blob: 7c8f6bf28b814ad1c4fbcfcf6dbca077685fd6c4 [file] [log] [blame]
Tejun Heo9ac78492007-01-20 16:00:26 +09001/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
Paul Gortmaker1b6bc322011-05-27 07:12:15 -040011#include <linux/export.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090012#include <linux/gfp.h>
Laura Abbott513510d2014-10-09 15:26:40 -070013#include <linux/slab.h>
14#include <linux/vmalloc.h>
Tejun Heo9ac78492007-01-20 16:00:26 +090015
16/*
17 * Managed DMA API
18 */
19struct dma_devres {
20 size_t size;
21 void *vaddr;
22 dma_addr_t dma_handle;
23};
24
25static void dmam_coherent_release(struct device *dev, void *res)
26{
27 struct dma_devres *this = res;
28
29 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
30}
31
32static void dmam_noncoherent_release(struct device *dev, void *res)
33{
34 struct dma_devres *this = res;
35
36 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
37}
38
39static int dmam_match(struct device *dev, void *res, void *match_data)
40{
41 struct dma_devres *this = res, *match = match_data;
42
43 if (this->vaddr == match->vaddr) {
44 WARN_ON(this->size != match->size ||
45 this->dma_handle != match->dma_handle);
46 return 1;
47 }
48 return 0;
49}
50
51/**
52 * dmam_alloc_coherent - Managed dma_alloc_coherent()
53 * @dev: Device to allocate coherent memory for
54 * @size: Size of allocation
55 * @dma_handle: Out argument for allocated DMA handle
56 * @gfp: Allocation flags
57 *
58 * Managed dma_alloc_coherent(). Memory allocated using this function
59 * will be automatically released on driver detach.
60 *
61 * RETURNS:
62 * Pointer to allocated memory on success, NULL on failure.
63 */
Marius Cristian Eseanu6d42d792015-03-08 12:34:14 +020064void *dmam_alloc_coherent(struct device *dev, size_t size,
Tejun Heo9ac78492007-01-20 16:00:26 +090065 dma_addr_t *dma_handle, gfp_t gfp)
66{
67 struct dma_devres *dr;
68 void *vaddr;
69
70 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
71 if (!dr)
72 return NULL;
73
74 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
75 if (!vaddr) {
76 devres_free(dr);
77 return NULL;
78 }
79
80 dr->vaddr = vaddr;
81 dr->dma_handle = *dma_handle;
82 dr->size = size;
83
84 devres_add(dev, dr);
85
86 return vaddr;
87}
88EXPORT_SYMBOL(dmam_alloc_coherent);
89
90/**
91 * dmam_free_coherent - Managed dma_free_coherent()
92 * @dev: Device to free coherent memory for
93 * @size: Size of allocation
94 * @vaddr: Virtual address of the memory to free
95 * @dma_handle: DMA handle of the memory to free
96 *
97 * Managed dma_free_coherent().
98 */
99void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
100 dma_addr_t dma_handle)
101{
102 struct dma_devres match_data = { size, vaddr, dma_handle };
103
104 dma_free_coherent(dev, size, vaddr, dma_handle);
105 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
106 &match_data));
107}
108EXPORT_SYMBOL(dmam_free_coherent);
109
110/**
111 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
112 * @dev: Device to allocate non_coherent memory for
113 * @size: Size of allocation
114 * @dma_handle: Out argument for allocated DMA handle
115 * @gfp: Allocation flags
116 *
117 * Managed dma_alloc_non_coherent(). Memory allocated using this
118 * function will be automatically released on driver detach.
119 *
120 * RETURNS:
121 * Pointer to allocated memory on success, NULL on failure.
122 */
123void *dmam_alloc_noncoherent(struct device *dev, size_t size,
124 dma_addr_t *dma_handle, gfp_t gfp)
125{
126 struct dma_devres *dr;
127 void *vaddr;
128
129 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
130 if (!dr)
131 return NULL;
132
133 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
134 if (!vaddr) {
135 devres_free(dr);
136 return NULL;
137 }
138
139 dr->vaddr = vaddr;
140 dr->dma_handle = *dma_handle;
141 dr->size = size;
142
143 devres_add(dev, dr);
144
145 return vaddr;
146}
147EXPORT_SYMBOL(dmam_alloc_noncoherent);
148
149/**
150 * dmam_free_coherent - Managed dma_free_noncoherent()
151 * @dev: Device to free noncoherent memory for
152 * @size: Size of allocation
153 * @vaddr: Virtual address of the memory to free
154 * @dma_handle: DMA handle of the memory to free
155 *
156 * Managed dma_free_noncoherent().
157 */
158void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
159 dma_addr_t dma_handle)
160{
161 struct dma_devres match_data = { size, vaddr, dma_handle };
162
163 dma_free_noncoherent(dev, size, vaddr, dma_handle);
164 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
165 &match_data));
166}
167EXPORT_SYMBOL(dmam_free_noncoherent);
168
Christoph Hellwig20d666e2016-01-20 15:02:09 -0800169#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
Tejun Heo9ac78492007-01-20 16:00:26 +0900170
171static void dmam_coherent_decl_release(struct device *dev, void *res)
172{
173 dma_release_declared_memory(dev);
174}
175
176/**
177 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
178 * @dev: Device to declare coherent memory for
Bjorn Helgaas88a984b2014-05-20 16:54:22 -0600179 * @phys_addr: Physical address of coherent memory to be declared
Tejun Heo9ac78492007-01-20 16:00:26 +0900180 * @device_addr: Device address of coherent memory to be declared
181 * @size: Size of coherent memory to be declared
182 * @flags: Flags
183 *
184 * Managed dma_declare_coherent_memory().
185 *
186 * RETURNS:
187 * 0 on success, -errno on failure.
188 */
Bjorn Helgaas88a984b2014-05-20 16:54:22 -0600189int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
Tejun Heo9ac78492007-01-20 16:00:26 +0900190 dma_addr_t device_addr, size_t size, int flags)
191{
192 void *res;
193 int rc;
194
195 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
196 if (!res)
197 return -ENOMEM;
198
Bjorn Helgaas88a984b2014-05-20 16:54:22 -0600199 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
Tejun Heo9ac78492007-01-20 16:00:26 +0900200 flags);
Vyacheslav V. Yurkov775115c2016-06-14 09:58:37 +0200201 if (rc) {
Tejun Heo9ac78492007-01-20 16:00:26 +0900202 devres_add(dev, res);
Vyacheslav V. Yurkov775115c2016-06-14 09:58:37 +0200203 rc = 0;
204 } else {
Tejun Heo9ac78492007-01-20 16:00:26 +0900205 devres_free(res);
Vyacheslav V. Yurkov775115c2016-06-14 09:58:37 +0200206 rc = -ENOMEM;
207 }
Tejun Heo9ac78492007-01-20 16:00:26 +0900208
209 return rc;
210}
211EXPORT_SYMBOL(dmam_declare_coherent_memory);
212
213/**
214 * dmam_release_declared_memory - Managed dma_release_declared_memory().
215 * @dev: Device to release declared coherent memory for
216 *
217 * Managed dmam_release_declared_memory().
218 */
219void dmam_release_declared_memory(struct device *dev)
220{
221 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
222}
223EXPORT_SYMBOL(dmam_release_declared_memory);
224
Marek Szyprowskic6c22952012-11-26 10:41:48 -0300225#endif
226
Marek Szyprowskid2b74282012-06-13 10:05:52 +0200227/*
228 * Create scatter-list for the already allocated DMA buffer.
229 */
230int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
231 void *cpu_addr, dma_addr_t handle, size_t size)
232{
233 struct page *page = virt_to_page(cpu_addr);
234 int ret;
235
236 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
237 if (unlikely(ret))
238 return ret;
239
240 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
241 return 0;
242}
243EXPORT_SYMBOL(dma_common_get_sgtable);
244
Marek Szyprowski64ccc9c2012-06-14 13:03:04 +0200245/*
246 * Create userspace mapping for the DMA-coherent memory.
247 */
248int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
249 void *cpu_addr, dma_addr_t dma_addr, size_t size)
250{
251 int ret = -ENXIO;
Christoph Hellwig0d4a6192016-01-20 15:01:22 -0800252#if defined(CONFIG_MMU) && !defined(CONFIG_ARCH_NO_COHERENT_DMA_MMAP)
Muhammad Falak R Wani95da00e2016-05-21 18:52:22 +0530253 unsigned long user_count = vma_pages(vma);
Marek Szyprowski64ccc9c2012-06-14 13:03:04 +0200254 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
255 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
256 unsigned long off = vma->vm_pgoff;
257
258 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
259
260 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
261 return ret;
262
263 if (off < count && user_count <= (count - off)) {
264 ret = remap_pfn_range(vma, vma->vm_start,
265 pfn + off,
266 user_count << PAGE_SHIFT,
267 vma->vm_page_prot);
268 }
Christoph Hellwig0d4a6192016-01-20 15:01:22 -0800269#endif /* CONFIG_MMU && !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
Marek Szyprowski64ccc9c2012-06-14 13:03:04 +0200270
271 return ret;
272}
273EXPORT_SYMBOL(dma_common_mmap);
Laura Abbott513510d2014-10-09 15:26:40 -0700274
275#ifdef CONFIG_MMU
276/*
277 * remaps an array of PAGE_SIZE pages into another vm_area
278 * Cannot be used in non-sleeping contexts
279 */
280void *dma_common_pages_remap(struct page **pages, size_t size,
281 unsigned long vm_flags, pgprot_t prot,
282 const void *caller)
283{
284 struct vm_struct *area;
285
286 area = get_vm_area_caller(size, vm_flags, caller);
287 if (!area)
288 return NULL;
289
290 area->pages = pages;
291
292 if (map_vm_area(area, prot, pages)) {
293 vunmap(area->addr);
294 return NULL;
295 }
296
297 return area->addr;
298}
299
300/*
301 * remaps an allocated contiguous region into another vm_area.
302 * Cannot be used in non-sleeping contexts
303 */
304
305void *dma_common_contiguous_remap(struct page *page, size_t size,
306 unsigned long vm_flags,
307 pgprot_t prot, const void *caller)
308{
Laura Abbott4a45a332014-08-05 19:16:28 -0700309 unsigned long i;
Laura Abbott513510d2014-10-09 15:26:40 -0700310 struct page **pages;
311 void *ptr;
312 unsigned long pfn;
313
Liam Markaa709002015-08-11 08:41:59 -0700314 pages = kmalloc(sizeof(struct page *) << get_order(size),
315 GFP_KERNEL | __GFP_NOWARN);
316
317 if (!pages)
318 pages = vmalloc(sizeof(struct page *) << get_order(size));
319
Laura Abbott513510d2014-10-09 15:26:40 -0700320 if (!pages)
321 return NULL;
322
323 for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
324 pages[i] = pfn_to_page(pfn + i);
325
326 ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
327
Liam Markaa709002015-08-11 08:41:59 -0700328 kvfree(pages);
Laura Abbott513510d2014-10-09 15:26:40 -0700329
330 return ptr;
331}
332
333/*
334 * unmaps a range previously mapped by dma_common_*_remap
335 */
Laura Abbott060e2df2014-08-05 19:16:28 -0700336void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags,
337 bool no_warn)
Laura Abbott513510d2014-10-09 15:26:40 -0700338{
339 struct vm_struct *area = find_vm_area(cpu_addr);
340
341 if (!area || (area->flags & vm_flags) != vm_flags) {
Laura Abbott060e2df2014-08-05 19:16:28 -0700342 WARN(!no_warn, "trying to free invalid coherent area: %p\n",
343 cpu_addr);
Laura Abbott513510d2014-10-09 15:26:40 -0700344 return;
345 }
346
Peng Fan85714102016-07-21 16:04:21 +0800347 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
Laura Abbott513510d2014-10-09 15:26:40 -0700348 vunmap(cpu_addr);
349}
350#endif