blob: ac1525573398fbf851f8b8dd7783669bffa8c843 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*********************************************************************
2 *
3 * Filename: via-ircc.h
4 * Version: 1.0
5 * Description: Driver for the VIA VT8231/VT8233 IrDA chipsets
6 * Author: VIA Technologies, inc
7 * Date : 08/06/2003
8
9Copyright (c) 1998-2003 VIA Technologies, Inc.
10
11This program is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free Software
13Foundation; either version 2, or (at your option) any later version.
14
15This program is distributed in the hope that it will be useful, but WITHOUT
16ANY WARRANTIES OR REPRESENTATIONS; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
18See the GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License along with
Jeff Kirshere8478de2013-12-06 06:28:44 -080021this program; if not, see <http://www.gnu.org/licenses/>.
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23 * Comment:
24 * jul/08/2002 : Rx buffer length should use Rx ring ptr.
25 * Oct/28/2002 : Add SB id for 3147 and 3177.
26 * jul/09/2002 : only implement two kind of dongle currently.
27 * Oct/02/2002 : work on VT8231 and VT8233 .
28 * Aug/06/2003 : change driver format to pci driver .
29 ********************************************************************/
30#ifndef via_IRCC_H
31#define via_IRCC_H
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <linux/spinlock.h>
33#include <linux/pm.h>
34#include <linux/types.h>
35#include <asm/io.h>
36
37#define MAX_TX_WINDOW 7
38#define MAX_RX_WINDOW 7
39
40struct st_fifo_entry {
41 int status;
42 int len;
43};
44
45struct st_fifo {
46 struct st_fifo_entry entries[MAX_RX_WINDOW + 2];
47 int pending_bytes;
48 int head;
49 int tail;
50 int len;
51};
52
53struct frame_cb {
54 void *start; /* Start of frame in DMA mem */
Paulius Zaleckasefad798b2008-02-03 15:42:53 +020055 int len; /* Length of frame in DMA mem */
Linus Torvalds1da177e2005-04-16 15:20:36 -070056};
57
58struct tx_fifo {
59 struct frame_cb queue[MAX_TX_WINDOW + 2]; /* Info about frames in queue */
60 int ptr; /* Currently being sent */
Paulius Zaleckasefad798b2008-02-03 15:42:53 +020061 int len; /* Length of queue */
Linus Torvalds1da177e2005-04-16 15:20:36 -070062 int free; /* Next free slot */
63 void *tail; /* Next free start in DMA mem */
64};
65
66
67struct eventflag // for keeping track of Interrupt Events
68{
69 //--------tx part
70 unsigned char TxFIFOUnderRun;
71 unsigned char EOMessage;
72 unsigned char TxFIFOReady;
73 unsigned char EarlyEOM;
74 //--------rx part
75 unsigned char PHYErr;
76 unsigned char CRCErr;
77 unsigned char RxFIFOOverRun;
78 unsigned char EOPacket;
79 unsigned char RxAvail;
80 unsigned char TooLargePacket;
81 unsigned char SIRBad;
82 //--------unknown
83 unsigned char Unknown;
84 //----------
85 unsigned char TimeOut;
86 unsigned char RxDMATC;
87 unsigned char TxDMATC;
88};
89
90/* Private data for each instance */
91struct via_ircc_cb {
92 struct st_fifo st_fifo; /* Info about received frames */
93 struct tx_fifo tx_fifo; /* Info about frames to be transmitted */
94
95 struct net_device *netdev; /* Yes! we are some kind of netdevice */
Linus Torvalds1da177e2005-04-16 15:20:36 -070096
97 struct irlap_cb *irlap; /* The link layer we are binded to */
98 struct qos_info qos; /* QoS capabilities for this device */
99
100 chipio_t io; /* IrDA controller information */
101 iobuff_t tx_buff; /* Transmit buffer */
102 iobuff_t rx_buff; /* Receive buffer */
103 dma_addr_t tx_buff_dma;
104 dma_addr_t rx_buff_dma;
105
106 __u8 ier; /* Interrupt enable register */
107
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108 spinlock_t lock; /* For serializing operations */
109
110 __u32 flags; /* Interface flags */
111 __u32 new_speed;
112 int index; /* Instance index */
113
114 struct eventflag EventFlag;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115 unsigned int chip_id; /* to remember chip id */
116 unsigned int RetryCount;
117 unsigned int RxDataReady;
118 unsigned int RxLastCount;
119};
120
121
122//---------I=Infrared, H=Host, M=Misc, T=Tx, R=Rx, ST=Status,
123// CF=Config, CT=Control, L=Low, H=High, C=Count
124#define I_CF_L_0 0x10
125#define I_CF_H_0 0x11
126#define I_SIR_BOF 0x12
127#define I_SIR_EOF 0x13
128#define I_ST_CT_0 0x15
129#define I_ST_L_1 0x16
130#define I_ST_H_1 0x17
131#define I_CF_L_1 0x18
132#define I_CF_H_1 0x19
133#define I_CF_L_2 0x1a
134#define I_CF_H_2 0x1b
135#define I_CF_3 0x1e
136#define H_CT 0x20
137#define H_ST 0x21
138#define M_CT 0x22
139#define TX_CT_1 0x23
140#define TX_CT_2 0x24
141#define TX_ST 0x25
142#define RX_CT 0x26
143#define RX_ST 0x27
144#define RESET 0x28
145#define P_ADDR 0x29
146#define RX_C_L 0x2a
147#define RX_C_H 0x2b
148#define RX_P_L 0x2c
149#define RX_P_H 0x2d
150#define TX_C_L 0x2e
151#define TX_C_H 0x2f
152#define TIMER 0x32
153#define I_CF_4 0x33
154#define I_T_C_L 0x34
155#define I_T_C_H 0x35
156#define VERSION 0x3f
157//-------------------------------
158#define StartAddr 0x10 // the first register address
159#define EndAddr 0x3f // the last register address
160#define GetBit(val,bit) val = (unsigned char) ((val>>bit) & 0x1)
161 // Returns the bit
162#define SetBit(val,bit) val= (unsigned char ) (val | (0x1 << bit))
163 // Sets bit to 1
164#define ResetBit(val,bit) val= (unsigned char ) (val & ~(0x1 << bit))
165 // Sets bit to 0
166
167#define OFF 0
168#define ON 1
169#define DMA_TX_MODE 0x08
170#define DMA_RX_MODE 0x04
171
172#define DMA1 0
173#define DMA2 0xc0
174#define MASK1 DMA1+0x0a
175#define MASK2 DMA2+0x14
176
177#define Clk_bit 0x40
178#define Tx_bit 0x01
179#define Rd_Valid 0x08
180#define RxBit 0x08
181
182static void DisableDmaChannel(unsigned int channel)
183{
184 switch (channel) { // 8 Bit DMA channels DMAC1
185 case 0:
186 outb(4, MASK1); //mask channel 0
187 break;
188 case 1:
189 outb(5, MASK1); //Mask channel 1
190 break;
191 case 2:
192 outb(6, MASK1); //Mask channel 2
193 break;
194 case 3:
195 outb(7, MASK1); //Mask channel 3
196 break;
197 case 5:
198 outb(5, MASK2); //Mask channel 5
199 break;
200 case 6:
201 outb(6, MASK2); //Mask channel 6
202 break;
203 case 7:
204 outb(7, MASK2); //Mask channel 7
205 break;
206 default:
207 break;
Joe Perches6403eab2011-06-03 11:51:20 +0000208 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209}
210
211static unsigned char ReadLPCReg(int iRegNum)
212{
213 unsigned char iVal;
214
215 outb(0x87, 0x2e);
216 outb(0x87, 0x2e);
217 outb(iRegNum, 0x2e);
218 iVal = inb(0x2f);
219 outb(0xaa, 0x2e);
220
221 return iVal;
222}
223
224static void WriteLPCReg(int iRegNum, unsigned char iVal)
225{
226
227 outb(0x87, 0x2e);
228 outb(0x87, 0x2e);
229 outb(iRegNum, 0x2e);
230 outb(iVal, 0x2f);
231 outb(0xAA, 0x2e);
232}
233
234static __u8 ReadReg(unsigned int BaseAddr, int iRegNum)
235{
Eric Dumazet807540b2010-09-23 05:40:09 +0000236 return (__u8) inb(BaseAddr + iRegNum);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237}
238
239static void WriteReg(unsigned int BaseAddr, int iRegNum, unsigned char iVal)
240{
241 outb(iVal, BaseAddr + iRegNum);
242}
243
244static int WriteRegBit(unsigned int BaseAddr, unsigned char RegNum,
245 unsigned char BitPos, unsigned char value)
246{
247 __u8 Rtemp, Wtemp;
248
249 if (BitPos > 7) {
250 return -1;
251 }
252 if ((RegNum < StartAddr) || (RegNum > EndAddr))
253 return -1;
254 Rtemp = ReadReg(BaseAddr, RegNum);
255 if (value == 0)
256 Wtemp = ResetBit(Rtemp, BitPos);
257 else {
258 if (value == 1)
259 Wtemp = SetBit(Rtemp, BitPos);
260 else
261 return -1;
262 }
263 WriteReg(BaseAddr, RegNum, Wtemp);
264 return 0;
265}
266
267static __u8 CheckRegBit(unsigned int BaseAddr, unsigned char RegNum,
268 unsigned char BitPos)
269{
270 __u8 temp;
271
272 if (BitPos > 7)
273 return 0xff;
274 if ((RegNum < StartAddr) || (RegNum > EndAddr)) {
275// printf("what is the register %x!\n",RegNum);
276 }
277 temp = ReadReg(BaseAddr, RegNum);
278 return GetBit(temp, BitPos);
279}
280
281static void SetMaxRxPacketSize(__u16 iobase, __u16 size)
282{
283 __u16 low, high;
284 if ((size & 0xe000) == 0) {
285 low = size & 0x00ff;
286 high = (size & 0x1f00) >> 8;
287 WriteReg(iobase, I_CF_L_2, low);
288 WriteReg(iobase, I_CF_H_2, high);
289
290 }
291
292}
293
294//for both Rx and Tx
295
296static void SetFIFO(__u16 iobase, __u16 value)
297{
298 switch (value) {
299 case 128:
300 WriteRegBit(iobase, 0x11, 0, 0);
301 WriteRegBit(iobase, 0x11, 7, 1);
302 break;
303 case 64:
304 WriteRegBit(iobase, 0x11, 0, 0);
305 WriteRegBit(iobase, 0x11, 7, 0);
306 break;
307 case 32:
308 WriteRegBit(iobase, 0x11, 0, 1);
309 WriteRegBit(iobase, 0x11, 7, 0);
310 break;
311 default:
312 WriteRegBit(iobase, 0x11, 0, 0);
313 WriteRegBit(iobase, 0x11, 7, 0);
314 }
315
316}
317
318#define CRC16(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,7,val) //0 for 32 CRC
319/*
320#define SetVFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,5,val)
321#define SetFIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,6,val)
322#define SetMIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,5,val)
323#define SetSIR(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,4,val)
324*/
325#define SIRFilter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,3,val)
326#define Filter(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,2,val)
327#define InvertTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,1,val)
328#define InvertRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_L_0,0,val)
329//****************************I_CF_H_0
330#define EnableTX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,4,val)
331#define EnableRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,3,val)
332#define EnableDMA(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,2,val)
333#define SIRRecvAny(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,1,val)
334#define DiableTrans(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_H_0,0,val)
335//***************************I_SIR_BOF,I_SIR_EOF
336#define SetSIRBOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_BOF,val)
337#define SetSIREOF(BaseAddr,val) WriteReg(BaseAddr,I_SIR_EOF,val)
338#define GetSIRBOF(BaseAddr) ReadReg(BaseAddr,I_SIR_BOF)
339#define GetSIREOF(BaseAddr) ReadReg(BaseAddr,I_SIR_EOF)
340//*******************I_ST_CT_0
341#define EnPhys(BaseAddr,val) WriteRegBit(BaseAddr,I_ST_CT_0,7,val)
342#define IsModeError(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,6) //RO
343#define IsVFIROn(BaseAddr) CheckRegBit(BaseAddr,0x14,0) //RO for VT1211 only
344#define IsFIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,5) //RO
345#define IsMIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,4) //RO
346#define IsSIROn(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,3) //RO
347#define IsEnableTX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,2) //RO
348#define IsEnableRX(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,1) //RO
349#define Is16CRC(BaseAddr) CheckRegBit(BaseAddr,I_ST_CT_0,0) //RO
350//***************************I_CF_3
351#define DisableAdjacentPulseWidth(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,5,val) //1 disable
352#define DisablePulseWidthAdjust(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,4,val) //1 disable
353#define UseOneRX(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,1,val) //0 use two RX
354#define SlowIRRXLowActive(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_3,0,val) //0 show RX high=1 in SIR
355//***************************H_CT
356#define EnAllInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,7,val)
357#define TXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,6,val)
358#define RXStart(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,5,val)
359#define ClearRXInt(BaseAddr,val) WriteRegBit(BaseAddr,H_CT,4,val) // 1 clear
360//*****************H_ST
361#define IsRXInt(BaseAddr) CheckRegBit(BaseAddr,H_ST,4)
362#define GetIntIndentify(BaseAddr) ((ReadReg(BaseAddr,H_ST)&0xf1) >>1)
363#define IsHostBusy(BaseAddr) CheckRegBit(BaseAddr,H_ST,0)
364#define GetHostStatus(BaseAddr) ReadReg(BaseAddr,H_ST) //RO
365//**************************M_CT
366#define EnTXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,7,val)
367#define EnRXDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,6,val)
368#define SwapDMA(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,5,val)
369#define EnInternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,4,val)
370#define EnExternalLoop(BaseAddr,val) WriteRegBit(BaseAddr,M_CT,3,val)
371//**************************TX_CT_1
372#define EnTXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,4,val) //half empty int (1 half)
373#define EnTXFIFOUnderrunEOMInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,5,val)
374#define EnTXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_1,6,val) //int when reach it threshold (setting by bit 4)
375//**************************TX_CT_2
376#define ForceUnderrun(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,7,val) // force an underrun int
377#define EnTXCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,6,val) //1 for FIR,MIR...0 (not SIR)
378#define ForceBADCRC(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,5,val) //force an bad CRC
379#define SendSIP(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,4,val) //send indication pulse for prevent SIR disturb
380#define ClearEnTX(BaseAddr,val) WriteRegBit(BaseAddr,TX_CT_2,3,val) // opposite to EnTX
381//*****************TX_ST
382#define GetTXStatus(BaseAddr) ReadReg(BaseAddr,TX_ST) //RO
383//**************************RX_CT
384#define EnRXSpecInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,0,val)
385#define EnRXFIFOReadyInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,1,val) //enable int when reach it threshold (setting by bit 7)
386#define EnRXFIFOHalfLevelInt(BaseAddr,val) WriteRegBit(BaseAddr,RX_CT,7,val) //enable int when (1) half full...or (0) just not full
387//*****************RX_ST
388#define GetRXStatus(BaseAddr) ReadReg(BaseAddr,RX_ST) //RO
389//***********************P_ADDR
390#define SetPacketAddr(BaseAddr,addr) WriteReg(BaseAddr,P_ADDR,addr)
391//***********************I_CF_4
392#define EnGPIOtoRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,7,val)
393#define EnTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,1,val)
394#define ClearTimerInt(BaseAddr,val) WriteRegBit(BaseAddr,I_CF_4,0,val)
395//***********************I_T_C_L
396#define WriteGIO(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,7,val)
397#define ReadGIO(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,7)
398#define ReadRX(BaseAddr) CheckRegBit(BaseAddr,I_T_C_L,3) //RO
399#define WriteTX(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_L,0,val)
400//***********************I_T_C_H
401#define EnRX2(BaseAddr,val) WriteRegBit(BaseAddr,I_T_C_H,7,val)
402#define ReadRX2(BaseAddr) CheckRegBit(BaseAddr,I_T_C_H,7)
403//**********************Version
404#define GetFIRVersion(BaseAddr) ReadReg(BaseAddr,VERSION)
405
406
407static void SetTimer(__u16 iobase, __u8 count)
408{
409 EnTimerInt(iobase, OFF);
410 WriteReg(iobase, TIMER, count);
411 EnTimerInt(iobase, ON);
412}
413
414
415static void SetSendByte(__u16 iobase, __u32 count)
416{
417 __u32 low, high;
418
419 if ((count & 0xf000) == 0) {
420 low = count & 0x00ff;
421 high = (count & 0x0f00) >> 8;
422 WriteReg(iobase, TX_C_L, low);
423 WriteReg(iobase, TX_C_H, high);
424 }
425}
426
427static void ResetChip(__u16 iobase, __u8 type)
428{
429 __u8 value;
430
431 value = (type + 2) << 4;
432 WriteReg(iobase, RESET, type);
433}
434
435static int CkRxRecv(__u16 iobase, struct via_ircc_cb *self)
436{
437 __u8 low, high;
438 __u16 wTmp = 0, wTmp1 = 0, wTmp_new = 0;
439
440 low = ReadReg(iobase, RX_C_L);
441 high = ReadReg(iobase, RX_C_H);
442 wTmp1 = high;
443 wTmp = (wTmp1 << 8) | low;
444 udelay(10);
445 low = ReadReg(iobase, RX_C_L);
446 high = ReadReg(iobase, RX_C_H);
447 wTmp1 = high;
448 wTmp_new = (wTmp1 << 8) | low;
449 if (wTmp_new != wTmp)
450 return 1;
451 else
452 return 0;
453
454}
455
456static __u16 RxCurCount(__u16 iobase, struct via_ircc_cb * self)
457{
458 __u8 low, high;
459 __u16 wTmp = 0, wTmp1 = 0;
460
461 low = ReadReg(iobase, RX_P_L);
462 high = ReadReg(iobase, RX_P_H);
463 wTmp1 = high;
464 wTmp = (wTmp1 << 8) | low;
465 return wTmp;
466}
467
468/* This Routine can only use in recevie_complete
469 * for it will update last count.
470 */
471
472static __u16 GetRecvByte(__u16 iobase, struct via_ircc_cb * self)
473{
474 __u8 low, high;
475 __u16 wTmp, wTmp1, ret;
476
477 low = ReadReg(iobase, RX_P_L);
478 high = ReadReg(iobase, RX_P_H);
479 wTmp1 = high;
480 wTmp = (wTmp1 << 8) | low;
481
482
483 if (wTmp >= self->RxLastCount)
484 ret = wTmp - self->RxLastCount;
485 else
486 ret = (0x8000 - self->RxLastCount) + wTmp;
487 self->RxLastCount = wTmp;
488
489/* RX_P is more actually the RX_C
490 low=ReadReg(iobase,RX_C_L);
491 high=ReadReg(iobase,RX_C_H);
492
493 if(!(high&0xe000)) {
494 temp=(high<<8)+low;
495 return temp;
496 }
497 else return 0;
498*/
499 return ret;
500}
501
502static void Sdelay(__u16 scale)
503{
504 __u8 bTmp;
505 int i, j;
506
507 for (j = 0; j < scale; j++) {
508 for (i = 0; i < 0x20; i++) {
509 bTmp = inb(0xeb);
510 outb(bTmp, 0xeb);
511 }
512 }
513}
514
515static void Tdelay(__u16 scale)
516{
517 __u8 bTmp;
518 int i, j;
519
520 for (j = 0; j < scale; j++) {
521 for (i = 0; i < 0x50; i++) {
522 bTmp = inb(0xeb);
523 outb(bTmp, 0xeb);
524 }
525 }
526}
527
528
529static void ActClk(__u16 iobase, __u8 value)
530{
531 __u8 bTmp;
532 bTmp = ReadReg(iobase, 0x34);
533 if (value)
534 WriteReg(iobase, 0x34, bTmp | Clk_bit);
535 else
536 WriteReg(iobase, 0x34, bTmp & ~Clk_bit);
537}
538
539static void ClkTx(__u16 iobase, __u8 Clk, __u8 Tx)
540{
541 __u8 bTmp;
542
543 bTmp = ReadReg(iobase, 0x34);
544 if (Clk == 0)
545 bTmp &= ~Clk_bit;
546 else {
547 if (Clk == 1)
548 bTmp |= Clk_bit;
549 }
550 WriteReg(iobase, 0x34, bTmp);
551 Sdelay(1);
552 if (Tx == 0)
553 bTmp &= ~Tx_bit;
554 else {
555 if (Tx == 1)
556 bTmp |= Tx_bit;
557 }
558 WriteReg(iobase, 0x34, bTmp);
559}
560
561static void Wr_Byte(__u16 iobase, __u8 data)
562{
563 __u8 bData = data;
564// __u8 btmp;
565 int i;
566
567 ClkTx(iobase, 0, 1);
568
569 Tdelay(2);
570 ActClk(iobase, 1);
571 Tdelay(1);
572
573 for (i = 0; i < 8; i++) { //LDN
574
575 if ((bData >> i) & 0x01) {
576 ClkTx(iobase, 0, 1); //bit data = 1;
577 } else {
578 ClkTx(iobase, 0, 0); //bit data = 1;
579 }
580 Tdelay(2);
581 Sdelay(1);
582 ActClk(iobase, 1); //clk hi
583 Tdelay(1);
584 }
585}
586
587static __u8 Rd_Indx(__u16 iobase, __u8 addr, __u8 index)
588{
589 __u8 data = 0, bTmp, data_bit;
590 int i;
591
592 bTmp = addr | (index << 1) | 0;
593 ClkTx(iobase, 0, 0);
594 Tdelay(2);
595 ActClk(iobase, 1);
596 udelay(1);
597 Wr_Byte(iobase, bTmp);
598 Sdelay(1);
599 ClkTx(iobase, 0, 0);
600 Tdelay(2);
601 for (i = 0; i < 10; i++) {
602 ActClk(iobase, 1);
603 Tdelay(1);
604 ActClk(iobase, 0);
605 Tdelay(1);
606 ClkTx(iobase, 0, 1);
607 Tdelay(1);
608 bTmp = ReadReg(iobase, 0x34);
609 if (!(bTmp & Rd_Valid))
610 break;
611 }
612 if (!(bTmp & Rd_Valid)) {
613 for (i = 0; i < 8; i++) {
614 ActClk(iobase, 1);
615 Tdelay(1);
616 ActClk(iobase, 0);
617 bTmp = ReadReg(iobase, 0x34);
618 data_bit = 1 << i;
619 if (bTmp & RxBit)
620 data |= data_bit;
621 else
622 data &= ~data_bit;
623 Tdelay(2);
624 }
625 } else {
626 for (i = 0; i < 2; i++) {
627 ActClk(iobase, 1);
628 Tdelay(1);
629 ActClk(iobase, 0);
630 Tdelay(2);
631 }
632 bTmp = ReadReg(iobase, 0x34);
633 }
634 for (i = 0; i < 1; i++) {
635 ActClk(iobase, 1);
636 Tdelay(1);
637 ActClk(iobase, 0);
638 Tdelay(2);
639 }
640 ClkTx(iobase, 0, 0);
641 Tdelay(1);
642 for (i = 0; i < 3; i++) {
643 ActClk(iobase, 1);
644 Tdelay(1);
645 ActClk(iobase, 0);
646 Tdelay(2);
647 }
648 return data;
649}
650
651static void Wr_Indx(__u16 iobase, __u8 addr, __u8 index, __u8 data)
652{
653 int i;
654 __u8 bTmp;
655
656 ClkTx(iobase, 0, 0);
657 udelay(2);
658 ActClk(iobase, 1);
659 udelay(1);
660 bTmp = addr | (index << 1) | 1;
661 Wr_Byte(iobase, bTmp);
662 Wr_Byte(iobase, data);
663 for (i = 0; i < 2; i++) {
664 ClkTx(iobase, 0, 0);
665 Tdelay(2);
666 ActClk(iobase, 1);
667 Tdelay(1);
668 }
669 ActClk(iobase, 0);
670}
671
672static void ResetDongle(__u16 iobase)
673{
674 int i;
675 ClkTx(iobase, 0, 0);
676 Tdelay(1);
677 for (i = 0; i < 30; i++) {
678 ActClk(iobase, 1);
679 Tdelay(1);
680 ActClk(iobase, 0);
681 Tdelay(1);
682 }
683 ActClk(iobase, 0);
684}
685
686static void SetSITmode(__u16 iobase)
687{
688
689 __u8 bTmp;
690
691 bTmp = ReadLPCReg(0x28);
692 WriteLPCReg(0x28, bTmp | 0x10); //select ITMOFF
693 bTmp = ReadReg(iobase, 0x35);
694 WriteReg(iobase, 0x35, bTmp | 0x40); // Driver ITMOFF
695 WriteReg(iobase, 0x28, bTmp | 0x80); // enable All interrupt
696}
697
698static void SI_SetMode(__u16 iobase, int mode)
699{
700 //__u32 dTmp;
701 __u8 bTmp;
702
703 WriteLPCReg(0x28, 0x70); // S/W Reset
704 SetSITmode(iobase);
705 ResetDongle(iobase);
706 udelay(10);
707 Wr_Indx(iobase, 0x40, 0x0, 0x17); //RX ,APEN enable,Normal power
708 Wr_Indx(iobase, 0x40, 0x1, mode); //Set Mode
709 Wr_Indx(iobase, 0x40, 0x2, 0xff); //Set power to FIR VFIR > 1m
710 bTmp = Rd_Indx(iobase, 0x40, 1);
711}
712
713static void InitCard(__u16 iobase)
714{
715 ResetChip(iobase, 5);
716 WriteReg(iobase, I_ST_CT_0, 0x00); // open CHIP on
717 SetSIRBOF(iobase, 0xc0); // hardware default value
718 SetSIREOF(iobase, 0xc1);
719}
720
721static void CommonInit(__u16 iobase)
722{
723// EnTXCRC(iobase,0);
724 SwapDMA(iobase, OFF);
725 SetMaxRxPacketSize(iobase, 0x0fff); //set to max:4095
726 EnRXFIFOReadyInt(iobase, OFF);
727 EnRXFIFOHalfLevelInt(iobase, OFF);
728 EnTXFIFOHalfLevelInt(iobase, OFF);
729 EnTXFIFOUnderrunEOMInt(iobase, ON);
730// EnTXFIFOReadyInt(iobase,ON);
731 InvertTX(iobase, OFF);
732 InvertRX(iobase, OFF);
733// WriteLPCReg(0xF0,0); //(if VT1211 then do this)
734 if (IsSIROn(iobase)) {
735 SIRFilter(iobase, ON);
736 SIRRecvAny(iobase, ON);
737 } else {
738 SIRFilter(iobase, OFF);
739 SIRRecvAny(iobase, OFF);
740 }
741 EnRXSpecInt(iobase, ON);
742 WriteReg(iobase, I_ST_CT_0, 0x80);
743 EnableDMA(iobase, ON);
744}
745
746static void SetBaudRate(__u16 iobase, __u32 rate)
747{
748 __u8 value = 11, temp;
749
750 if (IsSIROn(iobase)) {
751 switch (rate) {
752 case (__u32) (2400L):
753 value = 47;
754 break;
755 case (__u32) (9600L):
756 value = 11;
757 break;
758 case (__u32) (19200L):
759 value = 5;
760 break;
761 case (__u32) (38400L):
762 value = 2;
763 break;
764 case (__u32) (57600L):
765 value = 1;
766 break;
767 case (__u32) (115200L):
768 value = 0;
769 break;
770 default:
771 break;
Joe Perchesee289b62010-05-17 22:47:34 -0700772 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773 } else if (IsMIROn(iobase)) {
774 value = 0; // will automatically be fixed in 1.152M
775 } else if (IsFIROn(iobase)) {
776 value = 0; // will automatically be fixed in 4M
777 }
778 temp = (ReadReg(iobase, I_CF_H_1) & 0x03);
779 temp |= value << 2;
780 WriteReg(iobase, I_CF_H_1, temp);
781}
782
783static void SetPulseWidth(__u16 iobase, __u8 width)
784{
785 __u8 temp, temp1, temp2;
786
787 temp = (ReadReg(iobase, I_CF_L_1) & 0x1f);
788 temp1 = (ReadReg(iobase, I_CF_H_1) & 0xfc);
789 temp2 = (width & 0x07) << 5;
790 temp |= temp2;
791 temp2 = (width & 0x18) >> 3;
792 temp1 |= temp2;
793 WriteReg(iobase, I_CF_L_1, temp);
794 WriteReg(iobase, I_CF_H_1, temp1);
795}
796
797static void SetSendPreambleCount(__u16 iobase, __u8 count)
798{
799 __u8 temp;
800
801 temp = ReadReg(iobase, I_CF_L_1) & 0xe0;
802 temp |= count;
803 WriteReg(iobase, I_CF_L_1, temp);
804
805}
806
807static void SetVFIR(__u16 BaseAddr, __u8 val)
808{
809 __u8 tmp;
810
811 tmp = ReadReg(BaseAddr, I_CF_L_0);
812 WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
813 WriteRegBit(BaseAddr, I_CF_H_0, 5, val);
814}
815
816static void SetFIR(__u16 BaseAddr, __u8 val)
817{
818 __u8 tmp;
819
820 WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
821 tmp = ReadReg(BaseAddr, I_CF_L_0);
822 WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
823 WriteRegBit(BaseAddr, I_CF_L_0, 6, val);
824}
825
826static void SetMIR(__u16 BaseAddr, __u8 val)
827{
828 __u8 tmp;
829
830 WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
831 tmp = ReadReg(BaseAddr, I_CF_L_0);
832 WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
833 WriteRegBit(BaseAddr, I_CF_L_0, 5, val);
834}
835
836static void SetSIR(__u16 BaseAddr, __u8 val)
837{
838 __u8 tmp;
839
840 WriteRegBit(BaseAddr, I_CF_H_0, 5, 0);
841 tmp = ReadReg(BaseAddr, I_CF_L_0);
842 WriteReg(BaseAddr, I_CF_L_0, tmp & 0x8f);
843 WriteRegBit(BaseAddr, I_CF_L_0, 4, val);
844}
845
846#endif /* via_IRCC_H */