blob: 0bd1b3bfaf1cad6d6995bdc2087b8138d4d02bc4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file contains the code that gets mapped at the upper end of each task's text
3 * region. For now, it contains the signal trampoline code only.
4 *
5 * Copyright (C) 1999-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
8
Linus Torvalds1da177e2005-04-16 15:20:36 -07009
10#include <asm/asmmacro.h>
11#include <asm/errno.h>
Sam Ravnborg39e01cb2005-09-09 22:03:13 +020012#include <asm/asm-offsets.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#include <asm/sigcontext.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070014#include <asm/unistd.h>
David Howellsc140d872012-03-28 18:30:02 +010015#include <asm/kregs.h>
16#include <asm/page.h>
Luis R. Rodrigueze55645e2015-06-02 11:42:02 -070017#include <asm/native/inst.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
19/*
20 * We can't easily refer to symbols inside the kernel. To avoid full runtime relocation,
21 * complications with the linker (which likes to create PLT stubs for branches
22 * to targets outside the shared object) and to avoid multi-phase kernel builds, we
23 * simply create minimalistic "patch lists" in special ELF sections.
24 */
Denys Vlasenkodafb9322010-02-20 01:03:42 +010025 .section ".data..patch.fsyscall_table", "a"
Linus Torvalds1da177e2005-04-16 15:20:36 -070026 .previous
27#define LOAD_FSYSCALL_TABLE(reg) \
28[1:] movl reg=0; \
Denys Vlasenkodafb9322010-02-20 01:03:42 +010029 .xdata4 ".data..patch.fsyscall_table", 1b-.
Linus Torvalds1da177e2005-04-16 15:20:36 -070030
Denys Vlasenkodafb9322010-02-20 01:03:42 +010031 .section ".data..patch.brl_fsys_bubble_down", "a"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032 .previous
33#define BRL_COND_FSYS_BUBBLE_DOWN(pr) \
34[1:](pr)brl.cond.sptk 0; \
Christian Kandelerc6255e92007-07-09 16:19:11 +020035 ;; \
Denys Vlasenkodafb9322010-02-20 01:03:42 +010036 .xdata4 ".data..patch.brl_fsys_bubble_down", 1b-.
Linus Torvalds1da177e2005-04-16 15:20:36 -070037
38GLOBAL_ENTRY(__kernel_syscall_via_break)
39 .prologue
40 .altrp b6
41 .body
42 /*
43 * Note: for (fast) syscall restart to work, the break instruction must be
44 * the first one in the bundle addressed by syscall_via_break.
45 */
46{ .mib
47 break 0x100000
48 nop.i 0
49 br.ret.sptk.many b6
50}
51END(__kernel_syscall_via_break)
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053# define ARG0_OFF (16 + IA64_SIGFRAME_ARG0_OFFSET)
54# define ARG1_OFF (16 + IA64_SIGFRAME_ARG1_OFFSET)
55# define ARG2_OFF (16 + IA64_SIGFRAME_ARG2_OFFSET)
56# define SIGHANDLER_OFF (16 + IA64_SIGFRAME_HANDLER_OFFSET)
57# define SIGCONTEXT_OFF (16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)
58
59# define FLAGS_OFF IA64_SIGCONTEXT_FLAGS_OFFSET
60# define CFM_OFF IA64_SIGCONTEXT_CFM_OFFSET
61# define FR6_OFF IA64_SIGCONTEXT_FR6_OFFSET
62# define BSP_OFF IA64_SIGCONTEXT_AR_BSP_OFFSET
63# define RNAT_OFF IA64_SIGCONTEXT_AR_RNAT_OFFSET
64# define UNAT_OFF IA64_SIGCONTEXT_AR_UNAT_OFFSET
65# define FPSR_OFF IA64_SIGCONTEXT_AR_FPSR_OFFSET
66# define PR_OFF IA64_SIGCONTEXT_PR_OFFSET
67# define RP_OFF IA64_SIGCONTEXT_IP_OFFSET
68# define SP_OFF IA64_SIGCONTEXT_R12_OFFSET
69# define RBS_BASE_OFF IA64_SIGCONTEXT_RBS_BASE_OFFSET
70# define LOADRS_OFF IA64_SIGCONTEXT_LOADRS_OFFSET
71# define base0 r2
72# define base1 r3
73 /*
74 * When we get here, the memory stack looks like this:
75 *
76 * +===============================+
77 * | |
78 * // struct sigframe //
79 * | |
80 * +-------------------------------+ <-- sp+16
81 * | 16 byte of scratch |
82 * | space |
83 * +-------------------------------+ <-- sp
84 *
85 * The register stack looks _exactly_ the way it looked at the time the signal
86 * occurred. In other words, we're treading on a potential mine-field: each
87 * incoming general register may be a NaT value (including sp, in which case the
88 * process ends up dying with a SIGSEGV).
89 *
90 * The first thing need to do is a cover to get the registers onto the backing
91 * store. Once that is done, we invoke the signal handler which may modify some
92 * of the machine state. After returning from the signal handler, we return
93 * control to the previous context by executing a sigreturn system call. A signal
94 * handler may call the rt_sigreturn() function to directly return to a given
95 * sigcontext. However, the user-level sigreturn() needs to do much more than
96 * calling the rt_sigreturn() system call as it needs to unwind the stack to
97 * restore preserved registers that may have been saved on the signal handler's
98 * call stack.
99 */
100
101#define SIGTRAMP_SAVES \
102 .unwabi 3, 's'; /* mark this as a sigtramp handler (saves scratch regs) */ \
103 .unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */ \
104 .savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF; \
105 .savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF; \
106 .savesp pr, PR_OFF+SIGCONTEXT_OFF; \
107 .savesp rp, RP_OFF+SIGCONTEXT_OFF; \
108 .savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF; \
109 .vframesp SP_OFF+SIGCONTEXT_OFF
110
111GLOBAL_ENTRY(__kernel_sigtramp)
112 // describe the state that is active when we get here:
113 .prologue
114 SIGTRAMP_SAVES
115 .body
116
117 .label_state 1
118
119 adds base0=SIGHANDLER_OFF,sp
120 adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp
121 br.call.sptk.many rp=1f
1221:
123 ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF) // get pointer to signal handler's plabel
124 ld8 r15=[base1] // get address of new RBS base (or NULL)
125 cover // push args in interrupted frame onto backing store
126 ;;
127 cmp.ne p1,p0=r15,r0 // do we need to switch rbs? (note: pr is saved by kernel)
128 mov.m r9=ar.bsp // fetch ar.bsp
129 .spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
130(p1) br.cond.spnt setup_rbs // yup -> (clobbers p8, r14-r16, and r18-r20)
131back_from_setup_rbs:
132 alloc r8=ar.pfs,0,0,3,0
133 ld8 out0=[base0],16 // load arg0 (signum)
134 adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1
135 ;;
136 ld8 out1=[base1] // load arg1 (siginfop)
137 ld8 r10=[r17],8 // get signal handler entry point
138 ;;
139 ld8 out2=[base0] // load arg2 (sigcontextp)
140 ld8 gp=[r17] // get signal handler's global pointer
141 adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
142 ;;
143 .spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF
144 st8 [base0]=r9 // save sc_ar_bsp
145 adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
146 adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
147 ;;
148 stf.spill [base0]=f6,32
149 stf.spill [base1]=f7,32
150 ;;
151 stf.spill [base0]=f8,32
152 stf.spill [base1]=f9,32
153 mov b6=r10
154 ;;
155 stf.spill [base0]=f10,32
156 stf.spill [base1]=f11,32
157 ;;
158 stf.spill [base0]=f12,32
159 stf.spill [base1]=f13,32
160 ;;
161 stf.spill [base0]=f14,32
162 stf.spill [base1]=f15,32
163 br.call.sptk.many rp=b6 // call the signal handler
164.ret0: adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
165 ;;
166 ld8 r15=[base0] // fetch sc_ar_bsp
167 mov r14=ar.bsp
168 ;;
169 cmp.ne p1,p0=r14,r15 // do we need to restore the rbs?
170(p1) br.cond.spnt restore_rbs // yup -> (clobbers r14-r18, f6 & f7)
171 ;;
172back_from_restore_rbs:
173 adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
174 adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
175 ;;
176 ldf.fill f6=[base0],32
177 ldf.fill f7=[base1],32
178 ;;
179 ldf.fill f8=[base0],32
180 ldf.fill f9=[base1],32
181 ;;
182 ldf.fill f10=[base0],32
183 ldf.fill f11=[base1],32
184 ;;
185 ldf.fill f12=[base0],32
186 ldf.fill f13=[base1],32
187 ;;
188 ldf.fill f14=[base0],32
189 ldf.fill f15=[base1],32
190 mov r15=__NR_rt_sigreturn
191 .restore sp // pop .prologue
192 break __BREAK_SYSCALL
193
194 .prologue
195 SIGTRAMP_SAVES
196setup_rbs:
197 mov ar.rsc=0 // put RSE into enforced lazy mode
198 ;;
199 .save ar.rnat, r19
200 mov r19=ar.rnat // save RNaT before switching backing store area
201 adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp
202
203 mov r18=ar.bspstore
204 mov ar.bspstore=r15 // switch over to new register backing store area
205 ;;
206
207 .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
208 st8 [r14]=r19 // save sc_ar_rnat
209 .body
210 mov.m r16=ar.bsp // sc_loadrs <- (new bsp - new bspstore) << 16
211 adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp
212 ;;
213 invala
214 sub r15=r16,r15
215 extr.u r20=r18,3,6
216 ;;
217 mov ar.rsc=0xf // set RSE into eager mode, pl 3
218 cmp.eq p8,p0=63,r20
219 shl r15=r15,16
220 ;;
221 st8 [r14]=r15 // save sc_loadrs
222(p8) st8 [r18]=r19 // if bspstore points at RNaT slot, store RNaT there now
223 .restore sp // pop .prologue
224 br.cond.sptk back_from_setup_rbs
225
226 .prologue
227 SIGTRAMP_SAVES
228 .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
229 .body
230restore_rbs:
231 // On input:
232 // r14 = bsp1 (bsp at the time of return from signal handler)
233 // r15 = bsp0 (bsp at the time the signal occurred)
234 //
235 // Here, we need to calculate bspstore0, the value that ar.bspstore needs
236 // to be set to, based on bsp0 and the size of the dirty partition on
237 // the alternate stack (sc_loadrs >> 16). This can be done with the
238 // following algorithm:
239 //
240 // bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));
241 //
242 // This is what the code below does.
243 //
244 alloc r2=ar.pfs,0,0,0,0 // alloc null frame
245 adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp
246 adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp
247 ;;
248 ld8 r17=[r16]
249 ld8 r16=[r18] // get new rnat
250 extr.u r18=r15,3,6 // r18 <- rse_slot_num(bsp0)
251 ;;
252 mov ar.rsc=r17 // put RSE into enforced lazy mode
253 shr.u r17=r17,16
254 ;;
255 sub r14=r14,r17 // r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)
256 shr.u r17=r17,3 // r17 <- (sc_loadrs >> 19)
257 ;;
258 loadrs // restore dirty partition
259 extr.u r14=r14,3,6 // r14 <- rse_slot_num(bspstore1)
260 ;;
261 add r14=r14,r17 // r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)
262 ;;
263 shr.u r14=r14,6 // r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40
264 ;;
265 sub r14=r14,r17 // r14 <- -rse_num_regs(bspstore1, bsp1)
266 movl r17=0x8208208208208209
267 ;;
268 add r18=r18,r14 // r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)
269 setf.sig f7=r17
270 cmp.lt p7,p0=r14,r0 // p7 <- (r14 < 0)?
271 ;;
272(p7) adds r18=-62,r18 // delta -= 62
273 ;;
274 setf.sig f6=r18
275 ;;
276 xmpy.h f6=f6,f7
277 ;;
278 getf.sig r17=f6
279 ;;
280 add r17=r17,r18
281 shr r18=r18,63
282 ;;
283 shr r17=r17,5
284 ;;
285 sub r17=r17,r18 // r17 = delta/63
286 ;;
287 add r17=r14,r17 // r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)
288 ;;
289 shladd r15=r17,3,r15 // r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))
290 ;;
291 mov ar.bspstore=r15 // switch back to old register backing store area
292 ;;
293 mov ar.rnat=r16 // restore RNaT
294 mov ar.rsc=0xf // (will be restored later on from sc_ar_rsc)
295 // invala not necessary as that will happen when returning to user-mode
296 br.cond.sptk back_from_restore_rbs
297END(__kernel_sigtramp)
Isaku Yamahata53129c52009-03-04 21:05:44 +0900298
299/*
300 * On entry:
301 * r11 = saved ar.pfs
302 * r15 = system call #
303 * b0 = saved return address
304 * b6 = return address
305 * On exit:
306 * r11 = saved ar.pfs
307 * r15 = system call #
308 * b0 = saved return address
309 * all other "scratch" registers: undefined
310 * all "preserved" registers: same as on entry
311 */
312
313GLOBAL_ENTRY(__kernel_syscall_via_epc)
314 .prologue
315 .altrp b6
316 .body
317{
318 /*
319 * Note: the kernel cannot assume that the first two instructions in this
320 * bundle get executed. The remaining code must be safe even if
321 * they do not get executed.
322 */
323 adds r17=-1024,r15 // A
324 mov r10=0 // A default to successful syscall execution
325 epc // B causes split-issue
326}
327 ;;
Isaku Yamahatac4312512009-03-04 21:05:45 +0900328 RSM_PSR_BE_I(r20, r22) // M2 (5 cyc to srlz.d)
Isaku Yamahata53129c52009-03-04 21:05:44 +0900329 LOAD_FSYSCALL_TABLE(r14) // X
330 ;;
331 mov r16=IA64_KR(CURRENT) // M2 (12 cyc)
332 shladd r18=r17,3,r14 // A
333 mov r19=NR_syscalls-1 // A
334 ;;
335 lfetch [r18] // M0|1
Isaku Yamahatac4312512009-03-04 21:05:45 +0900336 MOV_FROM_PSR(p0, r29, r8) // M2 (12 cyc)
Isaku Yamahata53129c52009-03-04 21:05:44 +0900337 // If r17 is a NaT, p6 will be zero
338 cmp.geu p6,p7=r19,r17 // A (sysnr > 0 && sysnr < 1024+NR_syscalls)?
339 ;;
340 mov r21=ar.fpsr // M2 (12 cyc)
341 tnat.nz p10,p9=r15 // I0
342 mov.i r26=ar.pfs // I0 (would stall anyhow due to srlz.d...)
343 ;;
344 srlz.d // M0 (forces split-issue) ensure PSR.BE==0
345(p6) ld8 r18=[r18] // M0|1
346 nop.i 0
347 ;;
348 nop.m 0
349(p6) tbit.z.unc p8,p0=r18,0 // I0 (dual-issues with "mov b7=r18"!)
350 nop.i 0
351 ;;
Isaku Yamahatac4312512009-03-04 21:05:45 +0900352 SSM_PSR_I(p8, p14, r25)
Isaku Yamahata53129c52009-03-04 21:05:44 +0900353(p6) mov b7=r18 // I0
354(p8) br.dptk.many b7 // B
355
356 mov r27=ar.rsc // M2 (12 cyc)
357/*
358 * brl.cond doesn't work as intended because the linker would convert this branch
359 * into a branch to a PLT. Perhaps there will be a way to avoid this with some
360 * future version of the linker. In the meantime, we just use an indirect branch
361 * instead.
362 */
363#ifdef CONFIG_ITANIUM
364(p6) add r14=-8,r14 // r14 <- addr of fsys_bubble_down entry
365 ;;
366(p6) ld8 r14=[r14] // r14 <- fsys_bubble_down
367 ;;
368(p6) mov b7=r14
369(p6) br.sptk.many b7
370#else
371 BRL_COND_FSYS_BUBBLE_DOWN(p6)
372#endif
Isaku Yamahatac4312512009-03-04 21:05:45 +0900373 SSM_PSR_I(p0, p14, r10)
Isaku Yamahata53129c52009-03-04 21:05:44 +0900374 mov r10=-1
375(p10) mov r8=EINVAL
376(p9) mov r8=ENOSYS
377 FSYS_RETURN
Isaku Yamahatac4312512009-03-04 21:05:45 +0900378
Isaku Yamahata53129c52009-03-04 21:05:44 +0900379END(__kernel_syscall_via_epc)