian8df5a502005-04-11 13:45:00 -07001320 /*
1321 * disable default_idle() to go to PAL_HALT
1322 */
1323 update_pal_halt_status(0);
1324
Linus Torvalds1da177e2005-04-16 15:20:36 -07001325 UNLOCK_PFS(flags);
1326
1327 return 0;
1328
1329error_conflict:
1330 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1331 pfm_sessions.pfs_sys_session[cpu]->pid,
Tony Lucka1ecf7f2005-05-18 16:06:00 -07001332 cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333abort:
1334 UNLOCK_PFS(flags);
1335
1336 return -EBUSY;
1337
1338}
1339
1340static int
1341pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1342{
1343 unsigned long flags;
1344 /*
1345 * validy checks on cpu_mask have been done upstream
1346 */
1347 LOCK_PFS(flags);
1348
1349 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1350 pfm_sessions.pfs_sys_sessions,
1351 pfm_sessions.pfs_task_sessions,
1352 pfm_sessions.pfs_sys_use_dbregs,
1353 is_syswide,
1354 cpu));
1355
1356
1357 if (is_syswide) {
1358 pfm_sessions.pfs_sys_session[cpu] = NULL;
1359 /*
1360 * would not work with perfmon+more than one bit in cpu_mask
1361 */
1362 if (ctx && ctx->ctx_fl_using_dbreg) {
1363 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1364 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1365 } else {
1366 pfm_sessions.pfs_sys_use_dbregs--;
1367 }
1368 }
1369 pfm_sessions.pfs_sys_sessions--;
1370 } else {
1371 pfm_sessions.pfs_task_sessions--;
1372 }
1373 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1374 pfm_sessions.pfs_sys_sessions,
1375 pfm_sessions.pfs_task_sessions,
1376 pfm_sessions.pfs_sys_use_dbregs,
1377 is_syswide,
1378 cpu));
1379
Stephane Eranian8df5a502005-04-11 13:45:00 -07001380 /*
1381 * if possible, enable default_idle() to go into PAL_HALT
1382 */
1383 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1384 update_pal_halt_status(1);
1385
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 UNLOCK_PFS(flags);
1387
1388 return 0;
1389}
1390
1391/*
1392 * removes virtual mapping of the sampling buffer.
1393 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1394 * a PROTECT_CTX() section.
1395 */
1396static int
1397pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1398{
1399 int r;
1400
1401 /* sanity checks */
1402 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1403 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1404 return -EINVAL;
1405 }
1406
1407 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1408
1409 /*
1410 * does the actual unmapping
1411 */
1412 down_write(&task->mm->mmap_sem);
1413
1414 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1415
1416 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1417
1418 up_write(&task->mm->mmap_sem);
1419 if (r !=0) {
1420 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1421 }
1422
1423 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1424
1425 return 0;
1426}
1427
1428/*
1429 * free actual physical storage used by sampling buffer
1430 */
1431#if 0
1432static int
1433pfm_free_smpl_buffer(pfm_context_t *ctx)
1434{
1435 pfm_buffer_fmt_t *fmt;
1436
1437 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1438
1439 /*
1440 * we won't use the buffer format anymore
1441 */
1442 fmt = ctx->ctx_buf_fmt;
1443
1444 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1445 ctx->ctx_smpl_hdr,
1446 ctx->ctx_smpl_size,
1447 ctx->ctx_smpl_vaddr));
1448
1449 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1450
1451 /*
1452 * free the buffer
1453 */
1454 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1455
1456 ctx->ctx_smpl_hdr = NULL;
1457 ctx->ctx_smpl_size = 0UL;
1458
1459 return 0;
1460
1461invalid_free:
1462 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1463 return -EINVAL;
1464}
1465#endif
1466
1467static inline void
1468pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1469{
1470 if (fmt == NULL) return;
1471
1472 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1473
1474}
1475
1476/*
1477 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1478 * no real gain from having the whole whorehouse mounted. So we don't need
1479 * any operations on the root directory. However, we need a non-trivial
1480 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1481 */
1482static struct vfsmount *pfmfs_mnt;
1483
1484static int __init
1485init_pfm_fs(void)
1486{
1487 int err = register_filesystem(&pfm_fs_type);
1488 if (!err) {
1489 pfmfs_mnt = kern_mount(&pfm_fs_type);
1490 err = PTR_ERR(pfmfs_mnt);
1491 if (IS_ERR(pfmfs_mnt))
1492 unregister_filesystem(&pfm_fs_type);
1493 else
1494 err = 0;
1495 }
1496 return err;
1497}
1498
1499static void __exit
1500exit_pfm_fs(void)
1501{
1502 unregister_filesystem(&pfm_fs_type);
1503 mntput(pfmfs_mnt);
1504}
1505
1506static ssize_t
1507pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1508{
1509 pfm_context_t *ctx;
1510 pfm_msg_t *msg;
1511 ssize_t ret;
1512 unsigned long flags;
1513 DECLARE_WAITQUEUE(wait, current);
1514 if (PFM_IS_FILE(filp) == 0) {
1515 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1516 return -EINVAL;
1517 }
1518
1519 ctx = (pfm_context_t *)filp->private_data;
1520 if (ctx == NULL) {
1521 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1522 return -EINVAL;
1523 }
1524
1525 /*
1526 * check even when there is no message
1527 */
1528 if (size < sizeof(pfm_msg_t)) {
1529 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1530 return -EINVAL;
1531 }
1532
1533 PROTECT_CTX(ctx, flags);
1534
1535 /*
1536 * put ourselves on the wait queue
1537 */
1538 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1539
1540
1541 for(;;) {
1542 /*
1543 * check wait queue
1544 */
1545
1546 set_current_state(TASK_INTERRUPTIBLE);
1547
1548 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1549
1550 ret = 0;
1551 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1552
1553 UNPROTECT_CTX(ctx, flags);
1554
1555 /*
1556 * check non-blocking read
1557 */
1558 ret = -EAGAIN;
1559 if(filp->f_flags & O_NONBLOCK) break;
1560
1561 /*
1562 * check pending signals
1563 */
1564 if(signal_pending(current)) {
1565 ret = -EINTR;
1566 break;
1567 }
1568 /*
1569 * no message, so wait
1570 */
1571 schedule();
1572
1573 PROTECT_CTX(ctx, flags);
1574 }
1575 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1576 set_current_state(TASK_RUNNING);
1577 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1578
1579 if (ret < 0) goto abort;
1580
1581 ret = -EINVAL;
1582 msg = pfm_get_next_msg(ctx);
1583 if (msg == NULL) {
1584 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1585 goto abort_locked;
1586 }
1587
Stephane Eranian49449302005-04-25 13:08:30 -07001588 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589
1590 ret = -EFAULT;
1591 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1592
1593abort_locked:
1594 UNPROTECT_CTX(ctx, flags);
1595abort:
1596 return ret;
1597}
1598
1599static ssize_t
1600pfm_write(struct file *file, const char __user *ubuf,
1601 size_t size, loff_t *ppos)
1602{
1603 DPRINT(("pfm_write called\n"));
1604 return -EINVAL;
1605}
1606
1607static unsigned int
1608pfm_poll(struct file *filp, poll_table * wait)
1609{
1610 pfm_context_t *ctx;
1611 unsigned long flags;
1612 unsigned int mask = 0;
1613
1614 if (PFM_IS_FILE(filp) == 0) {
1615 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1616 return 0;
1617 }
1618
1619 ctx = (pfm_context_t *)filp->private_data;
1620 if (ctx == NULL) {
1621 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1622 return 0;
1623 }
1624
1625
1626 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1627
1628 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1629
1630 PROTECT_CTX(ctx, flags);
1631
1632 if (PFM_CTXQ_EMPTY(ctx) == 0)
1633 mask = POLLIN | POLLRDNORM;
1634
1635 UNPROTECT_CTX(ctx, flags);
1636
1637 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1638
1639 return mask;
1640}
1641
1642static int
1643pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1644{
1645 DPRINT(("pfm_ioctl called\n"));
1646 return -EINVAL;
1647}
1648
1649/*
1650 * interrupt cannot be masked when coming here
1651 */
1652static inline int
1653pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1654{
1655 int ret;
1656
1657 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1658
1659 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1660 current->pid,
1661 fd,
1662 on,
1663 ctx->ctx_async_queue, ret));
1664
1665 return ret;
1666}
1667
1668static int
1669pfm_fasync(int fd, struct file *filp, int on)
1670{
1671 pfm_context_t *ctx;
1672 int ret;
1673
1674 if (PFM_IS_FILE(filp) == 0) {
1675 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1676 return -EBADF;
1677 }
1678
1679 ctx = (pfm_context_t *)filp->private_data;
1680 if (ctx == NULL) {
1681 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1682 return -EBADF;
1683 }
1684 /*
1685 * we cannot mask interrupts during this call because this may
1686 * may go to sleep if memory is not readily avalaible.
1687 *
1688 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1689 * done in caller. Serialization of this function is ensured by caller.
1690 */
1691 ret = pfm_do_fasync(fd, filp, ctx, on);
1692
1693
1694 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1695 fd,
1696 on,
1697 ctx->ctx_async_queue, ret));
1698
1699 return ret;
1700}
1701
1702#ifdef CONFIG_SMP
1703/*
1704 * this function is exclusively called from pfm_close().
1705 * The context is not protected at that time, nor are interrupts
1706 * on the remote CPU. That's necessary to avoid deadlocks.
1707 */
1708static void
1709pfm_syswide_force_stop(void *info)
1710{
1711 pfm_context_t *ctx = (pfm_context_t *)info;
1712 struct pt_regs *regs = ia64_task_regs(current);
1713 struct task_struct *owner;
1714 unsigned long flags;
1715 int ret;
1716
1717 if (ctx->ctx_cpu != smp_processor_id()) {
1718 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1719 ctx->ctx_cpu,
1720 smp_processor_id());
1721 return;
1722 }
1723 owner = GET_PMU_OWNER();
1724 if (owner != ctx->ctx_task) {
1725 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1726 smp_processor_id(),
1727 owner->pid, ctx->ctx_task->pid);
1728 return;
1729 }
1730 if (GET_PMU_CTX() != ctx) {
1731 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1732 smp_processor_id(),
1733 GET_PMU_CTX(), ctx);
1734 return;
1735 }
1736
1737 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1738 /*
1739 * the context is already protected in pfm_close(), we simply
1740 * need to mask interrupts to avoid a PMU interrupt race on
1741 * this CPU
1742 */
1743 local_irq_save(flags);
1744
1745 ret = pfm_context_unload(ctx, NULL, 0, regs);
1746 if (ret) {
1747 DPRINT(("context_unload returned %d\n", ret));
1748 }
1749
1750 /*
1751 * unmask interrupts, PMU interrupts are now spurious here
1752 */
1753 local_irq_restore(flags);
1754}
1755
1756static void
1757pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1758{
1759 int ret;
1760
1761 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1762 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1763 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1764}
1765#endif /* CONFIG_SMP */
1766
1767/*
1768 * called for each close(). Partially free resources.
1769 * When caller is self-monitoring, the context is unloaded.
1770 */
1771static int
1772pfm_flush(struct file *filp)
1773{
1774 pfm_context_t *ctx;
1775 struct task_struct *task;
1776 struct pt_regs *regs;
1777 unsigned long flags;
1778 unsigned long smpl_buf_size = 0UL;
1779 void *smpl_buf_vaddr = NULL;
1780 int state, is_system;
1781
1782 if (PFM_IS_FILE(filp) == 0) {
1783 DPRINT(("bad magic for\n"));
1784 return -EBADF;
1785 }
1786
1787 ctx = (pfm_context_t *)filp->private_data;
1788 if (ctx == NULL) {
1789 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1790 return -EBADF;
1791 }
1792
1793 /*
1794 * remove our file from the async queue, if we use this mode.
1795 * This can be done without the context being protected. We come
1796 * here when the context has become unreacheable by other tasks.
1797 *
1798 * We may still have active monitoring at this point and we may
1799 * end up in pfm_overflow_handler(). However, fasync_helper()
1800 * operates with interrupts disabled and it cleans up the
1801 * queue. If the PMU handler is called prior to entering
1802 * fasync_helper() then it will send a signal. If it is
1803 * invoked after, it will find an empty queue and no
1804 * signal will be sent. In both case, we are safe
1805 */
1806 if (filp->f_flags & FASYNC) {
1807 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1808 pfm_do_fasync (-1, filp, ctx, 0);
1809 }
1810
1811 PROTECT_CTX(ctx, flags);
1812
1813 state = ctx->ctx_state;
1814 is_system = ctx->ctx_fl_system;
1815
1816 task = PFM_CTX_TASK(ctx);
1817 regs = ia64_task_regs(task);
1818
1819 DPRINT(("ctx_state=%d is_current=%d\n",
1820 state,
1821 task == current ? 1 : 0));
1822
1823 /*
1824 * if state == UNLOADED, then task is NULL
1825 */
1826
1827 /*
1828 * we must stop and unload because we are losing access to the context.
1829 */
1830 if (task == current) {
1831#ifdef CONFIG_SMP
1832 /*
1833 * the task IS the owner but it migrated to another CPU: that's bad
1834 * but we must handle this cleanly. Unfortunately, the kernel does
1835 * not provide a mechanism to block migration (while the context is loaded).
1836 *
1837 * We need to release the resource on the ORIGINAL cpu.
1838 */
1839 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1840
1841 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1842 /*
1843 * keep context protected but unmask interrupt for IPI
1844 */
1845 local_irq_restore(flags);
1846
1847 pfm_syswide_cleanup_other_cpu(ctx);
1848
1849 /*
1850 * restore interrupt masking
1851 */
1852 local_irq_save(flags);
1853
1854 /*
1855 * context is unloaded at this point
1856 */
1857 } else
1858#endif /* CONFIG_SMP */
1859 {
1860
1861 DPRINT(("forcing unload\n"));
1862 /*
1863 * stop and unload, returning with state UNLOADED
1864 * and session unreserved.
1865 */
1866 pfm_context_unload(ctx, NULL, 0, regs);
1867
1868 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1869 }
1870 }
1871
1872 /*
1873 * remove virtual mapping, if any, for the calling task.
1874 * cannot reset ctx field until last user is calling close().
1875 *
1876 * ctx_smpl_vaddr must never be cleared because it is needed
1877 * by every task with access to the context
1878 *
1879 * When called from do_exit(), the mm context is gone already, therefore
1880 * mm is NULL, i.e., the VMA is already gone and we do not have to
1881 * do anything here
1882 */
1883 if (ctx->ctx_smpl_vaddr && current->mm) {
1884 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1885 smpl_buf_size = ctx->ctx_smpl_size;
1886 }
1887
1888 UNPROTECT_CTX(ctx, flags);
1889
1890 /*
1891 * if there was a mapping, then we systematically remove it
1892 * at this point. Cannot be done inside critical section
1893 * because some VM function reenables interrupts.
1894 *
1895 */
1896 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1897
1898 return 0;
1899}
1900/*
1901 * called either on explicit close() or from exit_files().
1902 * Only the LAST user of the file gets to this point, i.e., it is
1903 * called only ONCE.
1904 *
1905 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1906 * (fput()),i.e, last task to access the file. Nobody else can access the
1907 * file at this point.
1908 *
1909 * When called from exit_files(), the VMA has been freed because exit_mm()
1910 * is executed before exit_files().
1911 *
1912 * When called from exit_files(), the current task is not yet ZOMBIE but we
1913 * flush the PMU state to the context.
1914 */
1915static int
1916pfm_close(struct inode *inode, struct file *filp)
1917{
1918 pfm_context_t *ctx;
1919 struct task_struct *task;
1920 struct pt_regs *regs;
1921 DECLARE_WAITQUEUE(wait, current);
1922 unsigned long flags;
1923 unsigned long smpl_buf_size = 0UL;
1924 void *smpl_buf_addr = NULL;
1925 int free_possible = 1;
1926 int state, is_system;
1927
1928 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1929
1930 if (PFM_IS_FILE(filp) == 0) {
1931 DPRINT(("bad magic\n"));
1932 return -EBADF;
1933 }
1934
1935 ctx = (pfm_context_t *)filp->private_data;
1936 if (ctx == NULL) {
1937 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1938 return -EBADF;
1939 }
1940
1941 PROTECT_CTX(ctx, flags);
1942
1943 state = ctx->ctx_state;
1944 is_system = ctx->ctx_fl_system;
1945
1946 task = PFM_CTX_TASK(ctx);
1947 regs = ia64_task_regs(task);
1948
1949 DPRINT(("ctx_state=%d is_current=%d\n",
1950 state,
1951 task == current ? 1 : 0));
1952
1953 /*
1954 * if task == current, then pfm_flush() unloaded the context
1955 */
1956 if (state == PFM_CTX_UNLOADED) goto doit;
1957
1958 /*
1959 * context is loaded/masked and task != current, we need to
1960 * either force an unload or go zombie
1961 */
1962
1963 /*
1964 * The task is currently blocked or will block after an overflow.
1965 * we must force it to wakeup to get out of the
1966 * MASKED state and transition to the unloaded state by itself.
1967 *
1968 * This situation is only possible for per-task mode
1969 */
1970 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1971
1972 /*
1973 * set a "partial" zombie state to be checked
1974 * upon return from down() in pfm_handle_work().
1975 *
1976 * We cannot use the ZOMBIE state, because it is checked
1977 * by pfm_load_regs() which is called upon wakeup from down().
1978 * In such case, it would free the context and then we would
1979 * return to pfm_handle_work() which would access the
1980 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1981 * but visible to pfm_handle_work().
1982 *
1983 * For some window of time, we have a zombie context with
1984 * ctx_state = MASKED and not ZOMBIE
1985 */
1986 ctx->ctx_fl_going_zombie = 1;
1987
1988 /*
1989 * force task to wake up from MASKED state
1990 */
1991 up(&ctx->ctx_restart_sem);
1992
1993 DPRINT(("waking up ctx_state=%d\n", state));
1994
1995 /*
1996 * put ourself to sleep waiting for the other
1997 * task to report completion
1998 *
1999 * the context is protected by mutex, therefore there
2000 * is no risk of being notified of completion before
2001 * begin actually on the waitq.
2002 */
2003 set_current_state(TASK_INTERRUPTIBLE);
2004 add_wait_queue(&ctx->ctx_zombieq, &wait);
2005
2006 UNPROTECT_CTX(ctx, flags);
2007
2008 /*
2009 * XXX: check for signals :
2010 * - ok for explicit close
2011 * - not ok when coming from exit_files()
2012 */
2013 schedule();
2014
2015
2016 PROTECT_CTX(ctx, flags);
2017
2018
2019 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2020 set_current_state(TASK_RUNNING);
2021
2022 /*
2023 * context is unloaded at this point
2024 */
2025 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2026 }
2027 else if (task != current) {
2028#ifdef CONFIG_SMP
2029 /*
2030 * switch context to zombie state
2031 */
2032 ctx->ctx_state = PFM_CTX_ZOMBIE;
2033
2034 DPRINT(("zombie ctx for [%d]\n", task->pid));
2035 /*
2036 * cannot free the context on the spot. deferred until
2037 * the task notices the ZOMBIE state
2038 */
2039 free_possible = 0;
2040#else
2041 pfm_context_unload(ctx, NULL, 0, regs);
2042#endif
2043 }
2044
2045doit:
2046 /* reload state, may have changed during opening of critical section */
2047 state = ctx->ctx_state;
2048
2049 /*
2050 * the context is still attached to a task (possibly current)
2051 * we cannot destroy it right now
2052 */
2053
2054 /*
2055 * we must free the sampling buffer right here because
2056 * we cannot rely on it being cleaned up later by the
2057 * monitored task. It is not possible to free vmalloc'ed
2058 * memory in pfm_load_regs(). Instead, we remove the buffer
2059 * now. should there be subsequent PMU overflow originally
2060 * meant for sampling, the will be converted to spurious
2061 * and that's fine because the monitoring tools is gone anyway.
2062 */
2063 if (ctx->ctx_smpl_hdr) {
2064 smpl_buf_addr = ctx->ctx_smpl_hdr;
2065 smpl_buf_size = ctx->ctx_smpl_size;
2066 /* no more sampling */
2067 ctx->ctx_smpl_hdr = NULL;
2068 ctx->ctx_fl_is_sampling = 0;
2069 }
2070
2071 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2072 state,
2073 free_possible,
2074 smpl_buf_addr,
2075 smpl_buf_size));
2076
2077 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2078
2079 /*
2080 * UNLOADED that the session has already been unreserved.
2081 */
2082 if (state == PFM_CTX_ZOMBIE) {
2083 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2084 }
2085
2086 /*
2087 * disconnect file descriptor from context must be done
2088 * before we unlock.
2089 */
2090 filp->private_data = NULL;
2091
2092 /*
2093 * if we free on the spot, the context is now completely unreacheable
2094 * from the callers side. The monitored task side is also cut, so we
2095 * can freely cut.
2096 *
2097 * If we have a deferred free, only the caller side is disconnected.
2098 */
2099 UNPROTECT_CTX(ctx, flags);
2100
2101 /*
2102 * All memory free operations (especially for vmalloc'ed memory)
2103 * MUST be done with interrupts ENABLED.
2104 */
2105 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2106
2107 /*
2108 * return the memory used by the context
2109 */
2110 if (free_possible) pfm_context_free(ctx);
2111
2112 return 0;
2113}
2114
2115static int
2116pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2117{
2118 DPRINT(("pfm_no_open called\n"));
2119 return -ENXIO;
2120}
2121
2122
2123
2124static struct file_operations pfm_file_ops = {
2125 .llseek = no_llseek,
2126 .read = pfm_read,
2127 .write = pfm_write,
2128 .poll = pfm_poll,
2129 .ioctl = pfm_ioctl,
2130 .open = pfm_no_open, /* special open code to disallow open via /proc */
2131 .fasync = pfm_fasync,
2132 .release = pfm_close,
2133 .flush = pfm_flush
2134};
2135
2136static int
2137pfmfs_delete_dentry(struct dentry *dentry)
2138{
2139 return 1;
2140}
2141
2142static struct dentry_operations pfmfs_dentry_operations = {
2143 .d_delete = pfmfs_delete_dentry,
2144};
2145
2146
2147static int
2148pfm_alloc_fd(struct file **cfile)
2149{
2150 int fd, ret = 0;
2151 struct file *file = NULL;
2152 struct inode * inode;
2153 char name[32];
2154 struct qstr this;
2155
2156 fd = get_unused_fd();
2157 if (fd < 0) return -ENFILE;
2158
2159 ret = -ENFILE;
2160
2161 file = get_empty_filp();
2162 if (!file) goto out;
2163
2164 /*
2165 * allocate a new inode
2166 */
2167 inode = new_inode(pfmfs_mnt->mnt_sb);
2168 if (!inode) goto out;
2169
2170 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2171
2172 inode->i_mode = S_IFCHR|S_IRUGO;
2173 inode->i_uid = current->fsuid;
2174 inode->i_gid = current->fsgid;
2175
2176 sprintf(name, "[%lu]", inode->i_ino);
2177 this.name = name;
2178 this.len = strlen(name);
2179 this.hash = inode->i_ino;
2180
2181 ret = -ENOMEM;
2182
2183 /*
2184 * allocate a new dcache entry
2185 */
2186 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2187 if (!file->f_dentry) goto out;
2188
2189 file->f_dentry->d_op = &pfmfs_dentry_operations;
2190
2191 d_add(file->f_dentry, inode);
2192 file->f_vfsmnt = mntget(pfmfs_mnt);
2193 file->f_mapping = inode->i_mapping;
2194
2195 file->f_op = &pfm_file_ops;
2196 file->f_mode = FMODE_READ;
2197 file->f_flags = O_RDONLY;
2198 file->f_pos = 0;
2199
2200 /*
2201 * may have to delay until context is attached?
2202 */
2203 fd_install(fd, file);
2204
2205 /*
2206 * the file structure we will use
2207 */
2208 *cfile = file;
2209
2210 return fd;
2211out:
2212 if (file) put_filp(file);
2213 put_unused_fd(fd);
2214 return ret;
2215}
2216
2217static void
2218pfm_free_fd(int fd, struct file *file)
2219{
2220 struct files_struct *files = current->files;
Dipankar Sarma4fb3a532005-09-16 19:28:13 -07002221 struct fdtable *fdt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222
2223 /*
2224 * there ie no fd_uninstall(), so we do it here
2225 */
2226 spin_lock(&files->file_lock);
Dipankar Sarma4fb3a532005-09-16 19:28:13 -07002227 fdt = files_fdtable(files);
Dipankar Sarmabadf1662005-09-09 13:04:10 -07002228 rcu_assign_pointer(fdt->fd[fd], NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 spin_unlock(&files->file_lock);
2230
Dipankar Sarmabadf1662005-09-09 13:04:10 -07002231 if (file)
2232 put_filp(file);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 put_unused_fd(fd);
2234}
2235
2236static int
2237pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2238{
2239 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2240
2241 while (size > 0) {
2242 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2243
2244
2245 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2246 return -ENOMEM;
2247
2248 addr += PAGE_SIZE;
2249 buf += PAGE_SIZE;
2250 size -= PAGE_SIZE;
2251 }
2252 return 0;
2253}
2254
2255/*
2256 * allocate a sampling buffer and remaps it into the user address space of the task
2257 */
2258static int
2259pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2260{
2261 struct mm_struct *mm = task->mm;
2262 struct vm_area_struct *vma = NULL;
2263 unsigned long size;
2264 void *smpl_buf;
2265
2266
2267 /*
2268 * the fixed header + requested size and align to page boundary
2269 */
2270 size = PAGE_ALIGN(rsize);
2271
2272 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2273
2274 /*
2275 * check requested size to avoid Denial-of-service attacks
2276 * XXX: may have to refine this test
2277 * Check against address space limit.
2278 *
2279 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2280 * return -ENOMEM;
2281 */
2282 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2283 return -ENOMEM;
2284
2285 /*
2286 * We do the easy to undo allocations first.
2287 *
2288 * pfm_rvmalloc(), clears the buffer, so there is no leak
2289 */
2290 smpl_buf = pfm_rvmalloc(size);
2291 if (smpl_buf == NULL) {
2292 DPRINT(("Can't allocate sampling buffer\n"));
2293 return -ENOMEM;
2294 }
2295
2296 DPRINT(("smpl_buf @%p\n", smpl_buf));
2297
2298 /* allocate vma */
2299 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2300 if (!vma) {
2301 DPRINT(("Cannot allocate vma\n"));
2302 goto error_kmem;
2303 }
2304 memset(vma, 0, sizeof(*vma));
2305
2306 /*
2307 * partially initialize the vma for the sampling buffer
2308 */
2309 vma->vm_mm = mm;
2310 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2311 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2312
2313 /*
2314 * Now we have everything we need and we can initialize
2315 * and connect all the data structures
2316 */
2317
2318 ctx->ctx_smpl_hdr = smpl_buf;
2319 ctx->ctx_smpl_size = size; /* aligned size */
2320
2321 /*
2322 * Let's do the difficult operations next.
2323 *
2324 * now we atomically find some area in the address space and
2325 * remap the buffer in it.
2326 */
2327 down_write(&task->mm->mmap_sem);
2328
2329 /* find some free area in address space, must have mmap sem held */
2330 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2331 if (vma->vm_start == 0UL) {
2332 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333 up_write(&task->mm->mmap_sem);
2334 goto error;
2335 }
2336 vma->vm_end = vma->vm_start + size;
2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338
2339 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340
2341 /* can only be applied to current task, need to have the mm semaphore held when called */
2342 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343 DPRINT(("Can't remap buffer\n"));
2344 up_write(&task->mm->mmap_sem);
2345 goto error;
2346 }
2347
2348 /*
2349 * now insert the vma in the vm list for the process, must be
2350 * done with mmap lock held
2351 */
2352 insert_vm_struct(mm, vma);
2353
2354 mm->total_vm += size >> PAGE_SHIFT;
Hugh Dickinsab50b8e2005-10-29 18:15:56 -07002355 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2356 vma_pages(vma));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 up_write(&task->mm->mmap_sem);
2358
2359 /*
2360 * keep track of user level virtual address
2361 */
2362 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2363 *(unsigned long *)user_vaddr = vma->vm_start;
2364
2365 return 0;
2366
2367error:
2368 kmem_cache_free(vm_area_cachep, vma);
2369error_kmem:
2370 pfm_rvfree(smpl_buf, size);
2371
2372 return -ENOMEM;
2373}
2374
2375/*
2376 * XXX: do something better here
2377 */
2378static int
2379pfm_bad_permissions(struct task_struct *task)
2380{
2381 /* inspired by ptrace_attach() */
2382 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2383 current->uid,
2384 current->gid,
2385 task->euid,
2386 task->suid,
2387 task->uid,
2388 task->egid,
2389 task->sgid));
2390
2391 return ((current->uid != task->euid)
2392 || (current->uid != task->suid)
2393 || (current->uid != task->uid)
2394 || (current->gid != task->egid)
2395 || (current->gid != task->sgid)
2396 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2397}
2398
2399static int
2400pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2401{
2402 int ctx_flags;
2403
2404 /* valid signal */
2405
2406 ctx_flags = pfx->ctx_flags;
2407
2408 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2409
2410 /*
2411 * cannot block in this mode
2412 */
2413 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2414 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2415 return -EINVAL;
2416 }
2417 } else {
2418 }
2419 /* probably more to add here */
2420
2421 return 0;
2422}
2423
2424static int
2425pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2426 unsigned int cpu, pfarg_context_t *arg)
2427{
2428 pfm_buffer_fmt_t *fmt = NULL;
2429 unsigned long size = 0UL;
2430 void *uaddr = NULL;
2431 void *fmt_arg = NULL;
2432 int ret = 0;
2433#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2434
2435 /* invoke and lock buffer format, if found */
2436 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2437 if (fmt == NULL) {
2438 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2439 return -EINVAL;
2440 }
2441
2442 /*
2443 * buffer argument MUST be contiguous to pfarg_context_t
2444 */
2445 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2446
2447 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2448
2449 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2450
2451 if (ret) goto error;
2452
2453 /* link buffer format and context */
2454 ctx->ctx_buf_fmt = fmt;
2455
2456 /*
2457 * check if buffer format wants to use perfmon buffer allocation/mapping service
2458 */
2459 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2460 if (ret) goto error;
2461
2462 if (size) {
2463 /*
2464 * buffer is always remapped into the caller's address space
2465 */
2466 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2467 if (ret) goto error;
2468
2469 /* keep track of user address of buffer */
2470 arg->ctx_smpl_vaddr = uaddr;
2471 }
2472 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2473
2474error:
2475 return ret;
2476}
2477
2478static void
2479pfm_reset_pmu_state(pfm_context_t *ctx)
2480{
2481 int i;
2482
2483 /*
2484 * install reset values for PMC.
2485 */
2486 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2487 if (PMC_IS_IMPL(i) == 0) continue;
2488 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2489 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2490 }
2491 /*
2492 * PMD registers are set to 0UL when the context in memset()
2493 */
2494
2495 /*
2496 * On context switched restore, we must restore ALL pmc and ALL pmd even
2497 * when they are not actively used by the task. In UP, the incoming process
2498 * may otherwise pick up left over PMC, PMD state from the previous process.
2499 * As opposed to PMD, stale PMC can cause harm to the incoming
2500 * process because they may change what is being measured.
2501 * Therefore, we must systematically reinstall the entire
2502 * PMC state. In SMP, the same thing is possible on the
2503 * same CPU but also on between 2 CPUs.
2504 *
2505 * The problem with PMD is information leaking especially
2506 * to user level when psr.sp=0
2507 *
2508 * There is unfortunately no easy way to avoid this problem
2509 * on either UP or SMP. This definitively slows down the
2510 * pfm_load_regs() function.
2511 */
2512
2513 /*
2514 * bitmask of all PMCs accessible to this context
2515 *
2516 * PMC0 is treated differently.
2517 */
2518 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2519
2520 /*
2521 * bitmask of all PMDs that are accesible to this context
2522 */
2523 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2524
2525 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2526
2527 /*
2528 * useful in case of re-enable after disable
2529 */
2530 ctx->ctx_used_ibrs[0] = 0UL;
2531 ctx->ctx_used_dbrs[0] = 0UL;
2532}
2533
2534static int
2535pfm_ctx_getsize(void *arg, size_t *sz)
2536{
2537 pfarg_context_t *req = (pfarg_context_t *)arg;
2538 pfm_buffer_fmt_t *fmt;
2539
2540 *sz = 0;
2541
2542 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2543
2544 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2545 if (fmt == NULL) {
2546 DPRINT(("cannot find buffer format\n"));
2547 return -EINVAL;
2548 }
2549 /* get just enough to copy in user parameters */
2550 *sz = fmt->fmt_arg_size;
2551 DPRINT(("arg_size=%lu\n", *sz));
2552
2553 return 0;
2554}
2555
2556
2557
2558/*
2559 * cannot attach if :
2560 * - kernel task
2561 * - task not owned by caller
2562 * - task incompatible with context mode
2563 */
2564static int
2565pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2566{
2567 /*
2568 * no kernel task or task not owner by caller
2569 */
2570 if (task->mm == NULL) {
2571 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2572 return -EPERM;
2573 }
2574 if (pfm_bad_permissions(task)) {
2575 DPRINT(("no permission to attach to [%d]\n", task->pid));
2576 return -EPERM;
2577 }
2578 /*
2579 * cannot block in self-monitoring mode
2580 */
2581 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2582 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2583 return -EINVAL;
2584 }
2585
2586 if (task->exit_state == EXIT_ZOMBIE) {
2587 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2588 return -EBUSY;
2589 }
2590
2591 /*
2592 * always ok for self
2593 */
2594 if (task == current) return 0;
2595
2596 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2597 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2598 return -EBUSY;
2599 }
2600 /*
2601 * make sure the task is off any CPU
2602 */
2603 wait_task_inactive(task);
2604
2605 /* more to come... */
2606
2607 return 0;
2608}
2609
2610static int
2611pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2612{
2613 struct task_struct *p = current;
2614 int ret;
2615
2616 /* XXX: need to add more checks here */
2617 if (pid < 2) return -EPERM;
2618
2619 if (pid != current->pid) {
2620
2621 read_lock(&tasklist_lock);
2622
2623 p = find_task_by_pid(pid);
2624
2625 /* make sure task cannot go away while we operate on it */
2626 if (p) get_task_struct(p);
2627
2628 read_unlock(&tasklist_lock);
2629
2630 if (p == NULL) return -ESRCH;
2631 }
2632
2633 ret = pfm_task_incompatible(ctx, p);
2634 if (ret == 0) {
2635 *task = p;
2636 } else if (p != current) {
2637 pfm_put_task(p);
2638 }
2639 return ret;
2640}
2641
2642
2643
2644static int
2645pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2646{
2647 pfarg_context_t *req = (pfarg_context_t *)arg;
2648 struct file *filp;
2649 int ctx_flags;
2650 int ret;
2651
2652 /* let's check the arguments first */
2653 ret = pfarg_is_sane(current, req);
2654 if (ret < 0) return ret;
2655
2656 ctx_flags = req->ctx_flags;
2657
2658 ret = -ENOMEM;
2659
2660 ctx = pfm_context_alloc();
2661 if (!ctx) goto error;
2662
2663 ret = pfm_alloc_fd(&filp);
2664 if (ret < 0) goto error_file;
2665
2666 req->ctx_fd = ctx->ctx_fd = ret;
2667
2668 /*
2669 * attach context to file
2670 */
2671 filp->private_data = ctx;
2672
2673 /*
2674 * does the user want to sample?
2675 */
2676 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2677 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2678 if (ret) goto buffer_error;
2679 }
2680
2681 /*
2682 * init context protection lock
2683 */
2684 spin_lock_init(&ctx->ctx_lock);
2685
2686 /*
2687 * context is unloaded
2688 */
2689 ctx->ctx_state = PFM_CTX_UNLOADED;
2690
2691 /*
2692 * initialization of context's flags
2693 */
2694 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2695 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2696 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2697 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2698 /*
2699 * will move to set properties
2700 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2701 */
2702
2703 /*
2704 * init restart semaphore to locked
2705 */
2706 sema_init(&ctx->ctx_restart_sem, 0);
2707
2708 /*
2709 * activation is used in SMP only
2710 */
2711 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2712 SET_LAST_CPU(ctx, -1);
2713
2714 /*
2715 * initialize notification message queue
2716 */
2717 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2718 init_waitqueue_head(&ctx->ctx_msgq_wait);
2719 init_waitqueue_head(&ctx->ctx_zombieq);
2720
2721 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2722 ctx,
2723 ctx_flags,
2724 ctx->ctx_fl_system,
2725 ctx->ctx_fl_block,
2726 ctx->ctx_fl_excl_idle,
2727 ctx->ctx_fl_no_msg,
2728 ctx->ctx_fd));
2729
2730 /*
2731 * initialize soft PMU state
2732 */
2733 pfm_reset_pmu_state(ctx);
2734
2735 return 0;
2736
2737buffer_error:
2738 pfm_free_fd(ctx->ctx_fd, filp);
2739
2740 if (ctx->ctx_buf_fmt) {
2741 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2742 }
2743error_file:
2744 pfm_context_free(ctx);
2745
2746error:
2747 return ret;
2748}
2749
2750static inline unsigned long
2751pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2752{
2753 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2754 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2755 extern unsigned long carta_random32 (unsigned long seed);
2756
2757 if (reg->flags & PFM_REGFL_RANDOM) {
2758 new_seed = carta_random32(old_seed);
2759 val -= (old_seed & mask); /* counter values are negative numbers! */
2760 if ((mask >> 32) != 0)
2761 /* construct a full 64-bit random value: */
2762 new_seed |= carta_random32(old_seed >> 32) << 32;
2763 reg->seed = new_seed;
2764 }
2765 reg->lval = val;
2766 return val;
2767}
2768
2769static void
2770pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2771{
2772 unsigned long mask = ovfl_regs[0];
2773 unsigned long reset_others = 0UL;
2774 unsigned long val;
2775 int i;
2776
2777 /*
2778 * now restore reset value on sampling overflowed counters
2779 */
2780 mask >>= PMU_FIRST_COUNTER;
2781 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2782
2783 if ((mask & 0x1UL) == 0UL) continue;
2784
2785 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2786 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2787
2788 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2789 }
2790
2791 /*
2792 * Now take care of resetting the other registers
2793 */
2794 for(i = 0; reset_others; i++, reset_others >>= 1) {
2795
2796 if ((reset_others & 0x1) == 0) continue;
2797
2798 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2799
2800 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2801 is_long_reset ? "long" : "short", i, val));
2802 }
2803}
2804
2805static void
2806pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2807{
2808 unsigned long mask = ovfl_regs[0];
2809 unsigned long reset_others = 0UL;
2810 unsigned long val;
2811 int i;
2812
2813 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2814
2815 if (ctx->ctx_state == PFM_CTX_MASKED) {
2816 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2817 return;
2818 }
2819
2820 /*
2821 * now restore reset value on sampling overflowed counters
2822 */
2823 mask >>= PMU_FIRST_COUNTER;
2824 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2825
2826 if ((mask & 0x1UL) == 0UL) continue;
2827
2828 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2829 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2830
2831 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2832
2833 pfm_write_soft_counter(ctx, i, val);
2834 }
2835
2836 /*
2837 * Now take care of resetting the other registers
2838 */
2839 for(i = 0; reset_others; i++, reset_others >>= 1) {
2840
2841 if ((reset_others & 0x1) == 0) continue;
2842
2843 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2844
2845 if (PMD_IS_COUNTING(i)) {
2846 pfm_write_soft_counter(ctx, i, val);
2847 } else {
2848 ia64_set_pmd(i, val);
2849 }
2850 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2851 is_long_reset ? "long" : "short", i, val));
2852 }
2853 ia64_srlz_d();
2854}
2855
2856static int
2857pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2858{
2859 struct thread_struct *thread = NULL;
2860 struct task_struct *task;
2861 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2862 unsigned long value, pmc_pm;
2863 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2864 unsigned int cnum, reg_flags, flags, pmc_type;
2865 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2866 int is_monitor, is_counting, state;
2867 int ret = -EINVAL;
2868 pfm_reg_check_t wr_func;
2869#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2870
2871 state = ctx->ctx_state;
2872 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2873 is_system = ctx->ctx_fl_system;
2874 task = ctx->ctx_task;
2875 impl_pmds = pmu_conf->impl_pmds[0];
2876
2877 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2878
2879 if (is_loaded) {
2880 thread = &task->thread;
2881 /*
2882 * In system wide and when the context is loaded, access can only happen
2883 * when the caller is running on the CPU being monitored by the session.
2884 * It does not have to be the owner (ctx_task) of the context per se.
2885 */
2886 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2887 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2888 return -EBUSY;
2889 }
2890 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2891 }
2892 expert_mode = pfm_sysctl.expert_mode;
2893
2894 for (i = 0; i < count; i++, req++) {
2895
2896 cnum = req->reg_num;
2897 reg_flags = req->reg_flags;
2898 value = req->reg_value;
2899 smpl_pmds = req->reg_smpl_pmds[0];
2900 reset_pmds = req->reg_reset_pmds[0];
2901 flags = 0;
2902
2903
2904 if (cnum >= PMU_MAX_PMCS) {
2905 DPRINT(("pmc%u is invalid\n", cnum));
2906 goto error;
2907 }
2908
2909 pmc_type = pmu_conf->pmc_desc[cnum].type;
2910 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2911 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2912 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2913
2914 /*
2915 * we reject all non implemented PMC as well
2916 * as attempts to modify PMC[0-3] which are used
2917 * as status registers by the PMU
2918 */
2919 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2920 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2921 goto error;
2922 }
2923 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2924 /*
2925 * If the PMC is a monitor, then if the value is not the default:
2926 * - system-wide session: PMCx.pm=1 (privileged monitor)
2927 * - per-task : PMCx.pm=0 (user monitor)
2928 */
2929 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2930 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2931 cnum,
2932 pmc_pm,
2933 is_system));
2934 goto error;
2935 }
2936
2937 if (is_counting) {
2938 /*
2939 * enforce generation of overflow interrupt. Necessary on all
2940 * CPUs.
2941 */
2942 value |= 1 << PMU_PMC_OI;
2943
2944 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2945 flags |= PFM_REGFL_OVFL_NOTIFY;
2946 }
2947
2948 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2949
2950 /* verify validity of smpl_pmds */
2951 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2952 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2953 goto error;
2954 }
2955
2956 /* verify validity of reset_pmds */
2957 if ((reset_pmds & impl_pmds) != reset_pmds) {
2958 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2959 goto error;
2960 }
2961 } else {
2962 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2963 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2964 goto error;
2965 }
2966 /* eventid on non-counting monitors are ignored */
2967 }
2968
2969 /*
2970 * execute write checker, if any
2971 */
2972 if (likely(expert_mode == 0 && wr_func)) {
2973 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2974 if (ret) goto error;
2975 ret = -EINVAL;
2976 }
2977
2978 /*
2979 * no error on this register
2980 */
2981 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2982
2983 /*
2984 * Now we commit the changes to the software state
2985 */
2986
2987 /*
2988 * update overflow information
2989 */
2990 if (is_counting) {
2991 /*
2992 * full flag update each time a register is programmed
2993 */
2994 ctx->ctx_pmds[cnum].flags = flags;
2995
2996 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2997 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2998 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2999
3000 /*
3001 * Mark all PMDS to be accessed as used.
3002 *
3003 * We do not keep track of PMC because we have to
3004 * systematically restore ALL of them.
3005 *
3006 * We do not update the used_monitors mask, because
3007 * if we have not programmed them, then will be in
3008 * a quiescent state, therefore we will not need to
3009 * mask/restore then when context is MASKED.
3010 */
3011 CTX_USED_PMD(ctx, reset_pmds);
3012 CTX_USED_PMD(ctx, smpl_pmds);
3013 /*
3014 * make sure we do not try to reset on
3015 * restart because we have established new values
3016 */
3017 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3018 }
3019 /*
3020 * Needed in case the user does not initialize the equivalent
3021 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3022 * possible leak here.
3023 */
3024 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3025
3026 /*
3027 * keep track of the monitor PMC that we are using.
3028 * we save the value of the pmc in ctx_pmcs[] and if
3029 * the monitoring is not stopped for the context we also
3030 * place it in the saved state area so that it will be
3031 * picked up later by the context switch code.
3032 *
3033 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3034 *
3035 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3036 * monitoring needs to be stopped.
3037 */
3038 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3039
3040 /*
3041 * update context state
3042 */
3043 ctx->ctx_pmcs[cnum] = value;
3044
3045 if (is_loaded) {
3046 /*
3047 * write thread state
3048 */
3049 if (is_system == 0) thread->pmcs[cnum] = value;
3050
3051 /*
3052 * write hardware register if we can
3053 */
3054 if (can_access_pmu) {
3055 ia64_set_pmc(cnum, value);
3056 }
3057#ifdef CONFIG_SMP
3058 else {
3059 /*
3060 * per-task SMP only here
3061 *
3062 * we are guaranteed that the task is not running on the other CPU,
3063 * we indicate that this PMD will need to be reloaded if the task
3064 * is rescheduled on the CPU it ran last on.
3065 */
3066 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3067 }
3068#endif
3069 }
3070
3071 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3072 cnum,
3073 value,
3074 is_loaded,
3075 can_access_pmu,
3076 flags,
3077 ctx->ctx_all_pmcs[0],
3078 ctx->ctx_used_pmds[0],
3079 ctx->ctx_pmds[cnum].eventid,
3080 smpl_pmds,
3081 reset_pmds,
3082 ctx->ctx_reload_pmcs[0],
3083 ctx->ctx_used_monitors[0],
3084 ctx->ctx_ovfl_regs[0]));
3085 }
3086
3087 /*
3088 * make sure the changes are visible
3089 */
3090 if (can_access_pmu) ia64_srlz_d();
3091
3092 return 0;
3093error:
3094 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3095 return ret;
3096}
3097
3098static int
3099pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3100{
3101 struct thread_struct *thread = NULL;
3102 struct task_struct *task;
3103 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3104 unsigned long value, hw_value, ovfl_mask;
3105 unsigned int cnum;
3106 int i, can_access_pmu = 0, state;
3107 int is_counting, is_loaded, is_system, expert_mode;
3108 int ret = -EINVAL;
3109 pfm_reg_check_t wr_func;
3110
3111
3112 state = ctx->ctx_state;
3113 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3114 is_system = ctx->ctx_fl_system;
3115 ovfl_mask = pmu_conf->ovfl_val;
3116 task = ctx->ctx_task;
3117
3118 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3119
3120 /*
3121 * on both UP and SMP, we can only write to the PMC when the task is
3122 * the owner of the local PMU.
3123 */
3124 if (likely(is_loaded)) {
3125 thread = &task->thread;
3126 /*
3127 * In system wide and when the context is loaded, access can only happen
3128 * when the caller is running on the CPU being monitored by the session.
3129 * It does not have to be the owner (ctx_task) of the context per se.
3130 */
3131 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3132 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3133 return -EBUSY;
3134 }
3135 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3136 }
3137 expert_mode = pfm_sysctl.expert_mode;
3138
3139 for (i = 0; i < count; i++, req++) {
3140
3141 cnum = req->reg_num;
3142 value = req->reg_value;
3143
3144 if (!PMD_IS_IMPL(cnum)) {
3145 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3146 goto abort_mission;
3147 }
3148 is_counting = PMD_IS_COUNTING(cnum);
3149 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3150
3151 /*
3152 * execute write checker, if any
3153 */
3154 if (unlikely(expert_mode == 0 && wr_func)) {
3155 unsigned long v = value;
3156
3157 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3158 if (ret) goto abort_mission;
3159
3160 value = v;
3161 ret = -EINVAL;
3162 }
3163
3164 /*
3165 * no error on this register
3166 */
3167 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3168
3169 /*
3170 * now commit changes to software state
3171 */
3172 hw_value = value;
3173
3174 /*
3175 * update virtualized (64bits) counter
3176 */
3177 if (is_counting) {
3178 /*
3179 * write context state
3180 */
3181 ctx->ctx_pmds[cnum].lval = value;
3182
3183 /*
3184 * when context is load we use the split value
3185 */
3186 if (is_loaded) {
3187 hw_value = value & ovfl_mask;
3188 value = value & ~ovfl_mask;
3189 }
3190 }
3191 /*
3192 * update reset values (not just for counters)
3193 */
3194 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3195 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3196
3197 /*
3198 * update randomization parameters (not just for counters)
3199 */
3200 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3201 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3202
3203 /*
3204 * update context value
3205 */
3206 ctx->ctx_pmds[cnum].val = value;
3207
3208 /*
3209 * Keep track of what we use
3210 *
3211 * We do not keep track of PMC because we have to
3212 * systematically restore ALL of them.
3213 */
3214 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3215
3216 /*
3217 * mark this PMD register used as well
3218 */
3219 CTX_USED_PMD(ctx, RDEP(cnum));
3220
3221 /*
3222 * make sure we do not try to reset on
3223 * restart because we have established new values
3224 */
3225 if (is_counting && state == PFM_CTX_MASKED) {
3226 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3227 }
3228
3229 if (is_loaded) {
3230 /*
3231 * write thread state
3232 */
3233 if (is_system == 0) thread->pmds[cnum] = hw_value;
3234
3235 /*
3236 * write hardware register if we can
3237 */
3238 if (can_access_pmu) {
3239 ia64_set_pmd(cnum, hw_value);
3240 } else {
3241#ifdef CONFIG_SMP
3242 /*
3243 * we are guaranteed that the task is not running on the other CPU,
3244 * we indicate that this PMD will need to be reloaded if the task
3245 * is rescheduled on the CPU it ran last on.
3246 */
3247 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3248#endif
3249 }
3250 }
3251
3252 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3253 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3254 cnum,
3255 value,
3256 is_loaded,
3257 can_access_pmu,
3258 hw_value,
3259 ctx->ctx_pmds[cnum].val,
3260 ctx->ctx_pmds[cnum].short_reset,
3261 ctx->ctx_pmds[cnum].long_reset,
3262 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3263 ctx->ctx_pmds[cnum].seed,
3264 ctx->ctx_pmds[cnum].mask,
3265 ctx->ctx_used_pmds[0],
3266 ctx->ctx_pmds[cnum].reset_pmds[0],
3267 ctx->ctx_reload_pmds[0],
3268 ctx->ctx_all_pmds[0],
3269 ctx->ctx_ovfl_regs[0]));
3270 }
3271
3272 /*
3273 * make changes visible
3274 */
3275 if (can_access_pmu) ia64_srlz_d();
3276
3277 return 0;
3278
3279abort_mission:
3280 /*
3281 * for now, we have only one possibility for error
3282 */
3283 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3284 return ret;
3285}
3286
3287/*
3288 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3289 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3290 * interrupt is delivered during the call, it will be kept pending until we leave, making
3291 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3292 * guaranteed to return consistent data to the user, it may simply be old. It is not
3293 * trivial to treat the overflow while inside the call because you may end up in
3294 * some module sampling buffer code causing deadlocks.
3295 */
3296static int
3297pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3298{
3299 struct thread_struct *thread = NULL;
3300 struct task_struct *task;
3301 unsigned long val = 0UL, lval, ovfl_mask, sval;
3302 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3303 unsigned int cnum, reg_flags = 0;
3304 int i, can_access_pmu = 0, state;
3305 int is_loaded, is_system, is_counting, expert_mode;
3306 int ret = -EINVAL;
3307 pfm_reg_check_t rd_func;
3308
3309 /*
3310 * access is possible when loaded only for
3311 * self-monitoring tasks or in UP mode
3312 */
3313
3314 state = ctx->ctx_state;
3315 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3316 is_system = ctx->ctx_fl_system;
3317 ovfl_mask = pmu_conf->ovfl_val;
3318 task = ctx->ctx_task;
3319
3320 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3321
3322 if (likely(is_loaded)) {
3323 thread = &task->thread;
3324 /*
3325 * In system wide and when the context is loaded, access can only happen
3326 * when the caller is running on the CPU being monitored by the session.
3327 * It does not have to be the owner (ctx_task) of the context per se.
3328 */
3329 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3330 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3331 return -EBUSY;
3332 }
3333 /*
3334 * this can be true when not self-monitoring only in UP
3335 */
3336 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3337
3338 if (can_access_pmu) ia64_srlz_d();
3339 }
3340 expert_mode = pfm_sysctl.expert_mode;
3341
3342 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3343 is_loaded,
3344 can_access_pmu,
3345 state));
3346
3347 /*
3348 * on both UP and SMP, we can only read the PMD from the hardware register when
3349 * the task is the owner of the local PMU.
3350 */
3351
3352 for (i = 0; i < count; i++, req++) {
3353
3354 cnum = req->reg_num;
3355 reg_flags = req->reg_flags;
3356
3357 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3358 /*
3359 * we can only read the register that we use. That includes
3360 * the one we explicitely initialize AND the one we want included
3361 * in the sampling buffer (smpl_regs).
3362 *
3363 * Having this restriction allows optimization in the ctxsw routine
3364 * without compromising security (leaks)
3365 */
3366 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3367
3368 sval = ctx->ctx_pmds[cnum].val;
3369 lval = ctx->ctx_pmds[cnum].lval;
3370 is_counting = PMD_IS_COUNTING(cnum);
3371
3372 /*
3373 * If the task is not the current one, then we check if the
3374 * PMU state is still in the local live register due to lazy ctxsw.
3375 * If true, then we read directly from the registers.
3376 */
3377 if (can_access_pmu){
3378 val = ia64_get_pmd(cnum);
3379 } else {
3380 /*
3381 * context has been saved
3382 * if context is zombie, then task does not exist anymore.
3383 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3384 */
3385 val = is_loaded ? thread->pmds[cnum] : 0UL;
3386 }
3387 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3388
3389 if (is_counting) {
3390 /*
3391 * XXX: need to check for overflow when loaded
3392 */
3393 val &= ovfl_mask;
3394 val += sval;
3395 }
3396
3397 /*
3398 * execute read checker, if any
3399 */
3400 if (unlikely(expert_mode == 0 && rd_func)) {
3401 unsigned long v = val;
3402 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3403 if (ret) goto error;
3404 val = v;
3405 ret = -EINVAL;
3406 }
3407
3408 PFM_REG_RETFLAG_SET(reg_flags, 0);
3409
3410 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3411
3412 /*
3413 * update register return value, abort all if problem during copy.
3414 * we only modify the reg_flags field. no check mode is fine because
3415 * access has been verified upfront in sys_perfmonctl().
3416 */
3417 req->reg_value = val;
3418 req->reg_flags = reg_flags;
3419 req->reg_last_reset_val = lval;
3420 }
3421
3422 return 0;
3423
3424error:
3425 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3426 return ret;
3427}
3428
3429int
3430pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3431{
3432 pfm_context_t *ctx;
3433
3434 if (req == NULL) return -EINVAL;
3435
3436 ctx = GET_PMU_CTX();
3437
3438 if (ctx == NULL) return -EINVAL;
3439
3440 /*
3441 * for now limit to current task, which is enough when calling
3442 * from overflow handler
3443 */
3444 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3445
3446 return pfm_write_pmcs(ctx, req, nreq, regs);
3447}
3448EXPORT_SYMBOL(pfm_mod_write_pmcs);
3449
3450int
3451pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3452{
3453 pfm_context_t *ctx;
3454
3455 if (req == NULL) return -EINVAL;
3456
3457 ctx = GET_PMU_CTX();
3458
3459 if (ctx == NULL) return -EINVAL;
3460
3461 /*
3462 * for now limit to current task, which is enough when calling
3463 * from overflow handler
3464 */
3465 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3466
3467 return pfm_read_pmds(ctx, req, nreq, regs);
3468}
3469EXPORT_SYMBOL(pfm_mod_read_pmds);
3470
3471/*
3472 * Only call this function when a process it trying to
3473 * write the debug registers (reading is always allowed)
3474 */
3475int
3476pfm_use_debug_registers(struct task_struct *task)
3477{
3478 pfm_context_t *ctx = task->thread.pfm_context;
3479 unsigned long flags;
3480 int ret = 0;
3481
3482 if (pmu_conf->use_rr_dbregs == 0) return 0;
3483
3484 DPRINT(("called for [%d]\n", task->pid));
3485
3486 /*
3487 * do it only once
3488 */
3489 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3490
3491 /*
3492 * Even on SMP, we do not need to use an atomic here because
3493 * the only way in is via ptrace() and this is possible only when the
3494 * process is stopped. Even in the case where the ctxsw out is not totally
3495 * completed by the time we come here, there is no way the 'stopped' process
3496 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3497 * So this is always safe.
3498 */
3499 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3500
3501 LOCK_PFS(flags);
3502
3503 /*
3504 * We cannot allow setting breakpoints when system wide monitoring
3505 * sessions are using the debug registers.
3506 */
3507 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3508 ret = -1;
3509 else
3510 pfm_sessions.pfs_ptrace_use_dbregs++;
3511
3512 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3513 pfm_sessions.pfs_ptrace_use_dbregs,
3514 pfm_sessions.pfs_sys_use_dbregs,
3515 task->pid, ret));
3516
3517 UNLOCK_PFS(flags);
3518
3519 return ret;
3520}
3521
3522/*
3523 * This function is called for every task that exits with the
3524 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3525 * able to use the debug registers for debugging purposes via
3526 * ptrace(). Therefore we know it was not using them for
3527 * perfmormance monitoring, so we only decrement the number
3528 * of "ptraced" debug register users to keep the count up to date
3529 */
3530int
3531pfm_release_debug_registers(struct task_struct *task)
3532{
3533 unsigned long flags;
3534 int ret;
3535
3536 if (pmu_conf->use_rr_dbregs == 0) return 0;
3537
3538 LOCK_PFS(flags);
3539 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3540 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3541 ret = -1;
3542 } else {
3543 pfm_sessions.pfs_ptrace_use_dbregs--;
3544 ret = 0;
3545 }
3546 UNLOCK_PFS(flags);
3547
3548 return ret;
3549}
3550
3551static int
3552pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3553{
3554 struct task_struct *task;
3555 pfm_buffer_fmt_t *fmt;
3556 pfm_ovfl_ctrl_t rst_ctrl;
3557 int state, is_system;
3558 int ret = 0;
3559
3560 state = ctx->ctx_state;
3561 fmt = ctx->ctx_buf_fmt;
3562 is_system = ctx->ctx_fl_system;
3563 task = PFM_CTX_TASK(ctx);
3564
3565 switch(state) {
3566 case PFM_CTX_MASKED:
3567 break;
3568 case PFM_CTX_LOADED:
3569 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3570 /* fall through */
3571 case PFM_CTX_UNLOADED:
3572 case PFM_CTX_ZOMBIE:
3573 DPRINT(("invalid state=%d\n", state));
3574 return -EBUSY;
3575 default:
3576 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3577 return -EINVAL;
3578 }
3579
3580 /*
3581 * In system wide and when the context is loaded, access can only happen
3582 * when the caller is running on the CPU being monitored by the session.
3583 * It does not have to be the owner (ctx_task) of the context per se.
3584 */
3585 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3586 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3587 return -EBUSY;
3588 }
3589
3590 /* sanity check */
3591 if (unlikely(task == NULL)) {
3592 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3593 return -EINVAL;
3594 }
3595
3596 if (task == current || is_system) {
3597
3598 fmt = ctx->ctx_buf_fmt;
3599
3600 DPRINT(("restarting self %d ovfl=0x%lx\n",
3601 task->pid,
3602 ctx->ctx_ovfl_regs[0]));
3603
3604 if (CTX_HAS_SMPL(ctx)) {
3605
3606 prefetch(ctx->ctx_smpl_hdr);
3607
3608 rst_ctrl.bits.mask_monitoring = 0;
3609 rst_ctrl.bits.reset_ovfl_pmds = 0;
3610
3611 if (state == PFM_CTX_LOADED)
3612 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3613 else
3614 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3615 } else {
3616 rst_ctrl.bits.mask_monitoring = 0;
3617 rst_ctrl.bits.reset_ovfl_pmds = 1;
3618 }
3619
3620 if (ret == 0) {
3621 if (rst_ctrl.bits.reset_ovfl_pmds)
3622 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3623
3624 if (rst_ctrl.bits.mask_monitoring == 0) {
3625 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3626
3627 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3628 } else {
3629 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3630
3631 // cannot use pfm_stop_monitoring(task, regs);
3632 }
3633 }
3634 /*
3635 * clear overflowed PMD mask to remove any stale information
3636 */
3637 ctx->ctx_ovfl_regs[0] = 0UL;
3638
3639 /*
3640 * back to LOADED state
3641 */
3642 ctx->ctx_state = PFM_CTX_LOADED;
3643
3644 /*
3645 * XXX: not really useful for self monitoring
3646 */
3647 ctx->ctx_fl_can_restart = 0;
3648
3649 return 0;
3650 }
3651
3652 /*
3653 * restart another task
3654 */
3655
3656 /*
3657 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3658 * one is seen by the task.
3659 */
3660 if (state == PFM_CTX_MASKED) {
3661 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3662 /*
3663 * will prevent subsequent restart before this one is
3664 * seen by other task
3665 */
3666 ctx->ctx_fl_can_restart = 0;
3667 }
3668
3669 /*
3670 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3671 * the task is blocked or on its way to block. That's the normal
3672 * restart path. If the monitoring is not masked, then the task
3673 * can be actively monitoring and we cannot directly intervene.
3674 * Therefore we use the trap mechanism to catch the task and
3675 * force it to reset the buffer/reset PMDs.
3676 *
3677 * if non-blocking, then we ensure that the task will go into
3678 * pfm_handle_work() before returning to user mode.
3679 *
3680 * We cannot explicitely reset another task, it MUST always
3681 * be done by the task itself. This works for system wide because
3682 * the tool that is controlling the session is logically doing
3683 * "self-monitoring".
3684 */
3685 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3686 DPRINT(("unblocking [%d] \n", task->pid));
3687 up(&ctx->ctx_restart_sem);
3688 } else {
3689 DPRINT(("[%d] armed exit trap\n", task->pid));
3690
3691 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3692
3693 PFM_SET_WORK_PENDING(task, 1);
3694
3695 pfm_set_task_notify(task);
3696
3697 /*
3698 * XXX: send reschedule if task runs on another CPU
3699 */
3700 }
3701 return 0;
3702}
3703
3704static int
3705pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3706{
3707 unsigned int m = *(unsigned int *)arg;
3708
3709 pfm_sysctl.debug = m == 0 ? 0 : 1;
3710
Linus Torvalds1da177e2005-04-16 15:20:36 -07003711 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3712
3713 if (m == 0) {
3714 memset(pfm_stats, 0, sizeof(pfm_stats));
3715 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3716 }
3717 return 0;
3718}
3719
3720/*
3721 * arg can be NULL and count can be zero for this function
3722 */
3723static int
3724pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3725{
3726 struct thread_struct *thread = NULL;
3727 struct task_struct *task;
3728 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3729 unsigned long flags;
3730 dbreg_t dbreg;
3731 unsigned int rnum;
3732 int first_time;
3733 int ret = 0, state;
3734 int i, can_access_pmu = 0;
3735 int is_system, is_loaded;
3736
3737 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3738
3739 state = ctx->ctx_state;
3740 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3741 is_system = ctx->ctx_fl_system;
3742 task = ctx->ctx_task;
3743
3744 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3745
3746 /*
3747 * on both UP and SMP, we can only write to the PMC when the task is
3748 * the owner of the local PMU.
3749 */
3750 if (is_loaded) {
3751 thread = &task->thread;
3752 /*
3753 * In system wide and when the context is loaded, access can only happen
3754 * when the caller is running on the CPU being monitored by the session.
3755 * It does not have to be the owner (ctx_task) of the context per se.
3756 */
3757 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3758 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3759 return -EBUSY;
3760 }
3761 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3762 }
3763
3764 /*
3765 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3766 * ensuring that no real breakpoint can be installed via this call.
3767 *
3768 * IMPORTANT: regs can be NULL in this function
3769 */
3770
3771 first_time = ctx->ctx_fl_using_dbreg == 0;
3772
3773 /*
3774 * don't bother if we are loaded and task is being debugged
3775 */
3776 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3777 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3778 return -EBUSY;
3779 }
3780
3781 /*
3782 * check for debug registers in system wide mode
3783 *
3784 * If though a check is done in pfm_context_load(),
3785 * we must repeat it here, in case the registers are
3786 * written after the context is loaded
3787 */
3788 if (is_loaded) {
3789 LOCK_PFS(flags);
3790
3791 if (first_time && is_system) {
3792 if (pfm_sessions.pfs_ptrace_use_dbregs)
3793 ret = -EBUSY;
3794 else
3795 pfm_sessions.pfs_sys_use_dbregs++;
3796 }
3797 UNLOCK_PFS(flags);
3798 }
3799
3800 if (ret != 0) return ret;
3801
3802 /*
3803 * mark ourself as user of the debug registers for
3804 * perfmon purposes.
3805 */
3806 ctx->ctx_fl_using_dbreg = 1;
3807
3808 /*
3809 * clear hardware registers to make sure we don't
3810 * pick up stale state.
3811 *
3812 * for a system wide session, we do not use
3813 * thread.dbr, thread.ibr because this process
3814 * never leaves the current CPU and the state
3815 * is shared by all processes running on it
3816 */
3817 if (first_time && can_access_pmu) {
3818 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3819 for (i=0; i < pmu_conf->num_ibrs; i++) {
3820 ia64_set_ibr(i, 0UL);
3821 ia64_dv_serialize_instruction();
3822 }
3823 ia64_srlz_i();
3824 for (i=0; i < pmu_conf->num_dbrs; i++) {
3825 ia64_set_dbr(i, 0UL);
3826 ia64_dv_serialize_data();
3827 }
3828 ia64_srlz_d();
3829 }
3830
3831 /*
3832 * Now install the values into the registers
3833 */
3834 for (i = 0; i < count; i++, req++) {
3835
3836 rnum = req->dbreg_num;
3837 dbreg.val = req->dbreg_value;
3838
3839 ret = -EINVAL;
3840
3841 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3842 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3843 rnum, dbreg.val, mode, i, count));
3844
3845 goto abort_mission;
3846 }
3847
3848 /*
3849 * make sure we do not install enabled breakpoint
3850 */
3851 if (rnum & 0x1) {
3852 if (mode == PFM_CODE_RR)
3853 dbreg.ibr.ibr_x = 0;
3854 else
3855 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3856 }
3857
3858 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3859
3860 /*
3861 * Debug registers, just like PMC, can only be modified
3862 * by a kernel call. Moreover, perfmon() access to those
3863 * registers are centralized in this routine. The hardware
3864 * does not modify the value of these registers, therefore,
3865 * if we save them as they are written, we can avoid having
3866 * to save them on context switch out. This is made possible
3867 * by the fact that when perfmon uses debug registers, ptrace()
3868 * won't be able to modify them concurrently.
3869 */
3870 if (mode == PFM_CODE_RR) {
3871 CTX_USED_IBR(ctx, rnum);
3872
3873 if (can_access_pmu) {
3874 ia64_set_ibr(rnum, dbreg.val);
3875 ia64_dv_serialize_instruction();
3876 }
3877
3878 ctx->ctx_ibrs[rnum] = dbreg.val;
3879
3880 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3881 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3882 } else {
3883 CTX_USED_DBR(ctx, rnum);
3884
3885 if (can_access_pmu) {
3886 ia64_set_dbr(rnum, dbreg.val);
3887 ia64_dv_serialize_data();
3888 }
3889 ctx->ctx_dbrs[rnum] = dbreg.val;
3890
3891 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3892 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3893 }
3894 }
3895
3896 return 0;
3897
3898abort_mission:
3899 /*
3900 * in case it was our first attempt, we undo the global modifications
3901 */
3902 if (first_time) {
3903 LOCK_PFS(flags);
3904 if (ctx->ctx_fl_system) {
3905 pfm_sessions.pfs_sys_use_dbregs--;
3906 }
3907 UNLOCK_PFS(flags);
3908 ctx->ctx_fl_using_dbreg = 0;
3909 }
3910 /*
3911 * install error return flag
3912 */
3913 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3914
3915 return ret;
3916}
3917
3918static int
3919pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3920{
3921 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3922}
3923
3924static int
3925pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3926{
3927 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3928}
3929
3930int
3931pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3932{
3933 pfm_context_t *ctx;
3934
3935 if (req == NULL) return -EINVAL;
3936
3937 ctx = GET_PMU_CTX();
3938
3939 if (ctx == NULL) return -EINVAL;
3940
3941 /*
3942 * for now limit to current task, which is enough when calling
3943 * from overflow handler
3944 */
3945 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3946
3947 return pfm_write_ibrs(ctx, req, nreq, regs);
3948}
3949EXPORT_SYMBOL(pfm_mod_write_ibrs);
3950
3951int
3952pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3953{
3954 pfm_context_t *ctx;
3955
3956 if (req == NULL) return -EINVAL;
3957
3958 ctx = GET_PMU_CTX();
3959
3960 if (ctx == NULL) return -EINVAL;
3961
3962 /*
3963 * for now limit to current task, which is enough when calling
3964 * from overflow handler
3965 */
3966 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3967
3968 return pfm_write_dbrs(ctx, req, nreq, regs);
3969}
3970EXPORT_SYMBOL(pfm_mod_write_dbrs);
3971
3972
3973static int
3974pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3975{
3976 pfarg_features_t *req = (pfarg_features_t *)arg;
3977
3978 req->ft_version = PFM_VERSION;
3979 return 0;
3980}
3981
3982static int
3983pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3984{
3985 struct pt_regs *tregs;
3986 struct task_struct *task = PFM_CTX_TASK(ctx);
3987 int state, is_system;
3988
3989 state = ctx->ctx_state;
3990 is_system = ctx->ctx_fl_system;
3991
3992 /*
3993 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3994 */
3995 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3996
3997 /*
3998 * In system wide and when the context is loaded, access can only happen
3999 * when the caller is running on the CPU being monitored by the session.
4000 * It does not have to be the owner (ctx_task) of the context per se.
4001 */
4002 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4003 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4004 return -EBUSY;
4005 }
4006 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4007 PFM_CTX_TASK(ctx)->pid,
4008 state,
4009 is_system));
4010 /*
4011 * in system mode, we need to update the PMU directly
4012 * and the user level state of the caller, which may not
4013 * necessarily be the creator of the context.
4014 */
4015 if (is_system) {
4016 /*
4017 * Update local PMU first
4018 *
4019 * disable dcr pp
4020 */
4021 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4022 ia64_srlz_i();
4023
4024 /*
4025 * update local cpuinfo
4026 */
4027 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4028
4029 /*
4030 * stop monitoring, does srlz.i
4031 */
4032 pfm_clear_psr_pp();
4033
4034 /*
4035 * stop monitoring in the caller
4036 */
4037 ia64_psr(regs)->pp = 0;
4038
4039 return 0;
4040 }
4041 /*
4042 * per-task mode
4043 */
4044
4045 if (task == current) {
4046 /* stop monitoring at kernel level */
4047 pfm_clear_psr_up();
4048
4049 /*
4050 * stop monitoring at the user level
4051 */
4052 ia64_psr(regs)->up = 0;
4053 } else {
4054 tregs = ia64_task_regs(task);
4055
4056 /*
4057 * stop monitoring at the user level
4058 */
4059 ia64_psr(tregs)->up = 0;
4060
4061 /*
4062 * monitoring disabled in kernel at next reschedule
4063 */
4064 ctx->ctx_saved_psr_up = 0;
4065 DPRINT(("task=[%d]\n", task->pid));
4066 }
4067 return 0;
4068}
4069
4070
4071static int
4072pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4073{
4074 struct pt_regs *tregs;
4075 int state, is_system;
4076
4077 state = ctx->ctx_state;
4078 is_system = ctx->ctx_fl_system;
4079
4080 if (state != PFM_CTX_LOADED) return -EINVAL;
4081
4082 /*
4083 * In system wide and when the context is loaded, access can only happen
4084 * when the caller is running on the CPU being monitored by the session.
4085 * It does not have to be the owner (ctx_task) of the context per se.
4086 */
4087 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4088 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4089 return -EBUSY;
4090 }
4091
4092 /*
4093 * in system mode, we need to update the PMU directly
4094 * and the user level state of the caller, which may not
4095 * necessarily be the creator of the context.
4096 */
4097 if (is_system) {
4098
4099 /*
4100 * set user level psr.pp for the caller
4101 */
4102 ia64_psr(regs)->pp = 1;
4103
4104 /*
4105 * now update the local PMU and cpuinfo
4106 */
4107 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4108
4109 /*
4110 * start monitoring at kernel level
4111 */
4112 pfm_set_psr_pp();
4113
4114 /* enable dcr pp */
4115 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4116 ia64_srlz_i();
4117
4118 return 0;
4119 }
4120
4121 /*
4122 * per-process mode
4123 */
4124
4125 if (ctx->ctx_task == current) {
4126
4127 /* start monitoring at kernel level */
4128 pfm_set_psr_up();
4129
4130 /*
4131 * activate monitoring at user level
4132 */
4133 ia64_psr(regs)->up = 1;
4134
4135 } else {
4136 tregs = ia64_task_regs(ctx->ctx_task);
4137
4138 /*
4139 * start monitoring at the kernel level the next
4140 * time the task is scheduled
4141 */
4142 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4143
4144 /*
4145 * activate monitoring at user level
4146 */
4147 ia64_psr(tregs)->up = 1;
4148 }
4149 return 0;
4150}
4151
4152static int
4153pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4154{
4155 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4156 unsigned int cnum;
4157 int i;
4158 int ret = -EINVAL;
4159
4160 for (i = 0; i < count; i++, req++) {
4161
4162 cnum = req->reg_num;
4163
4164 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4165
4166 req->reg_value = PMC_DFL_VAL(cnum);
4167
4168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4169
4170 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4171 }
4172 return 0;
4173
4174abort_mission:
4175 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4176 return ret;
4177}
4178
4179static int
4180pfm_check_task_exist(pfm_context_t *ctx)
4181{
4182 struct task_struct *g, *t;
4183 int ret = -ESRCH;
4184
4185 read_lock(&tasklist_lock);
4186
4187 do_each_thread (g, t) {
4188 if (t->thread.pfm_context == ctx) {
4189 ret = 0;
4190 break;
4191 }
4192 } while_each_thread (g, t);
4193
4194 read_unlock(&tasklist_lock);
4195
4196 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4197
4198 return ret;
4199}
4200
4201static int
4202pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4203{
4204 struct task_struct *task;
4205 struct thread_struct *thread;
4206 struct pfm_context_t *old;
4207 unsigned long flags;
4208#ifndef CONFIG_SMP
4209 struct task_struct *owner_task = NULL;
4210#endif
4211 pfarg_load_t *req = (pfarg_load_t *)arg;
4212 unsigned long *pmcs_source, *pmds_source;
4213 int the_cpu;
4214 int ret = 0;
4215 int state, is_system, set_dbregs = 0;
4216
4217 state = ctx->ctx_state;
4218 is_system = ctx->ctx_fl_system;
4219 /*
4220 * can only load from unloaded or terminated state
4221 */
4222 if (state != PFM_CTX_UNLOADED) {
4223 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4224 req->load_pid,
4225 ctx->ctx_state));
stephane eraniana5a70b72005-04-18 11:42:00 -07004226 return -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004227 }
4228
4229 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4230
4231 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4232 DPRINT(("cannot use blocking mode on self\n"));
4233 return -EINVAL;
4234 }
4235
4236 ret = pfm_get_task(ctx, req->load_pid, &task);
4237 if (ret) {
4238 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4239 return ret;
4240 }
4241
4242 ret = -EINVAL;
4243
4244 /*
4245 * system wide is self monitoring only
4246 */
4247 if (is_system && task != current) {
4248 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4249 req->load_pid));
4250 goto error;
4251 }
4252
4253 thread = &task->thread;
4254
4255 ret = 0;
4256 /*
4257 * cannot load a context which is using range restrictions,
4258 * into a task that is being debugged.
4259 */
4260 if (ctx->ctx_fl_using_dbreg) {
4261 if (thread->flags & IA64_THREAD_DBG_VALID) {
4262 ret = -EBUSY;
4263 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4264 goto error;
4265 }
4266 LOCK_PFS(flags);
4267
4268 if (is_system) {
4269 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4270 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4271 ret = -EBUSY;
4272 } else {
4273 pfm_sessions.pfs_sys_use_dbregs++;
4274 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4275 set_dbregs = 1;
4276 }
4277 }
4278
4279 UNLOCK_PFS(flags);
4280
4281 if (ret) goto error;
4282 }
4283
4284 /*
4285 * SMP system-wide monitoring implies self-monitoring.
4286 *
4287 * The programming model expects the task to
4288 * be pinned on a CPU throughout the session.
4289 * Here we take note of the current CPU at the
4290 * time the context is loaded. No call from
4291 * another CPU will be allowed.
4292 *
4293 * The pinning via shed_setaffinity()
4294 * must be done by the calling task prior
4295 * to this call.
4296 *
4297 * systemwide: keep track of CPU this session is supposed to run on
4298 */
4299 the_cpu = ctx->ctx_cpu = smp_processor_id();
4300
4301 ret = -EBUSY;
4302 /*
4303 * now reserve the session
4304 */
4305 ret = pfm_reserve_session(current, is_system, the_cpu);
4306 if (ret) goto error;
4307
4308 /*
4309 * task is necessarily stopped at this point.
4310 *
4311 * If the previous context was zombie, then it got removed in
4312 * pfm_save_regs(). Therefore we should not see it here.
4313 * If we see a context, then this is an active context
4314 *
4315 * XXX: needs to be atomic
4316 */
4317 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4318 thread->pfm_context, ctx));
4319
stephane.eranian@hp.com6bf11e82005-07-28 05:18:00 -07004320 ret = -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4322 if (old != NULL) {
4323 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4324 goto error_unres;
4325 }
4326
4327 pfm_reset_msgq(ctx);
4328
4329 ctx->ctx_state = PFM_CTX_LOADED;
4330
4331 /*
4332 * link context to task
4333 */
4334 ctx->ctx_task = task;
4335
4336 if (is_system) {
4337 /*
4338 * we load as stopped
4339 */
4340 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4341 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4342
4343 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4344 } else {
4345 thread->flags |= IA64_THREAD_PM_VALID;
4346 }
4347
4348 /*
4349 * propagate into thread-state
4350 */
4351 pfm_copy_pmds(task, ctx);
4352 pfm_copy_pmcs(task, ctx);
4353
4354 pmcs_source = thread->pmcs;
4355 pmds_source = thread->pmds;
4356
4357 /*
4358 * always the case for system-wide
4359 */
4360 if (task == current) {
4361
4362 if (is_system == 0) {
4363
4364 /* allow user level control */
4365 ia64_psr(regs)->sp = 0;
4366 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4367
4368 SET_LAST_CPU(ctx, smp_processor_id());
4369 INC_ACTIVATION();
4370 SET_ACTIVATION(ctx);
4371#ifndef CONFIG_SMP
4372 /*
4373 * push the other task out, if any
4374 */
4375 owner_task = GET_PMU_OWNER();
4376 if (owner_task) pfm_lazy_save_regs(owner_task);
4377#endif
4378 }
4379 /*
4380 * load all PMD from ctx to PMU (as opposed to thread state)
4381 * restore all PMC from ctx to PMU
4382 */
4383 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4384 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4385
4386 ctx->ctx_reload_pmcs[0] = 0UL;
4387 ctx->ctx_reload_pmds[0] = 0UL;
4388
4389 /*
4390 * guaranteed safe by earlier check against DBG_VALID
4391 */
4392 if (ctx->ctx_fl_using_dbreg) {
4393 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4394 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395 }
4396 /*
4397 * set new ownership
4398 */
4399 SET_PMU_OWNER(task, ctx);
4400
4401 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4402 } else {
4403 /*
4404 * when not current, task MUST be stopped, so this is safe
4405 */
4406 regs = ia64_task_regs(task);
4407
4408 /* force a full reload */
4409 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4410 SET_LAST_CPU(ctx, -1);
4411
4412 /* initial saved psr (stopped) */
4413 ctx->ctx_saved_psr_up = 0UL;
4414 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415 }
4416
4417 ret = 0;
4418
4419error_unres:
4420 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4421error:
4422 /*
4423 * we must undo the dbregs setting (for system-wide)
4424 */
4425 if (ret && set_dbregs) {
4426 LOCK_PFS(flags);
4427 pfm_sessions.pfs_sys_use_dbregs--;
4428 UNLOCK_PFS(flags);
4429 }
4430 /*
4431 * release task, there is now a link with the context
4432 */
4433 if (is_system == 0 && task != current) {
4434 pfm_put_task(task);
4435
4436 if (ret == 0) {
4437 ret = pfm_check_task_exist(ctx);
4438 if (ret) {
4439 ctx->ctx_state = PFM_CTX_UNLOADED;
4440 ctx->ctx_task = NULL;
4441 }
4442 }
4443 }
4444 return ret;
4445}
4446
4447/*
4448 * in this function, we do not need to increase the use count
4449 * for the task via get_task_struct(), because we hold the
4450 * context lock. If the task were to disappear while having
4451 * a context attached, it would go through pfm_exit_thread()
4452 * which also grabs the context lock and would therefore be blocked
4453 * until we are here.
4454 */
4455static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4456
4457static int
4458pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4459{
4460 struct task_struct *task = PFM_CTX_TASK(ctx);
4461 struct pt_regs *tregs;
4462 int prev_state, is_system;
4463 int ret;
4464
4465 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4466
4467 prev_state = ctx->ctx_state;
4468 is_system = ctx->ctx_fl_system;
4469
4470 /*
4471 * unload only when necessary
4472 */
4473 if (prev_state == PFM_CTX_UNLOADED) {
4474 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4475 return 0;
4476 }
4477
4478 /*
4479 * clear psr and dcr bits
4480 */
4481 ret = pfm_stop(ctx, NULL, 0, regs);
4482 if (ret) return ret;
4483
4484 ctx->ctx_state = PFM_CTX_UNLOADED;
4485
4486 /*
4487 * in system mode, we need to update the PMU directly
4488 * and the user level state of the caller, which may not
4489 * necessarily be the creator of the context.
4490 */
4491 if (is_system) {
4492
4493 /*
4494 * Update cpuinfo
4495 *
4496 * local PMU is taken care of in pfm_stop()
4497 */
4498 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4499 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500
4501 /*
4502 * save PMDs in context
4503 * release ownership
4504 */
4505 pfm_flush_pmds(current, ctx);
4506
4507 /*
4508 * at this point we are done with the PMU
4509 * so we can unreserve the resource.
4510 */
4511 if (prev_state != PFM_CTX_ZOMBIE)
4512 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513
4514 /*
4515 * disconnect context from task
4516 */
4517 task->thread.pfm_context = NULL;
4518 /*
4519 * disconnect task from context
4520 */
4521 ctx->ctx_task = NULL;
4522
4523 /*
4524 * There is nothing more to cleanup here.
4525 */
4526 return 0;
4527 }
4528
4529 /*
4530 * per-task mode
4531 */
4532 tregs = task == current ? regs : ia64_task_regs(task);
4533
4534 if (task == current) {
4535 /*
4536 * cancel user level control
4537 */
4538 ia64_psr(regs)->sp = 1;
4539
4540 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4541 }
4542 /*
4543 * save PMDs to context
4544 * release ownership
4545 */
4546 pfm_flush_pmds(task, ctx);
4547
4548 /*
4549 * at this point we are done with the PMU
4550 * so we can unreserve the resource.
4551 *
4552 * when state was ZOMBIE, we have already unreserved.
4553 */
4554 if (prev_state != PFM_CTX_ZOMBIE)
4555 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556
4557 /*
4558 * reset activation counter and psr
4559 */
4560 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4561 SET_LAST_CPU(ctx, -1);
4562
4563 /*
4564 * PMU state will not be restored
4565 */
4566 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567
4568 /*
4569 * break links between context and task
4570 */
4571 task->thread.pfm_context = NULL;
4572 ctx->ctx_task = NULL;
4573
4574 PFM_SET_WORK_PENDING(task, 0);
4575
4576 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4577 ctx->ctx_fl_can_restart = 0;
4578 ctx->ctx_fl_going_zombie = 0;
4579
4580 DPRINT(("disconnected [%d] from context\n", task->pid));
4581
4582 return 0;
4583}
4584
4585
4586/*
4587 * called only from exit_thread(): task == current
4588 * we come here only if current has a context attached (loaded or masked)
4589 */
4590void
4591pfm_exit_thread(struct task_struct *task)
4592{
4593 pfm_context_t *ctx;
4594 unsigned long flags;
4595 struct pt_regs *regs = ia64_task_regs(task);
4596 int ret, state;
4597 int free_ok = 0;
4598
4599 ctx = PFM_GET_CTX(task);
4600
4601 PROTECT_CTX(ctx, flags);
4602
4603 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4604
4605 state = ctx->ctx_state;
4606 switch(state) {
4607 case PFM_CTX_UNLOADED:
4608 /*
4609 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4610 * be in unloaded state
4611 */
4612 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4613 break;
4614 case PFM_CTX_LOADED:
4615 case PFM_CTX_MASKED:
4616 ret = pfm_context_unload(ctx, NULL, 0, regs);
4617 if (ret) {
4618 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4619 }
4620 DPRINT(("ctx unloaded for current state was %d\n", state));
4621
4622 pfm_end_notify_user(ctx);
4623 break;
4624 case PFM_CTX_ZOMBIE:
4625 ret = pfm_context_unload(ctx, NULL, 0, regs);
4626 if (ret) {
4627 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4628 }
4629 free_ok = 1;
4630 break;
4631 default:
4632 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4633 break;
4634 }
4635 UNPROTECT_CTX(ctx, flags);
4636
4637 { u64 psr = pfm_get_psr();
4638 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4639 BUG_ON(GET_PMU_OWNER());
4640 BUG_ON(ia64_psr(regs)->up);
4641 BUG_ON(ia64_psr(regs)->pp);
4642 }
4643
4644 /*
4645 * All memory free operations (especially for vmalloc'ed memory)
4646 * MUST be done with interrupts ENABLED.
4647 */
4648 if (free_ok) pfm_context_free(ctx);
4649}
4650
4651/*
4652 * functions MUST be listed in the increasing order of their index (see permfon.h)
4653 */
4654#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4655#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4656#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4657#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4658#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4659
4660static pfm_cmd_desc_t pfm_cmd_tab[]={
4661/* 0 */PFM_CMD_NONE,
4662/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4666/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4667/* 6 */PFM_CMD_NONE,
4668/* 7 */PFM_CMD_NONE,
4669/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4670/* 9 */PFM_CMD_NONE,
4671/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4672/* 11 */PFM_CMD_NONE,
4673/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4674/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4675/* 14 */PFM_CMD_NONE,
4676/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4677/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4678/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4679/* 18 */PFM_CMD_NONE,
4680/* 19 */PFM_CMD_NONE,
4681/* 20 */PFM_CMD_NONE,
4682/* 21 */PFM_CMD_NONE,
4683/* 22 */PFM_CMD_NONE,
4684/* 23 */PFM_CMD_NONE,
4685/* 24 */PFM_CMD_NONE,
4686/* 25 */PFM_CMD_NONE,
4687/* 26 */PFM_CMD_NONE,
4688/* 27 */PFM_CMD_NONE,
4689/* 28 */PFM_CMD_NONE,
4690/* 29 */PFM_CMD_NONE,
4691/* 30 */PFM_CMD_NONE,
4692/* 31 */PFM_CMD_NONE,
4693/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4694/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4695};
4696#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4697
4698static int
4699pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4700{
4701 struct task_struct *task;
4702 int state, old_state;
4703
4704recheck:
4705 state = ctx->ctx_state;
4706 task = ctx->ctx_task;
4707
4708 if (task == NULL) {
4709 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4710 return 0;
4711 }
4712
4713 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4714 ctx->ctx_fd,
4715 state,
4716 task->pid,
4717 task->state, PFM_CMD_STOPPED(cmd)));
4718
4719 /*
4720 * self-monitoring always ok.
4721 *
4722 * for system-wide the caller can either be the creator of the
4723 * context (to one to which the context is attached to) OR
4724 * a task running on the same CPU as the session.
4725 */
4726 if (task == current || ctx->ctx_fl_system) return 0;
4727
4728 /*
stephane eraniana5a70b72005-04-18 11:42:00 -07004729 * we are monitoring another thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004730 */
stephane eraniana5a70b72005-04-18 11:42:00 -07004731 switch(state) {
4732 case PFM_CTX_UNLOADED:
4733 /*
4734 * if context is UNLOADED we are safe to go
4735 */
4736 return 0;
4737 case PFM_CTX_ZOMBIE:
4738 /*
4739 * no command can operate on a zombie context
4740 */
4741 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4742 return -EINVAL;
4743 case PFM_CTX_MASKED:
4744 /*
4745 * PMU state has been saved to software even though
4746 * the thread may still be running.
4747 */
4748 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004749 }
4750
4751 /*
4752 * context is LOADED or MASKED. Some commands may need to have
4753 * the task stopped.
4754 *
4755 * We could lift this restriction for UP but it would mean that
4756 * the user has no guarantee the task would not run between
4757 * two successive calls to perfmonctl(). That's probably OK.
4758 * If this user wants to ensure the task does not run, then
4759 * the task must be stopped.
4760 */
4761 if (PFM_CMD_STOPPED(cmd)) {
4762 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4763 DPRINT(("[%d] task not in stopped state\n", task->pid));
4764 return -EBUSY;
4765 }
4766 /*
4767 * task is now stopped, wait for ctxsw out
4768 *
4769 * This is an interesting point in the code.
4770 * We need to unprotect the context because
4771 * the pfm_save_regs() routines needs to grab
4772 * the same lock. There are danger in doing
4773 * this because it leaves a window open for
4774 * another task to get access to the context
4775 * and possibly change its state. The one thing
4776 * that is not possible is for the context to disappear
4777 * because we are protected by the VFS layer, i.e.,
4778 * get_fd()/put_fd().
4779 */
4780 old_state = state;
4781
4782 UNPROTECT_CTX(ctx, flags);
4783
4784 wait_task_inactive(task);
4785
4786 PROTECT_CTX(ctx, flags);
4787
4788 /*
4789 * we must recheck to verify if state has changed
4790 */
4791 if (ctx->ctx_state != old_state) {
4792 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4793 goto recheck;
4794 }
4795 }
4796 return 0;
4797}
4798
4799/*
4800 * system-call entry point (must return long)
4801 */
4802asmlinkage long
4803sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4804{
4805 struct file *file = NULL;
4806 pfm_context_t *ctx = NULL;
4807 unsigned long flags = 0UL;
4808 void *args_k = NULL;
4809 long ret; /* will expand int return types */
4810 size_t base_sz, sz, xtra_sz = 0;
4811 int narg, completed_args = 0, call_made = 0, cmd_flags;
4812 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4813 int (*getsize)(void *arg, size_t *sz);
4814#define PFM_MAX_ARGSIZE 4096
4815
4816 /*
4817 * reject any call if perfmon was disabled at initialization
4818 */
4819 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4820
4821 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4822 DPRINT(("invalid cmd=%d\n", cmd));
4823 return -EINVAL;
4824 }
4825
4826 func = pfm_cmd_tab[cmd].cmd_func;
4827 narg = pfm_cmd_tab[cmd].cmd_narg;
4828 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4829 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4830 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4831
4832 if (unlikely(func == NULL)) {
4833 DPRINT(("invalid cmd=%d\n", cmd));
4834 return -EINVAL;
4835 }
4836
4837 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4838 PFM_CMD_NAME(cmd),
4839 cmd,
4840 narg,
4841 base_sz,
4842 count));
4843
4844 /*
4845 * check if number of arguments matches what the command expects
4846 */
4847 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4848 return -EINVAL;
4849
4850restart_args:
4851 sz = xtra_sz + base_sz*count;
4852 /*
4853 * limit abuse to min page size
4854 */
4855 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4856 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4857 return -E2BIG;
4858 }
4859
4860 /*
4861 * allocate default-sized argument buffer
4862 */
4863 if (likely(count && args_k == NULL)) {
4864 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4865 if (args_k == NULL) return -ENOMEM;
4866 }
4867
4868 ret = -EFAULT;
4869
4870 /*
4871 * copy arguments
4872 *
4873 * assume sz = 0 for command without parameters
4874 */
4875 if (sz && copy_from_user(args_k, arg, sz)) {
4876 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4877 goto error_args;
4878 }
4879
4880 /*
4881 * check if command supports extra parameters
4882 */
4883 if (completed_args == 0 && getsize) {
4884 /*
4885 * get extra parameters size (based on main argument)
4886 */
4887 ret = (*getsize)(args_k, &xtra_sz);
4888 if (ret) goto error_args;
4889
4890 completed_args = 1;
4891
4892 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4893
4894 /* retry if necessary */
4895 if (likely(xtra_sz)) goto restart_args;
4896 }
4897
4898 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4899
4900 ret = -EBADF;
4901
4902 file = fget(fd);
4903 if (unlikely(file == NULL)) {
4904 DPRINT(("invalid fd %d\n", fd));
4905 goto error_args;
4906 }
4907 if (unlikely(PFM_IS_FILE(file) == 0)) {
4908 DPRINT(("fd %d not related to perfmon\n", fd));
4909 goto error_args;
4910 }
4911
4912 ctx = (pfm_context_t *)file->private_data;
4913 if (unlikely(ctx == NULL)) {
4914 DPRINT(("no context for fd %d\n", fd));
4915 goto error_args;
4916 }
4917 prefetch(&ctx->ctx_state);
4918
4919 PROTECT_CTX(ctx, flags);
4920
4921 /*
4922 * check task is stopped
4923 */
4924 ret = pfm_check_task_state(ctx, cmd, flags);
4925 if (unlikely(ret)) goto abort_locked;
4926
4927skip_fd:
4928 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4929
4930 call_made = 1;
4931
4932abort_locked:
4933 if (likely(ctx)) {
4934 DPRINT(("context unlocked\n"));
4935 UNPROTECT_CTX(ctx, flags);
4936 fput(file);
4937 }
4938
4939 /* copy argument back to user, if needed */
4940 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4941
4942error_args:
Jesper Juhlb2325fe2005-11-07 01:01:35 -08004943 kfree(args_k);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004944
4945 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4946
4947 return ret;
4948}
4949
4950static void
4951pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4952{
4953 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4954 pfm_ovfl_ctrl_t rst_ctrl;
4955 int state;
4956 int ret = 0;
4957
4958 state = ctx->ctx_state;
4959 /*
4960 * Unlock sampling buffer and reset index atomically
4961 * XXX: not really needed when blocking
4962 */
4963 if (CTX_HAS_SMPL(ctx)) {
4964
4965 rst_ctrl.bits.mask_monitoring = 0;
4966 rst_ctrl.bits.reset_ovfl_pmds = 0;
4967
4968 if (state == PFM_CTX_LOADED)
4969 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970 else
4971 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 } else {
4973 rst_ctrl.bits.mask_monitoring = 0;
4974 rst_ctrl.bits.reset_ovfl_pmds = 1;
4975 }
4976
4977 if (ret == 0) {
4978 if (rst_ctrl.bits.reset_ovfl_pmds) {
4979 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4980 }
4981 if (rst_ctrl.bits.mask_monitoring == 0) {
4982 DPRINT(("resuming monitoring\n"));
4983 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4984 } else {
4985 DPRINT(("stopping monitoring\n"));
4986 //pfm_stop_monitoring(current, regs);
4987 }
4988 ctx->ctx_state = PFM_CTX_LOADED;
4989 }
4990}
4991
4992/*
4993 * context MUST BE LOCKED when calling
4994 * can only be called for current
4995 */
4996static void
4997pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4998{
4999 int ret;
5000
5001 DPRINT(("entering for [%d]\n", current->pid));
5002
5003 ret = pfm_context_unload(ctx, NULL, 0, regs);
5004 if (ret) {
5005 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5006 }
5007
5008 /*
5009 * and wakeup controlling task, indicating we are now disconnected
5010 */
5011 wake_up_interruptible(&ctx->ctx_zombieq);
5012
5013 /*
5014 * given that context is still locked, the controlling
5015 * task will only get access when we return from
5016 * pfm_handle_work().
5017 */
5018}
5019
5020static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
Stephane Eranian49449302005-04-25 13:08:30 -07005021 /*
5022 * pfm_handle_work() can be called with interrupts enabled
5023 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5024 * call may sleep, therefore we must re-enable interrupts
5025 * to avoid deadlocks. It is safe to do so because this function
5026 * is called ONLY when returning to user level (PUStk=1), in which case
5027 * there is no risk of kernel stack overflow due to deep
5028 * interrupt nesting.
5029 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030void
5031pfm_handle_work(void)
5032{
5033 pfm_context_t *ctx;
5034 struct pt_regs *regs;
Stephane Eranian49449302005-04-25 13:08:30 -07005035 unsigned long flags, dummy_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005036 unsigned long ovfl_regs;
5037 unsigned int reason;
5038 int ret;
5039
5040 ctx = PFM_GET_CTX(current);
5041 if (ctx == NULL) {
5042 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5043 return;
5044 }
5045
5046 PROTECT_CTX(ctx, flags);
5047
5048 PFM_SET_WORK_PENDING(current, 0);
5049
5050 pfm_clear_task_notify();
5051
5052 regs = ia64_task_regs(current);
5053
5054 /*
5055 * extract reason for being here and clear
5056 */
5057 reason = ctx->ctx_fl_trap_reason;
5058 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5059 ovfl_regs = ctx->ctx_ovfl_regs[0];
5060
5061 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5062
5063 /*
5064 * must be done before we check for simple-reset mode
5065 */
5066 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5067
5068
5069 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5070 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5071
Stephane Eranian49449302005-04-25 13:08:30 -07005072 /*
5073 * restore interrupt mask to what it was on entry.
5074 * Could be enabled/diasbled.
5075 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005076 UNPROTECT_CTX(ctx, flags);
5077
Stephane Eranian49449302005-04-25 13:08:30 -07005078 /*
5079 * force interrupt enable because of down_interruptible()
5080 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005081 local_irq_enable();
5082
5083 DPRINT(("before block sleeping\n"));
5084
5085 /*
5086 * may go through without blocking on SMP systems
5087 * if restart has been received already by the time we call down()
5088 */
5089 ret = down_interruptible(&ctx->ctx_restart_sem);
5090
5091 DPRINT(("after block sleeping ret=%d\n", ret));
5092
5093 /*
Stephane Eranian49449302005-04-25 13:08:30 -07005094 * lock context and mask interrupts again
5095 * We save flags into a dummy because we may have
5096 * altered interrupts mask compared to entry in this
5097 * function.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005098 */
Stephane Eranian49449302005-04-25 13:08:30 -07005099 PROTECT_CTX(ctx, dummy_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005100
5101 /*
5102 * we need to read the ovfl_regs only after wake-up
5103 * because we may have had pfm_write_pmds() in between
5104 * and that can changed PMD values and therefore
5105 * ovfl_regs is reset for these new PMD values.
5106 */
5107 ovfl_regs = ctx->ctx_ovfl_regs[0];
5108
5109 if (ctx->ctx_fl_going_zombie) {
5110do_zombie:
5111 DPRINT(("context is zombie, bailing out\n"));
5112 pfm_context_force_terminate(ctx, regs);
5113 goto nothing_to_do;
5114 }
5115 /*
5116 * in case of interruption of down() we don't restart anything
5117 */
5118 if (ret < 0) goto nothing_to_do;
5119
5120skip_blocking:
5121 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5122 ctx->ctx_ovfl_regs[0] = 0UL;
5123
5124nothing_to_do:
Stephane Eranian49449302005-04-25 13:08:30 -07005125 /*
5126 * restore flags as they were upon entry
5127 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128 UNPROTECT_CTX(ctx, flags);
5129}
5130
5131static int
5132pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5133{
5134 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5135 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5136 return 0;
5137 }
5138
5139 DPRINT(("waking up somebody\n"));
5140
5141 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5142
5143 /*
5144 * safe, we are not in intr handler, nor in ctxsw when
5145 * we come here
5146 */
5147 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5148
5149 return 0;
5150}
5151
5152static int
5153pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5154{
5155 pfm_msg_t *msg = NULL;
5156
5157 if (ctx->ctx_fl_no_msg == 0) {
5158 msg = pfm_get_new_msg(ctx);
5159 if (msg == NULL) {
5160 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5161 return -1;
5162 }
5163
5164 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5165 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5166 msg->pfm_ovfl_msg.msg_active_set = 0;
5167 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5171 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172 }
5173
5174 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5175 msg,
5176 ctx->ctx_fl_no_msg,
5177 ctx->ctx_fd,
5178 ovfl_pmds));
5179
5180 return pfm_notify_user(ctx, msg);
5181}
5182
5183static int
5184pfm_end_notify_user(pfm_context_t *ctx)
5185{
5186 pfm_msg_t *msg;
5187
5188 msg = pfm_get_new_msg(ctx);
5189 if (msg == NULL) {
5190 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5191 return -1;
5192 }
5193 /* no leak */
5194 memset(msg, 0, sizeof(*msg));
5195
5196 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5197 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5198 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5199
5200 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5201 msg,
5202 ctx->ctx_fl_no_msg,
5203 ctx->ctx_fd));
5204
5205 return pfm_notify_user(ctx, msg);
5206}
5207
5208/*
5209 * main overflow processing routine.
5210 * it can be called from the interrupt path or explicitely during the context switch code
5211 */
5212static void
5213pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5214{
5215 pfm_ovfl_arg_t *ovfl_arg;
5216 unsigned long mask;
5217 unsigned long old_val, ovfl_val, new_val;
5218 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5219 unsigned long tstamp;
5220 pfm_ovfl_ctrl_t ovfl_ctrl;
5221 unsigned int i, has_smpl;
5222 int must_notify = 0;
5223
5224 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5225
5226 /*
5227 * sanity test. Should never happen
5228 */
5229 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5230
5231 tstamp = ia64_get_itc();
5232 mask = pmc0 >> PMU_FIRST_COUNTER;
5233 ovfl_val = pmu_conf->ovfl_val;
5234 has_smpl = CTX_HAS_SMPL(ctx);
5235
5236 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5237 "used_pmds=0x%lx\n",
5238 pmc0,
5239 task ? task->pid: -1,
5240 (regs ? regs->cr_iip : 0),
5241 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5242 ctx->ctx_used_pmds[0]));
5243
5244
5245 /*
5246 * first we update the virtual counters
5247 * assume there was a prior ia64_srlz_d() issued
5248 */
5249 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5250
5251 /* skip pmd which did not overflow */
5252 if ((mask & 0x1) == 0) continue;
5253
5254 /*
5255 * Note that the pmd is not necessarily 0 at this point as qualified events
5256 * may have happened before the PMU was frozen. The residual count is not
5257 * taken into consideration here but will be with any read of the pmd via
5258 * pfm_read_pmds().
5259 */
5260 old_val = new_val = ctx->ctx_pmds[i].val;
5261 new_val += 1 + ovfl_val;
5262 ctx->ctx_pmds[i].val = new_val;
5263
5264 /*
5265 * check for overflow condition
5266 */
5267 if (likely(old_val > new_val)) {
5268 ovfl_pmds |= 1UL << i;
5269 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5270 }
5271
5272 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5273 i,
5274 new_val,
5275 old_val,
5276 ia64_get_pmd(i) & ovfl_val,
5277 ovfl_pmds,
5278 ovfl_notify));
5279 }
5280
5281 /*
5282 * there was no 64-bit overflow, nothing else to do
5283 */
5284 if (ovfl_pmds == 0UL) return;
5285
5286 /*
5287 * reset all control bits
5288 */
5289 ovfl_ctrl.val = 0;
5290 reset_pmds = 0UL;
5291
5292 /*
5293 * if a sampling format module exists, then we "cache" the overflow by
5294 * calling the module's handler() routine.
5295 */
5296 if (has_smpl) {
5297 unsigned long start_cycles, end_cycles;
5298 unsigned long pmd_mask;
5299 int j, k, ret = 0;
5300 int this_cpu = smp_processor_id();
5301
5302 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5303 ovfl_arg = &ctx->ctx_ovfl_arg;
5304
5305 prefetch(ctx->ctx_smpl_hdr);
5306
5307 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5308
5309 mask = 1UL << i;
5310
5311 if ((pmd_mask & 0x1) == 0) continue;
5312
5313 ovfl_arg->ovfl_pmd = (unsigned char )i;
5314 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5315 ovfl_arg->active_set = 0;
5316 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5317 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5318
5319 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5320 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5321 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5322
5323 /*
5324 * copy values of pmds of interest. Sampling format may copy them
5325 * into sampling buffer.
5326 */
5327 if (smpl_pmds) {
5328 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5329 if ((smpl_pmds & 0x1) == 0) continue;
5330 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5331 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5332 }
5333 }
5334
5335 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5336
5337 start_cycles = ia64_get_itc();
5338
5339 /*
5340 * call custom buffer format record (handler) routine
5341 */
5342 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5343
5344 end_cycles = ia64_get_itc();
5345
5346 /*
5347 * For those controls, we take the union because they have
5348 * an all or nothing behavior.
5349 */
5350 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5351 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5352 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5353 /*
5354 * build the bitmask of pmds to reset now
5355 */
5356 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5357
5358 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5359 }
5360 /*
5361 * when the module cannot handle the rest of the overflows, we abort right here
5362 */
5363 if (ret && pmd_mask) {
5364 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5365 pmd_mask<<PMU_FIRST_COUNTER));
5366 }
5367 /*
5368 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5369 */
5370 ovfl_pmds &= ~reset_pmds;
5371 } else {
5372 /*
5373 * when no sampling module is used, then the default
5374 * is to notify on overflow if requested by user
5375 */
5376 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5377 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5379 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5380 /*
5381 * if needed, we reset all overflowed pmds
5382 */
5383 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5384 }
5385
5386 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5387
5388 /*
5389 * reset the requested PMD registers using the short reset values
5390 */
5391 if (reset_pmds) {
5392 unsigned long bm = reset_pmds;
5393 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5394 }
5395
5396 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5397 /*
5398 * keep track of what to reset when unblocking
5399 */
5400 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5401
5402 /*
5403 * check for blocking context
5404 */
5405 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5406
5407 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5408
5409 /*
5410 * set the perfmon specific checking pending work for the task
5411 */
5412 PFM_SET_WORK_PENDING(task, 1);
5413
5414 /*
5415 * when coming from ctxsw, current still points to the
5416 * previous task, therefore we must work with task and not current.
5417 */
5418 pfm_set_task_notify(task);
5419 }
5420 /*
5421 * defer until state is changed (shorten spin window). the context is locked
5422 * anyway, so the signal receiver would come spin for nothing.
5423 */
5424 must_notify = 1;
5425 }
5426
5427 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5428 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5429 PFM_GET_WORK_PENDING(task),
5430 ctx->ctx_fl_trap_reason,
5431 ovfl_pmds,
5432 ovfl_notify,
5433 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5434 /*
5435 * in case monitoring must be stopped, we toggle the psr bits
5436 */
5437 if (ovfl_ctrl.bits.mask_monitoring) {
5438 pfm_mask_monitoring(task);
5439 ctx->ctx_state = PFM_CTX_MASKED;
5440 ctx->ctx_fl_can_restart = 1;
5441 }
5442
5443 /*
5444 * send notification now
5445 */
5446 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5447
5448 return;
5449
5450sanity_check:
5451 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5452 smp_processor_id(),
5453 task ? task->pid : -1,
5454 pmc0);
5455 return;
5456
5457stop_monitoring:
5458 /*
5459 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5460 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5461 * come here as zombie only if the task is the current task. In which case, we
5462 * can access the PMU hardware directly.
5463 *
5464 * Note that zombies do have PM_VALID set. So here we do the minimal.
5465 *
5466 * In case the context was zombified it could not be reclaimed at the time
5467 * the monitoring program exited. At this point, the PMU reservation has been
5468 * returned, the sampiing buffer has been freed. We must convert this call
5469 * into a spurious interrupt. However, we must also avoid infinite overflows
5470 * by stopping monitoring for this task. We can only come here for a per-task
5471 * context. All we need to do is to stop monitoring using the psr bits which
5472 * are always task private. By re-enabling secure montioring, we ensure that
5473 * the monitored task will not be able to re-activate monitoring.
5474 * The task will eventually be context switched out, at which point the context
5475 * will be reclaimed (that includes releasing ownership of the PMU).
5476 *
5477 * So there might be a window of time where the number of per-task session is zero
5478 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5479 * context. This is safe because if a per-task session comes in, it will push this one
5480 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5481 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5482 * also push our zombie context out.
5483 *
5484 * Overall pretty hairy stuff....
5485 */
5486 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5487 pfm_clear_psr_up();
5488 ia64_psr(regs)->up = 0;
5489 ia64_psr(regs)->sp = 1;
5490 return;
5491}
5492
5493static int
5494pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5495{
5496 struct task_struct *task;
5497 pfm_context_t *ctx;
5498 unsigned long flags;
5499 u64 pmc0;
5500 int this_cpu = smp_processor_id();
5501 int retval = 0;
5502
5503 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5504
5505 /*
5506 * srlz.d done before arriving here
5507 */
5508 pmc0 = ia64_get_pmc(0);
5509
5510 task = GET_PMU_OWNER();
5511 ctx = GET_PMU_CTX();
5512
5513 /*
5514 * if we have some pending bits set
5515 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5516 */
5517 if (PMC0_HAS_OVFL(pmc0) && task) {
5518 /*
5519 * we assume that pmc0.fr is always set here
5520 */
5521
5522 /* sanity check */
5523 if (!ctx) goto report_spurious1;
5524
5525 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5526 goto report_spurious2;
5527
5528 PROTECT_CTX_NOPRINT(ctx, flags);
5529
5530 pfm_overflow_handler(task, ctx, pmc0, regs);
5531
5532 UNPROTECT_CTX_NOPRINT(ctx, flags);
5533
5534 } else {
5535 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5536 retval = -1;
5537 }
5538 /*
5539 * keep it unfrozen at all times
5540 */
5541 pfm_unfreeze_pmu();
5542
5543 return retval;
5544
5545report_spurious1:
5546 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5547 this_cpu, task->pid);
5548 pfm_unfreeze_pmu();
5549 return -1;
5550report_spurious2:
5551 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5552 this_cpu,
5553 task->pid);
5554 pfm_unfreeze_pmu();
5555 return -1;
5556}
5557
5558static irqreturn_t
5559pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5560{
5561 unsigned long start_cycles, total_cycles;
5562 unsigned long min, max;
5563 int this_cpu;
5564 int ret;
5565
5566 this_cpu = get_cpu();
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005567 if (likely(!pfm_alt_intr_handler)) {
5568 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5569 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005570
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005571 start_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005572
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005573 ret = pfm_do_interrupt_handler(irq, arg, regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005574
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005575 total_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005576
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005577 /*
5578 * don't measure spurious interrupts
5579 */
5580 if (likely(ret == 0)) {
5581 total_cycles -= start_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005582
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005583 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5584 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005585
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005586 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5587 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005588 }
Tony Lucka1ecf7f2005-05-18 16:06:00 -07005589 else {
5590 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5591 }
5592
Linus Torvalds1da177e2005-04-16 15:20:36 -07005593 put_cpu_no_resched();
5594 return IRQ_HANDLED;
5595}
5596
5597/*
5598 * /proc/perfmon interface, for debug only
5599 */
5600
5601#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5602
5603static void *
5604pfm_proc_start(struct seq_file *m, loff_t *pos)
5605{
5606 if (*pos == 0) {
5607 return PFM_PROC_SHOW_HEADER;
5608 }
5609
5610 while (*pos <= NR_CPUS) {
5611 if (cpu_online(*pos - 1)) {
5612 return (void *)*pos;
5613 }
5614 ++*pos;
5615 }
5616 return NULL;
5617}
5618
5619static void *
5620pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5621{
5622 ++*pos;
5623 return pfm_proc_start(m, pos);
5624}
5625
5626static void
5627pfm_proc_stop(struct seq_file *m, void *v)
5628{
5629}
5630
5631static void
5632pfm_proc_show_header(struct seq_file *m)
5633{
5634 struct list_head * pos;
5635 pfm_buffer_fmt_t * entry;
5636 unsigned long flags;
5637
5638 seq_printf(m,
5639 "perfmon version : %u.%u\n"
5640 "model : %s\n"
5641 "fastctxsw : %s\n"
5642 "expert mode : %s\n"
5643 "ovfl_mask : 0x%lx\n"
5644 "PMU flags : 0x%x\n",
5645 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5646 pmu_conf->pmu_name,
5647 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5648 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5649 pmu_conf->ovfl_val,
5650 pmu_conf->flags);
5651
5652 LOCK_PFS(flags);
5653
5654 seq_printf(m,
5655 "proc_sessions : %u\n"
5656 "sys_sessions : %u\n"
5657 "sys_use_dbregs : %u\n"
5658 "ptrace_use_dbregs : %u\n",
5659 pfm_sessions.pfs_task_sessions,
5660 pfm_sessions.pfs_sys_sessions,
5661 pfm_sessions.pfs_sys_use_dbregs,
5662 pfm_sessions.pfs_ptrace_use_dbregs);
5663
5664 UNLOCK_PFS(flags);
5665
5666 spin_lock(&pfm_buffer_fmt_lock);
5667
5668 list_for_each(pos, &pfm_buffer_fmt_list) {
5669 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5670 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5671 entry->fmt_uuid[0],
5672 entry->fmt_uuid[1],
5673 entry->fmt_uuid[2],
5674 entry->fmt_uuid[3],
5675 entry->fmt_uuid[4],
5676 entry->fmt_uuid[5],
5677 entry->fmt_uuid[6],
5678 entry->fmt_uuid[7],
5679 entry->fmt_uuid[8],
5680 entry->fmt_uuid[9],
5681 entry->fmt_uuid[10],
5682 entry->fmt_uuid[11],
5683 entry->fmt_uuid[12],
5684 entry->fmt_uuid[13],
5685 entry->fmt_uuid[14],
5686 entry->fmt_uuid[15],
5687 entry->fmt_name);
5688 }
5689 spin_unlock(&pfm_buffer_fmt_lock);
5690
5691}
5692
5693static int
5694pfm_proc_show(struct seq_file *m, void *v)
5695{
5696 unsigned long psr;
5697 unsigned int i;
5698 int cpu;
5699
5700 if (v == PFM_PROC_SHOW_HEADER) {
5701 pfm_proc_show_header(m);
5702 return 0;
5703 }
5704
5705 /* show info for CPU (v - 1) */
5706
5707 cpu = (long)v - 1;
5708 seq_printf(m,
5709 "CPU%-2d overflow intrs : %lu\n"
5710 "CPU%-2d overflow cycles : %lu\n"
5711 "CPU%-2d overflow min : %lu\n"
5712 "CPU%-2d overflow max : %lu\n"
5713 "CPU%-2d smpl handler calls : %lu\n"
5714 "CPU%-2d smpl handler cycles : %lu\n"
5715 "CPU%-2d spurious intrs : %lu\n"
5716 "CPU%-2d replay intrs : %lu\n"
5717 "CPU%-2d syst_wide : %d\n"
5718 "CPU%-2d dcr_pp : %d\n"
5719 "CPU%-2d exclude idle : %d\n"
5720 "CPU%-2d owner : %d\n"
5721 "CPU%-2d context : %p\n"
5722 "CPU%-2d activations : %lu\n",
5723 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5727 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5728 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5729 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5730 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5731 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5735 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5736 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5737
5738 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5739
5740 psr = pfm_get_psr();
5741
5742 ia64_srlz_d();
5743
5744 seq_printf(m,
5745 "CPU%-2d psr : 0x%lx\n"
5746 "CPU%-2d pmc0 : 0x%lx\n",
5747 cpu, psr,
5748 cpu, ia64_get_pmc(0));
5749
5750 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5751 if (PMC_IS_COUNTING(i) == 0) continue;
5752 seq_printf(m,
5753 "CPU%-2d pmc%u : 0x%lx\n"
5754 "CPU%-2d pmd%u : 0x%lx\n",
5755 cpu, i, ia64_get_pmc(i),
5756 cpu, i, ia64_get_pmd(i));
5757 }
5758 }
5759 return 0;
5760}
5761
5762struct seq_operations pfm_seq_ops = {
5763 .start = pfm_proc_start,
5764 .next = pfm_proc_next,
5765 .stop = pfm_proc_stop,
5766 .show = pfm_proc_show
5767};
5768
5769static int
5770pfm_proc_open(struct inode *inode, struct file *file)
5771{
5772 return seq_open(file, &pfm_seq_ops);
5773}
5774
5775
5776/*
5777 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5778 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5779 * is active or inactive based on mode. We must rely on the value in
5780 * local_cpu_data->pfm_syst_info
5781 */
5782void
5783pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5784{
5785 struct pt_regs *regs;
5786 unsigned long dcr;
5787 unsigned long dcr_pp;
5788
5789 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5790
5791 /*
5792 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5793 * on every CPU, so we can rely on the pid to identify the idle task.
5794 */
5795 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5796 regs = ia64_task_regs(task);
5797 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5798 return;
5799 }
5800 /*
5801 * if monitoring has started
5802 */
5803 if (dcr_pp) {
5804 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5805 /*
5806 * context switching in?
5807 */
5808 if (is_ctxswin) {
5809 /* mask monitoring for the idle task */
5810 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5811 pfm_clear_psr_pp();
5812 ia64_srlz_i();
5813 return;
5814 }
5815 /*
5816 * context switching out
5817 * restore monitoring for next task
5818 *
5819 * Due to inlining this odd if-then-else construction generates
5820 * better code.
5821 */
5822 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5823 pfm_set_psr_pp();
5824 ia64_srlz_i();
5825 }
5826}
5827
5828#ifdef CONFIG_SMP
5829
5830static void
5831pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5832{
5833 struct task_struct *task = ctx->ctx_task;
5834
5835 ia64_psr(regs)->up = 0;
5836 ia64_psr(regs)->sp = 1;
5837
5838 if (GET_PMU_OWNER() == task) {
5839 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5840 SET_PMU_OWNER(NULL, NULL);
5841 }
5842
5843 /*
5844 * disconnect the task from the context and vice-versa
5845 */
5846 PFM_SET_WORK_PENDING(task, 0);
5847
5848 task->thread.pfm_context = NULL;
5849 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5850
5851 DPRINT(("force cleanup for [%d]\n", task->pid));
5852}
5853
5854
5855/*
5856 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5857 */
5858void
5859pfm_save_regs(struct task_struct *task)
5860{
5861 pfm_context_t *ctx;
5862 struct thread_struct *t;
5863 unsigned long flags;
5864 u64 psr;
5865
5866
5867 ctx = PFM_GET_CTX(task);
5868 if (ctx == NULL) return;
5869 t = &task->thread;
5870
5871 /*
5872 * we always come here with interrupts ALREADY disabled by
5873 * the scheduler. So we simply need to protect against concurrent
5874 * access, not CPU concurrency.
5875 */
5876 flags = pfm_protect_ctx_ctxsw(ctx);
5877
5878 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5879 struct pt_regs *regs = ia64_task_regs(task);
5880
5881 pfm_clear_psr_up();
5882
5883 pfm_force_cleanup(ctx, regs);
5884
5885 BUG_ON(ctx->ctx_smpl_hdr);
5886
5887 pfm_unprotect_ctx_ctxsw(ctx, flags);
5888
5889 pfm_context_free(ctx);
5890 return;
5891 }
5892
5893 /*
5894 * save current PSR: needed because we modify it
5895 */
5896 ia64_srlz_d();
5897 psr = pfm_get_psr();
5898
5899 BUG_ON(psr & (IA64_PSR_I));
5900
5901 /*
5902 * stop monitoring:
5903 * This is the last instruction which may generate an overflow
5904 *
5905 * We do not need to set psr.sp because, it is irrelevant in kernel.
5906 * It will be restored from ipsr when going back to user level
5907 */
5908 pfm_clear_psr_up();
5909
5910 /*
5911 * keep a copy of psr.up (for reload)
5912 */
5913 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5914
5915 /*
5916 * release ownership of this PMU.
5917 * PM interrupts are masked, so nothing
5918 * can happen.
5919 */
5920 SET_PMU_OWNER(NULL, NULL);
5921
5922 /*
5923 * we systematically save the PMD as we have no
5924 * guarantee we will be schedule at that same
5925 * CPU again.
5926 */
5927 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5928
5929 /*
5930 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5931 * we will need it on the restore path to check
5932 * for pending overflow.
5933 */
5934 t->pmcs[0] = ia64_get_pmc(0);
5935
5936 /*
5937 * unfreeze PMU if had pending overflows
5938 */
5939 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5940
5941 /*
5942 * finally, allow context access.
5943 * interrupts will still be masked after this call.
5944 */
5945 pfm_unprotect_ctx_ctxsw(ctx, flags);
5946}
5947
5948#else /* !CONFIG_SMP */
5949void
5950pfm_save_regs(struct task_struct *task)
5951{
5952 pfm_context_t *ctx;
5953 u64 psr;
5954
5955 ctx = PFM_GET_CTX(task);
5956 if (ctx == NULL) return;
5957
5958 /*
5959 * save current PSR: needed because we modify it
5960 */
5961 psr = pfm_get_psr();
5962
5963 BUG_ON(psr & (IA64_PSR_I));
5964
5965 /*
5966 * stop monitoring:
5967 * This is the last instruction which may generate an overflow
5968 *
5969 * We do not need to set psr.sp because, it is irrelevant in kernel.
5970 * It will be restored from ipsr when going back to user level
5971 */
5972 pfm_clear_psr_up();
5973
5974 /*
5975 * keep a copy of psr.up (for reload)
5976 */
5977 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5978}
5979
5980static void
5981pfm_lazy_save_regs (struct task_struct *task)
5982{
5983 pfm_context_t *ctx;
5984 struct thread_struct *t;
5985 unsigned long flags;
5986
5987 { u64 psr = pfm_get_psr();
5988 BUG_ON(psr & IA64_PSR_UP);
5989 }
5990
5991 ctx = PFM_GET_CTX(task);
5992 t = &task->thread;
5993
5994 /*
5995 * we need to mask PMU overflow here to
5996 * make sure that we maintain pmc0 until
5997 * we save it. overflow interrupts are
5998 * treated as spurious if there is no
5999 * owner.
6000 *
6001 * XXX: I don't think this is necessary
6002 */
6003 PROTECT_CTX(ctx,flags);
6004
6005 /*
6006 * release ownership of this PMU.
6007 * must be done before we save the registers.
6008 *
6009 * after this call any PMU interrupt is treated
6010 * as spurious.
6011 */
6012 SET_PMU_OWNER(NULL, NULL);
6013
6014 /*
6015 * save all the pmds we use
6016 */
6017 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6018
6019 /*
6020 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6021 * it is needed to check for pended overflow
6022 * on the restore path
6023 */
6024 t->pmcs[0] = ia64_get_pmc(0);
6025
6026 /*
6027 * unfreeze PMU if had pending overflows
6028 */
6029 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6030
6031 /*
6032 * now get can unmask PMU interrupts, they will
6033 * be treated as purely spurious and we will not
6034 * lose any information
6035 */
6036 UNPROTECT_CTX(ctx,flags);
6037}
6038#endif /* CONFIG_SMP */
6039
6040#ifdef CONFIG_SMP
6041/*
6042 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6043 */
6044void
6045pfm_load_regs (struct task_struct *task)
6046{
6047 pfm_context_t *ctx;
6048 struct thread_struct *t;
6049 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6050 unsigned long flags;
6051 u64 psr, psr_up;
6052 int need_irq_resend;
6053
6054 ctx = PFM_GET_CTX(task);
6055 if (unlikely(ctx == NULL)) return;
6056
6057 BUG_ON(GET_PMU_OWNER());
6058
6059 t = &task->thread;
6060 /*
6061 * possible on unload
6062 */
6063 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6064
6065 /*
6066 * we always come here with interrupts ALREADY disabled by
6067 * the scheduler. So we simply need to protect against concurrent
6068 * access, not CPU concurrency.
6069 */
6070 flags = pfm_protect_ctx_ctxsw(ctx);
6071 psr = pfm_get_psr();
6072
6073 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6074
6075 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6076 BUG_ON(psr & IA64_PSR_I);
6077
6078 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6079 struct pt_regs *regs = ia64_task_regs(task);
6080
6081 BUG_ON(ctx->ctx_smpl_hdr);
6082
6083 pfm_force_cleanup(ctx, regs);
6084
6085 pfm_unprotect_ctx_ctxsw(ctx, flags);
6086
6087 /*
6088 * this one (kmalloc'ed) is fine with interrupts disabled
6089 */
6090 pfm_context_free(ctx);
6091
6092 return;
6093 }
6094
6095 /*
6096 * we restore ALL the debug registers to avoid picking up
6097 * stale state.
6098 */
6099 if (ctx->ctx_fl_using_dbreg) {
6100 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6101 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6102 }
6103 /*
6104 * retrieve saved psr.up
6105 */
6106 psr_up = ctx->ctx_saved_psr_up;
6107
6108 /*
6109 * if we were the last user of the PMU on that CPU,
6110 * then nothing to do except restore psr
6111 */
6112 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6113
6114 /*
6115 * retrieve partial reload masks (due to user modifications)
6116 */
6117 pmc_mask = ctx->ctx_reload_pmcs[0];
6118 pmd_mask = ctx->ctx_reload_pmds[0];
6119
6120 } else {
6121 /*
6122 * To avoid leaking information to the user level when psr.sp=0,
6123 * we must reload ALL implemented pmds (even the ones we don't use).
6124 * In the kernel we only allow PFM_READ_PMDS on registers which
6125 * we initialized or requested (sampling) so there is no risk there.
6126 */
6127 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6128
6129 /*
6130 * ALL accessible PMCs are systematically reloaded, unused registers
6131 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6132 * up stale configuration.
6133 *
6134 * PMC0 is never in the mask. It is always restored separately.
6135 */
6136 pmc_mask = ctx->ctx_all_pmcs[0];
6137 }
6138 /*
6139 * when context is MASKED, we will restore PMC with plm=0
6140 * and PMD with stale information, but that's ok, nothing
6141 * will be captured.
6142 *
6143 * XXX: optimize here
6144 */
6145 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6146 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6147
6148 /*
6149 * check for pending overflow at the time the state
6150 * was saved.
6151 */
6152 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6153 /*
6154 * reload pmc0 with the overflow information
6155 * On McKinley PMU, this will trigger a PMU interrupt
6156 */
6157 ia64_set_pmc(0, t->pmcs[0]);
6158 ia64_srlz_d();
6159 t->pmcs[0] = 0UL;
6160
6161 /*
6162 * will replay the PMU interrupt
6163 */
6164 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6165
6166 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6167 }
6168
6169 /*
6170 * we just did a reload, so we reset the partial reload fields
6171 */
6172 ctx->ctx_reload_pmcs[0] = 0UL;
6173 ctx->ctx_reload_pmds[0] = 0UL;
6174
6175 SET_LAST_CPU(ctx, smp_processor_id());
6176
6177 /*
6178 * dump activation value for this PMU
6179 */
6180 INC_ACTIVATION();
6181 /*
6182 * record current activation for this context
6183 */
6184 SET_ACTIVATION(ctx);
6185
6186 /*
6187 * establish new ownership.
6188 */
6189 SET_PMU_OWNER(task, ctx);
6190
6191 /*
6192 * restore the psr.up bit. measurement
6193 * is active again.
6194 * no PMU interrupt can happen at this point
6195 * because we still have interrupts disabled.
6196 */
6197 if (likely(psr_up)) pfm_set_psr_up();
6198
6199 /*
6200 * allow concurrent access to context
6201 */
6202 pfm_unprotect_ctx_ctxsw(ctx, flags);
6203}
6204#else /* !CONFIG_SMP */
6205/*
6206 * reload PMU state for UP kernels
6207 * in 2.5 we come here with interrupts disabled
6208 */
6209void
6210pfm_load_regs (struct task_struct *task)
6211{
6212 struct thread_struct *t;
6213 pfm_context_t *ctx;
6214 struct task_struct *owner;
6215 unsigned long pmd_mask, pmc_mask;
6216 u64 psr, psr_up;
6217 int need_irq_resend;
6218
6219 owner = GET_PMU_OWNER();
6220 ctx = PFM_GET_CTX(task);
6221 t = &task->thread;
6222 psr = pfm_get_psr();
6223
6224 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6225 BUG_ON(psr & IA64_PSR_I);
6226
6227 /*
6228 * we restore ALL the debug registers to avoid picking up
6229 * stale state.
6230 *
6231 * This must be done even when the task is still the owner
6232 * as the registers may have been modified via ptrace()
6233 * (not perfmon) by the previous task.
6234 */
6235 if (ctx->ctx_fl_using_dbreg) {
6236 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6237 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6238 }
6239
6240 /*
6241 * retrieved saved psr.up
6242 */
6243 psr_up = ctx->ctx_saved_psr_up;
6244 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6245
6246 /*
6247 * short path, our state is still there, just
6248 * need to restore psr and we go
6249 *
6250 * we do not touch either PMC nor PMD. the psr is not touched
6251 * by the overflow_handler. So we are safe w.r.t. to interrupt
6252 * concurrency even without interrupt masking.
6253 */
6254 if (likely(owner == task)) {
6255 if (likely(psr_up)) pfm_set_psr_up();
6256 return;
6257 }
6258
6259 /*
6260 * someone else is still using the PMU, first push it out and
6261 * then we'll be able to install our stuff !
6262 *
6263 * Upon return, there will be no owner for the current PMU
6264 */
6265 if (owner) pfm_lazy_save_regs(owner);
6266
6267 /*
6268 * To avoid leaking information to the user level when psr.sp=0,
6269 * we must reload ALL implemented pmds (even the ones we don't use).
6270 * In the kernel we only allow PFM_READ_PMDS on registers which
6271 * we initialized or requested (sampling) so there is no risk there.
6272 */
6273 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6274
6275 /*
6276 * ALL accessible PMCs are systematically reloaded, unused registers
6277 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6278 * up stale configuration.
6279 *
6280 * PMC0 is never in the mask. It is always restored separately
6281 */
6282 pmc_mask = ctx->ctx_all_pmcs[0];
6283
6284 pfm_restore_pmds(t->pmds, pmd_mask);
6285 pfm_restore_pmcs(t->pmcs, pmc_mask);
6286
6287 /*
6288 * check for pending overflow at the time the state
6289 * was saved.
6290 */
6291 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6292 /*
6293 * reload pmc0 with the overflow information
6294 * On McKinley PMU, this will trigger a PMU interrupt
6295 */
6296 ia64_set_pmc(0, t->pmcs[0]);
6297 ia64_srlz_d();
6298
6299 t->pmcs[0] = 0UL;
6300
6301 /*
6302 * will replay the PMU interrupt
6303 */
6304 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6305
6306 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6307 }
6308
6309 /*
6310 * establish new ownership.
6311 */
6312 SET_PMU_OWNER(task, ctx);
6313
6314 /*
6315 * restore the psr.up bit. measurement
6316 * is active again.
6317 * no PMU interrupt can happen at this point
6318 * because we still have interrupts disabled.
6319 */
6320 if (likely(psr_up)) pfm_set_psr_up();
6321}
6322#endif /* CONFIG_SMP */
6323
6324/*
6325 * this function assumes monitoring is stopped
6326 */
6327static void
6328pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6329{
6330 u64 pmc0;
6331 unsigned long mask2, val, pmd_val, ovfl_val;
6332 int i, can_access_pmu = 0;
6333 int is_self;
6334
6335 /*
6336 * is the caller the task being monitored (or which initiated the
6337 * session for system wide measurements)
6338 */
6339 is_self = ctx->ctx_task == task ? 1 : 0;
6340
6341 /*
6342 * can access PMU is task is the owner of the PMU state on the current CPU
6343 * or if we are running on the CPU bound to the context in system-wide mode
6344 * (that is not necessarily the task the context is attached to in this mode).
6345 * In system-wide we always have can_access_pmu true because a task running on an
6346 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6347 */
6348 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6349 if (can_access_pmu) {
6350 /*
6351 * Mark the PMU as not owned
6352 * This will cause the interrupt handler to do nothing in case an overflow
6353 * interrupt was in-flight
6354 * This also guarantees that pmc0 will contain the final state
6355 * It virtually gives us full control on overflow processing from that point
6356 * on.
6357 */
6358 SET_PMU_OWNER(NULL, NULL);
6359 DPRINT(("releasing ownership\n"));
6360
6361 /*
6362 * read current overflow status:
6363 *
6364 * we are guaranteed to read the final stable state
6365 */
6366 ia64_srlz_d();
6367 pmc0 = ia64_get_pmc(0); /* slow */
6368
6369 /*
6370 * reset freeze bit, overflow status information destroyed
6371 */
6372 pfm_unfreeze_pmu();
6373 } else {
6374 pmc0 = task->thread.pmcs[0];
6375 /*
6376 * clear whatever overflow status bits there were
6377 */
6378 task->thread.pmcs[0] = 0;
6379 }
6380 ovfl_val = pmu_conf->ovfl_val;
6381 /*
6382 * we save all the used pmds
6383 * we take care of overflows for counting PMDs
6384 *
6385 * XXX: sampling situation is not taken into account here
6386 */
6387 mask2 = ctx->ctx_used_pmds[0];
6388
6389 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6390
6391 for (i = 0; mask2; i++, mask2>>=1) {
6392
6393 /* skip non used pmds */
6394 if ((mask2 & 0x1) == 0) continue;
6395
6396 /*
6397 * can access PMU always true in system wide mode
6398 */
6399 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6400
6401 if (PMD_IS_COUNTING(i)) {
6402 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6403 task->pid,
6404 i,
6405 ctx->ctx_pmds[i].val,
6406 val & ovfl_val));
6407
6408 /*
6409 * we rebuild the full 64 bit value of the counter
6410 */
6411 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6412
6413 /*
6414 * now everything is in ctx_pmds[] and we need
6415 * to clear the saved context from save_regs() such that
6416 * pfm_read_pmds() gets the correct value
6417 */
6418 pmd_val = 0UL;
6419
6420 /*
6421 * take care of overflow inline
6422 */
6423 if (pmc0 & (1UL << i)) {
6424 val += 1 + ovfl_val;
6425 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6426 }
6427 }
6428
6429 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6430
6431 if (is_self) task->thread.pmds[i] = pmd_val;
6432
6433 ctx->ctx_pmds[i].val = val;
6434 }
6435}
6436
6437static struct irqaction perfmon_irqaction = {
6438 .handler = pfm_interrupt_handler,
6439 .flags = SA_INTERRUPT,
6440 .name = "perfmon"
6441};
6442
Tony Lucka1ecf7f2005-05-18 16:06:00 -07006443static void
6444pfm_alt_save_pmu_state(void *data)
6445{
6446 struct pt_regs *regs;
6447
6448 regs = ia64_task_regs(current);
6449
6450 DPRINT(("called\n"));
6451
6452 /*
6453 * should not be necessary but
6454 * let's take not risk
6455 */
6456 pfm_clear_psr_up();
6457 pfm_clear_psr_pp();
6458 ia64_psr(regs)->pp = 0;
6459
6460 /*
6461 * This call is required
6462 * May cause a spurious interrupt on some processors
6463 */
6464 pfm_freeze_pmu();
6465
6466 ia64_srlz_d();
6467}
6468
6469void
6470pfm_alt_restore_pmu_state(void *data)
6471{
6472 struct pt_regs *regs;
6473
6474 regs = ia64_task_regs(current);
6475
6476 DPRINT(("called\n"));
6477
6478 /*
6479 * put PMU back in state expected
6480 * by perfmon
6481 */
6482 pfm_clear_psr_up();
6483 pfm_clear_psr_pp();
6484 ia64_psr(regs)->pp = 0;
6485
6486 /*
6487 * perfmon runs with PMU unfrozen at all times
6488 */
6489 pfm_unfreeze_pmu();
6490
6491 ia64_srlz_d();
6492}
6493
6494int
6495pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6496{
6497 int ret, i;
6498 int reserve_cpu;
6499
6500 /* some sanity checks */
6501 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6502
6503 /* do the easy test first */
6504 if (pfm_alt_intr_handler) return -EBUSY;
6505
6506 /* one at a time in the install or remove, just fail the others */
6507 if (!spin_trylock(&pfm_alt_install_check)) {
6508 return -EBUSY;
6509 }
6510
6511 /* reserve our session */
6512 for_each_online_cpu(reserve_cpu) {
6513 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6514 if (ret) goto cleanup_reserve;
6515 }
6516
6517 /* save the current system wide pmu states */
6518 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6519 if (ret) {
6520 DPRINT(("on_each_cpu() failed: %d\n", ret));
6521 goto cleanup_reserve;
6522 }
6523
6524 /* officially change to the alternate interrupt handler */
6525 pfm_alt_intr_handler = hdl;
6526
6527 spin_unlock(&pfm_alt_install_check);
6528
6529 return 0;
6530
6531cleanup_reserve:
6532 for_each_online_cpu(i) {
6533 /* don't unreserve more than we reserved */
6534 if (i >= reserve_cpu) break;
6535
6536 pfm_unreserve_session(NULL, 1, i);
6537 }
6538
6539 spin_unlock(&pfm_alt_install_check);
6540
6541 return ret;
6542}
6543EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6544
6545int
6546pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6547{
6548 int i;
6549 int ret;
6550
6551 if (hdl == NULL) return -EINVAL;
6552
6553 /* cannot remove someone else's handler! */
6554 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6555
6556 /* one at a time in the install or remove, just fail the others */
6557 if (!spin_trylock(&pfm_alt_install_check)) {
6558 return -EBUSY;
6559 }
6560
6561 pfm_alt_intr_handler = NULL;
6562
6563 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6564 if (ret) {
6565 DPRINT(("on_each_cpu() failed: %d\n", ret));
6566 }
6567
6568 for_each_online_cpu(i) {
6569 pfm_unreserve_session(NULL, 1, i);
6570 }
6571
6572 spin_unlock(&pfm_alt_install_check);
6573
6574 return 0;
6575}
6576EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6577
Linus Torvalds1da177e2005-04-16 15:20:36 -07006578/*
6579 * perfmon initialization routine, called from the initcall() table
6580 */
6581static int init_pfm_fs(void);
6582
6583static int __init
6584pfm_probe_pmu(void)
6585{
6586 pmu_config_t **p;
6587 int family;
6588
6589 family = local_cpu_data->family;
6590 p = pmu_confs;
6591
6592 while(*p) {
6593 if ((*p)->probe) {
6594 if ((*p)->probe() == 0) goto found;
6595 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6596 goto found;
6597 }
6598 p++;
6599 }
6600 return -1;
6601found:
6602 pmu_conf = *p;
6603 return 0;
6604}
6605
6606static struct file_operations pfm_proc_fops = {
6607 .open = pfm_proc_open,
6608 .read = seq_read,
6609 .llseek = seq_lseek,
6610 .release = seq_release,
6611};
6612
6613int __init
6614pfm_init(void)
6615{
6616 unsigned int n, n_counters, i;
6617
6618 printk("perfmon: version %u.%u IRQ %u\n",
6619 PFM_VERSION_MAJ,
6620 PFM_VERSION_MIN,
6621 IA64_PERFMON_VECTOR);
6622
6623 if (pfm_probe_pmu()) {
6624 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6625 local_cpu_data->family);
6626 return -ENODEV;
6627 }
6628
6629 /*
6630 * compute the number of implemented PMD/PMC from the
6631 * description tables
6632 */
6633 n = 0;
6634 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6635 if (PMC_IS_IMPL(i) == 0) continue;
6636 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6637 n++;
6638 }
6639 pmu_conf->num_pmcs = n;
6640
6641 n = 0; n_counters = 0;
6642 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6643 if (PMD_IS_IMPL(i) == 0) continue;
6644 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6645 n++;
6646 if (PMD_IS_COUNTING(i)) n_counters++;
6647 }
6648 pmu_conf->num_pmds = n;
6649 pmu_conf->num_counters = n_counters;
6650
6651 /*
6652 * sanity checks on the number of debug registers
6653 */
6654 if (pmu_conf->use_rr_dbregs) {
6655 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6656 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6657 pmu_conf = NULL;
6658 return -1;
6659 }
6660 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6661 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6662 pmu_conf = NULL;
6663 return -1;
6664 }
6665 }
6666
6667 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6668 pmu_conf->pmu_name,
6669 pmu_conf->num_pmcs,
6670 pmu_conf->num_pmds,
6671 pmu_conf->num_counters,
6672 ffz(pmu_conf->ovfl_val));
6673
6674 /* sanity check */
6675 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6676 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6677 pmu_conf = NULL;
6678 return -1;
6679 }
6680
6681 /*
6682 * create /proc/perfmon (mostly for debugging purposes)
6683 */
6684 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6685 if (perfmon_dir == NULL) {
6686 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6687 pmu_conf = NULL;
6688 return -1;
6689 }
6690 /*
6691 * install customized file operations for /proc/perfmon entry
6692 */
6693 perfmon_dir->proc_fops = &pfm_proc_fops;
6694
6695 /*
6696 * create /proc/sys/kernel/perfmon (for debugging purposes)
6697 */
6698 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6699
6700 /*
6701 * initialize all our spinlocks
6702 */
6703 spin_lock_init(&pfm_sessions.pfs_lock);
6704 spin_lock_init(&pfm_buffer_fmt_lock);
6705
6706 init_pfm_fs();
6707
6708 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6709
6710 return 0;
6711}
6712
6713__initcall(pfm_init);
6714
6715/*
6716 * this function is called before pfm_init()
6717 */
6718void
6719pfm_init_percpu (void)
6720{
Ashok Rajff741902005-11-11 14:32:40 -08006721 static int first_time=1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006722 /*
6723 * make sure no measurement is active
6724 * (may inherit programmed PMCs from EFI).
6725 */
6726 pfm_clear_psr_pp();
6727 pfm_clear_psr_up();
6728
6729 /*
6730 * we run with the PMU not frozen at all times
6731 */
6732 pfm_unfreeze_pmu();
6733
Ashok Rajff741902005-11-11 14:32:40 -08006734 if (first_time) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006735 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
Ashok Rajff741902005-11-11 14:32:40 -08006736 first_time=0;
6737 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006738
6739 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6740 ia64_srlz_d();
6741}
6742
6743/*
6744 * used for debug purposes only
6745 */
6746void
6747dump_pmu_state(const char *from)
6748{
6749 struct task_struct *task;
6750 struct thread_struct *t;
6751 struct pt_regs *regs;
6752 pfm_context_t *ctx;
6753 unsigned long psr, dcr, info, flags;
6754 int i, this_cpu;
6755
6756 local_irq_save(flags);
6757
6758 this_cpu = smp_processor_id();
6759 regs = ia64_task_regs(current);
6760 info = PFM_CPUINFO_GET();
6761 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6762
6763 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6764 local_irq_restore(flags);
6765 return;
6766 }
6767
6768 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6769 this_cpu,
6770 from,
6771 current->pid,
6772 regs->cr_iip,
6773 current->comm);
6774
6775 task = GET_PMU_OWNER();
6776 ctx = GET_PMU_CTX();
6777
6778 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6779
6780 psr = pfm_get_psr();
6781
6782 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6783 this_cpu,
6784 ia64_get_pmc(0),
6785 psr & IA64_PSR_PP ? 1 : 0,
6786 psr & IA64_PSR_UP ? 1 : 0,
6787 dcr & IA64_DCR_PP ? 1 : 0,
6788 info,
6789 ia64_psr(regs)->up,
6790 ia64_psr(regs)->pp);
6791
6792 ia64_psr(regs)->up = 0;
6793 ia64_psr(regs)->pp = 0;
6794
6795 t = &current->thread;
6796
6797 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6798 if (PMC_IS_IMPL(i) == 0) continue;
6799 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6800 }
6801
6802 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6803 if (PMD_IS_IMPL(i) == 0) continue;
6804 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6805 }
6806
6807 if (ctx) {
6808 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6809 this_cpu,
6810 ctx->ctx_state,
6811 ctx->ctx_smpl_vaddr,
6812 ctx->ctx_smpl_hdr,
6813 ctx->ctx_msgq_head,
6814 ctx->ctx_msgq_tail,
6815 ctx->ctx_saved_psr_up);
6816 }
6817 local_irq_restore(flags);
6818}
6819
6820/*
6821 * called from process.c:copy_thread(). task is new child.
6822 */
6823void
6824pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6825{
6826 struct thread_struct *thread;
6827
6828 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6829
6830 thread = &task->thread;
6831
6832 /*
6833 * cut links inherited from parent (current)
6834 */
6835 thread->pfm_context = NULL;
6836
6837 PFM_SET_WORK_PENDING(task, 0);
6838
6839 /*
6840 * the psr bits are already set properly in copy_threads()
6841 */
6842}
6843#else /* !CONFIG_PERFMON */
6844asmlinkage long
6845sys_perfmonctl (int fd, int cmd, void *arg, int count)
6846{
6847 return -ENOSYS;
6848}
6849#endif /* CONFIG_PERFMON */