blob: 37f3eb001a16989af624bac7c935ce1663b89f9b [file] [log] [blame]
Claudiu Manoilc535e922016-09-22 18:04:09 +03001/* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#ifndef __FSL_QMAN_H
32#define __FSL_QMAN_H
33
34#include <linux/bitops.h>
35
36/* Hardware constants */
37#define QM_CHANNEL_SWPORTAL0 0
38#define QMAN_CHANNEL_POOL1 0x21
39#define QMAN_CHANNEL_POOL1_REV3 0x401
40extern u16 qm_channel_pool1;
41
42/* Portal processing (interrupt) sources */
43#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
44#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
45#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
46#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
47#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
48/*
49 * This mask contains all the interrupt sources that need handling except DQRI,
50 * ie. that if present should trigger slow-path processing.
51 */
52#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
53 QM_PIRQ_MRI)
54
55/* For qman_static_dequeue_*** APIs */
56#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
57/* for n in [1,15] */
58#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
59/* for conversion from n of qm_channel */
60static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
61{
62 return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
63}
64
65/* --- QMan data structures (and associated constants) --- */
66
67/* "Frame Descriptor (FD)" */
68struct qm_fd {
69 union {
70 struct {
71 u8 cfg8b_w1;
72 u8 bpid; /* Buffer Pool ID */
73 u8 cfg8b_w3;
74 u8 addr_hi; /* high 8-bits of 40-bit address */
75 __be32 addr_lo; /* low 32-bits of 40-bit address */
76 } __packed;
77 __be64 data;
78 };
79 __be32 cfg; /* format, offset, length / congestion */
80 union {
81 __be32 cmd;
82 __be32 status;
83 };
84} __aligned(8);
85
86#define QM_FD_FORMAT_SG BIT(31)
87#define QM_FD_FORMAT_LONG BIT(30)
88#define QM_FD_FORMAT_COMPOUND BIT(29)
89#define QM_FD_FORMAT_MASK GENMASK(31, 29)
90#define QM_FD_OFF_SHIFT 20
91#define QM_FD_OFF_MASK GENMASK(28, 20)
92#define QM_FD_LEN_MASK GENMASK(19, 0)
93#define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
94
95enum qm_fd_format {
96 /*
97 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
98 * scatter-gather table. 'big' implies a 29-bit length with no offset
99 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
100 * implies a s/g-like table, where each entry itself represents a frame
101 * (contiguous or scatter-gather) and the 29-bit "length" is
102 * interpreted purely for congestion calculations, ie. a "congestion
103 * weight".
104 */
105 qm_fd_contig = 0,
106 qm_fd_contig_big = QM_FD_FORMAT_LONG,
107 qm_fd_sg = QM_FD_FORMAT_SG,
108 qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
109 qm_fd_compound = QM_FD_FORMAT_COMPOUND
110};
111
112static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
113{
114 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
115}
116
117static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
118{
119 return be64_to_cpu(fd->data) & 0xffffffffffLLU;
120}
121
122static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
123{
124 fd->addr_hi = upper_32_bits(addr);
125 fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
126}
127
128/*
129 * The 'format' field indicates the interpretation of the remaining
130 * 29 bits of the 32-bit word.
131 * If 'format' is _contig or _sg, 20b length and 9b offset.
132 * If 'format' is _contig_big or _sg_big, 29b length.
133 * If 'format' is _compound, 29b "congestion weight".
134 */
135static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
136{
137 return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
138}
139
140static inline int qm_fd_get_offset(const struct qm_fd *fd)
141{
142 return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
143}
144
145static inline int qm_fd_get_length(const struct qm_fd *fd)
146{
147 return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
148}
149
150static inline int qm_fd_get_len_big(const struct qm_fd *fd)
151{
152 return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
153}
154
155static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
156 int off, int len)
157{
158 fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
159 ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
160}
161
162#define qm_fd_set_contig(fd, off, len) \
163 qm_fd_set_param(fd, qm_fd_contig, off, len)
164#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
165#define qm_fd_set_contig_big(fd, len) \
166 qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
167#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
168
169static inline void qm_fd_clear_fd(struct qm_fd *fd)
170{
171 fd->data = 0;
172 fd->cfg = 0;
173 fd->cmd = 0;
174}
175
176/* Scatter/Gather table entry */
177struct qm_sg_entry {
178 union {
179 struct {
180 u8 __reserved1[3];
181 u8 addr_hi; /* high 8-bits of 40-bit address */
182 __be32 addr_lo; /* low 32-bits of 40-bit address */
183 };
184 __be64 data;
185 };
186 __be32 cfg; /* E bit, F bit, length */
187 u8 __reserved2;
188 u8 bpid;
189 __be16 offset; /* 13-bit, _res[13-15]*/
190} __packed;
191
192#define QM_SG_LEN_MASK GENMASK(29, 0)
193#define QM_SG_OFF_MASK GENMASK(12, 0)
194#define QM_SG_FIN BIT(30)
195#define QM_SG_EXT BIT(31)
196
197static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
198{
199 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
200}
201
202static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
203{
204 return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205}
206
207static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
208{
209 sg->addr_hi = upper_32_bits(addr);
210 sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
211}
212
213static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
214{
215 return be32_to_cpu(sg->cfg) & QM_SG_FIN;
216}
217
218static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
219{
220 return be32_to_cpu(sg->cfg) & QM_SG_EXT;
221}
222
223static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
224{
225 return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
226}
227
228static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
229{
230 sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
231}
232
233static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
234{
235 sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
236}
237
238static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
239{
240 return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
241}
242
243/* "Frame Dequeue Response" */
244struct qm_dqrr_entry {
245 u8 verb;
246 u8 stat;
247 u16 seqnum; /* 15-bit */
248 u8 tok;
249 u8 __reserved2[3];
250 u32 fqid; /* 24-bit */
251 u32 contextB;
252 struct qm_fd fd;
253 u8 __reserved4[32];
254} __packed;
255#define QM_DQRR_VERB_VBIT 0x80
256#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
257#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
258#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
259#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
260#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
261#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
262#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
263#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
264
265/* "ERN Message Response" */
266/* "FQ State Change Notification" */
267union qm_mr_entry {
268 struct {
269 u8 verb;
270 u8 __reserved[63];
271 };
272 struct {
273 u8 verb;
274 u8 dca;
275 u16 seqnum;
276 u8 rc; /* Rej Code: 8-bit */
277 u8 orp_hi; /* ORP: 24-bit */
278 u16 orp_lo;
279 u32 fqid; /* 24-bit */
280 u32 tag;
281 struct qm_fd fd;
282 u8 __reserved1[32];
283 } __packed ern;
284 struct {
285 u8 verb;
286 u8 fqs; /* Frame Queue Status */
287 u8 __reserved1[6];
288 u32 fqid; /* 24-bit */
289 u32 contextB;
290 u8 __reserved2[48];
291 } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
292};
293#define QM_MR_VERB_VBIT 0x80
294/*
295 * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
296 * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
297 * from the other MR types by noting if the 0x20 bit is unset.
298 */
299#define QM_MR_VERB_TYPE_MASK 0x27
300#define QM_MR_VERB_DC_ERN 0x20
301#define QM_MR_VERB_FQRN 0x21
302#define QM_MR_VERB_FQRNI 0x22
303#define QM_MR_VERB_FQRL 0x23
304#define QM_MR_VERB_FQPN 0x24
305#define QM_MR_RC_MASK 0xf0 /* contains one of; */
306#define QM_MR_RC_CGR_TAILDROP 0x00
307#define QM_MR_RC_WRED 0x10
308#define QM_MR_RC_ERROR 0x20
309#define QM_MR_RC_ORPWINDOW_EARLY 0x30
310#define QM_MR_RC_ORPWINDOW_LATE 0x40
311#define QM_MR_RC_FQ_TAILDROP 0x50
312#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
313#define QM_MR_RC_ORP_ZERO 0x70
314#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
315#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
316
317/*
318 * An identical structure of FQD fields is present in the "Init FQ" command and
319 * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
320 * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
321 * latter has two inlines to assist with converting to/from the mant+exp
322 * representation.
323 */
324struct qm_fqd_stashing {
325 /* See QM_STASHING_EXCL_<...> */
326 u8 exclusive;
327 /* Numbers of cachelines */
328 u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
329};
330
331struct qm_fqd_oac {
332 /* "Overhead Accounting Control", see QM_OAC_<...> */
333 u8 oac; /* oac[6-7], _res[0-5] */
334 /* Two's-complement value (-128 to +127) */
335 s8 oal; /* "Overhead Accounting Length" */
336};
337
338struct qm_fqd {
339 /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
340 u8 orpc;
341 u8 cgid;
342 __be16 fq_ctrl; /* See QM_FQCTRL_<...> */
343 __be16 dest_wq; /* channel[3-15], wq[0-2] */
344 __be16 ics_cred; /* 15-bit */
345 /*
346 * For "Initialize Frame Queue" commands, the write-enable mask
347 * determines whether 'td' or 'oac_init' is observed. For query
348 * commands, this field is always 'td', and 'oac_query' (below) reflects
349 * the Overhead ACcounting values.
350 */
351 union {
352 __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
353 struct qm_fqd_oac oac_init;
354 };
355 __be32 context_b;
356 union {
357 /* Treat it as 64-bit opaque */
358 __be64 opaque;
359 struct {
360 __be32 hi;
361 __be32 lo;
362 };
363 /* Treat it as s/w portal stashing config */
364 /* see "FQD Context_A field used for [...]" */
365 struct {
366 struct qm_fqd_stashing stashing;
367 /*
368 * 48-bit address of FQ context to
369 * stash, must be cacheline-aligned
370 */
371 __be16 context_hi;
372 __be32 context_lo;
373 } __packed;
374 } context_a;
375 struct qm_fqd_oac oac_query;
376} __packed;
377
378#define QM_FQD_CHAN_OFF 3
379#define QM_FQD_WQ_MASK GENMASK(2, 0)
380#define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
381#define QM_FQD_TD_MANT_OFF 5
382#define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
383#define QM_FQD_TD_MAX 0xe0000000
384#define QM_FQD_TD_MANT_MAX 0xff
385#define QM_FQD_OAC_OFF 6
386#define QM_FQD_AS_OFF 4
387#define QM_FQD_DS_OFF 2
388#define QM_FQD_XS_MASK 0x3
389
390/* 64-bit converters for context_hi/lo */
391static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
392{
393 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
394}
395
396static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
397{
398 return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
399}
400
401static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
402{
403 return qm_fqd_stashing_get64(fqd);
404}
405
406static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
407{
408 fqd->context_a.context_hi = upper_32_bits(addr);
409 fqd->context_a.context_lo = lower_32_bits(addr);
410}
411
412static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
413{
414 fqd->context_a.hi = cpu_to_be16(upper_32_bits(addr));
415 fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
416}
417
418/* convert a threshold value into mant+exp representation */
419static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
420 int roundup)
421{
422 u32 e = 0;
423 int td, oddbit = 0;
424
425 if (val > QM_FQD_TD_MAX)
426 return -ERANGE;
427
428 while (val > QM_FQD_TD_MANT_MAX) {
429 oddbit = val & 1;
430 val >>= 1;
431 e++;
432 if (roundup && oddbit)
433 val++;
434 }
435
436 td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
437 td |= (e & QM_FQD_TD_EXP_MASK);
438 fqd->td = cpu_to_be16(td);
439 return 0;
440}
441/* and the other direction */
442static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
443{
444 int td = be16_to_cpu(fqd->td);
445
446 return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
447 << (td & QM_FQD_TD_EXP_MASK);
448}
449
450static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
451{
452 struct qm_fqd_stashing *st = &fqd->context_a.stashing;
453
454 st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
455 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
456 (cs & QM_FQD_XS_MASK);
457}
458
459static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
460{
461 return fqd->context_a.stashing.cl;
462}
463
464static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
465{
466 fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
467}
468
469static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
470{
471 fqd->oac_init.oal = val;
472}
473
474static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
475{
476 fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
477 (wq & QM_FQD_WQ_MASK));
478}
479
480static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
481{
482 return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
483}
484
485static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
486{
487 return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
488}
489
490/* See "Frame Queue Descriptor (FQD)" */
491/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
492#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
493#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
494#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
495#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
496#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
497#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
498#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
499#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
500#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
501#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
502
503/* See "FQD Context_A field used for [...] */
504/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
505#define QM_STASHING_EXCL_ANNOTATION 0x04
506#define QM_STASHING_EXCL_DATA 0x02
507#define QM_STASHING_EXCL_CTX 0x01
508
509/* See "Intra Class Scheduling" */
510/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
511#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
512#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
513
514/*
515 * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
516 * and associated commands/responses. The WRED parameters are calculated from
517 * these fields as follows;
518 * MaxTH = MA * (2 ^ Mn)
519 * Slope = SA / (2 ^ Sn)
520 * MaxP = 4 * (Pn + 1)
521 */
522struct qm_cgr_wr_parm {
523 /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
524 u32 word;
525};
526/*
527 * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
528 * management commands, this is padded to a 16-bit structure field, so that's
529 * how we represent it here. The congestion state threshold is calculated from
530 * these fields as follows;
531 * CS threshold = TA * (2 ^ Tn)
532 */
533struct qm_cgr_cs_thres {
534 /* _res[13-15], TA[5-12], Tn[0-4] */
535 u16 word;
536};
537/*
538 * This identical structure of CGR fields is present in the "Init/Modify CGR"
539 * commands and the "Query CGR" result. It's suctioned out here into its own
540 * struct.
541 */
542struct __qm_mc_cgr {
543 struct qm_cgr_wr_parm wr_parm_g;
544 struct qm_cgr_wr_parm wr_parm_y;
545 struct qm_cgr_wr_parm wr_parm_r;
546 u8 wr_en_g; /* boolean, use QM_CGR_EN */
547 u8 wr_en_y; /* boolean, use QM_CGR_EN */
548 u8 wr_en_r; /* boolean, use QM_CGR_EN */
549 u8 cscn_en; /* boolean, use QM_CGR_EN */
550 union {
551 struct {
552 u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
553 u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
554 };
555 u32 cscn_targ; /* use QM_CGR_TARG_* */
556 };
557 u8 cstd_en; /* boolean, use QM_CGR_EN */
558 u8 cs; /* boolean, only used in query response */
559 struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
560 u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
561} __packed;
562#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
563#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
564#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
565#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
566#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
567#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
568/* Convert CGR thresholds to/from "cs_thres" format */
569static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
570{
571 return ((th->word >> 5) & 0xff) << (th->word & 0x1f);
572}
573
574static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
575 int roundup)
576{
577 u32 e = 0;
578 int oddbit = 0;
579
580 while (val > 0xff) {
581 oddbit = val & 1;
582 val >>= 1;
583 e++;
584 if (roundup && oddbit)
585 val++;
586 }
587 th->word = ((val & 0xff) << 5) | (e & 0x1f);
588 return 0;
589}
590
591/* "Initialize FQ" */
592struct qm_mcc_initfq {
593 u8 __reserved1[2];
594 u16 we_mask; /* Write Enable Mask */
595 u32 fqid; /* 24-bit */
596 u16 count; /* Initialises 'count+1' FQDs */
597 struct qm_fqd fqd; /* the FQD fields go here */
598 u8 __reserved2[30];
599} __packed;
600/* "Initialize/Modify CGR" */
601struct qm_mcc_initcgr {
602 u8 __reserve1[2];
603 u16 we_mask; /* Write Enable Mask */
604 struct __qm_mc_cgr cgr; /* CGR fields */
605 u8 __reserved2[2];
606 u8 cgid;
607 u8 __reserved3[32];
608} __packed;
609
610/* INITFQ-specific flags */
611#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
612#define QM_INITFQ_WE_OAC 0x0100
613#define QM_INITFQ_WE_ORPC 0x0080
614#define QM_INITFQ_WE_CGID 0x0040
615#define QM_INITFQ_WE_FQCTRL 0x0020
616#define QM_INITFQ_WE_DESTWQ 0x0010
617#define QM_INITFQ_WE_ICSCRED 0x0008
618#define QM_INITFQ_WE_TDTHRESH 0x0004
619#define QM_INITFQ_WE_CONTEXTB 0x0002
620#define QM_INITFQ_WE_CONTEXTA 0x0001
621/* INITCGR/MODIFYCGR-specific flags */
622#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
623#define QM_CGR_WE_WR_PARM_G 0x0400
624#define QM_CGR_WE_WR_PARM_Y 0x0200
625#define QM_CGR_WE_WR_PARM_R 0x0100
626#define QM_CGR_WE_WR_EN_G 0x0080
627#define QM_CGR_WE_WR_EN_Y 0x0040
628#define QM_CGR_WE_WR_EN_R 0x0020
629#define QM_CGR_WE_CSCN_EN 0x0010
630#define QM_CGR_WE_CSCN_TARG 0x0008
631#define QM_CGR_WE_CSTD_EN 0x0004
632#define QM_CGR_WE_CS_THRES 0x0002
633#define QM_CGR_WE_MODE 0x0001
634
635#define QMAN_CGR_FLAG_USE_INIT 0x00000001
636
637 /* Portal and Frame Queues */
638/* Represents a managed portal */
639struct qman_portal;
640
641/*
642 * This object type represents QMan frame queue descriptors (FQD), it is
643 * cacheline-aligned, and initialised by qman_create_fq(). The structure is
644 * defined further down.
645 */
646struct qman_fq;
647
648/*
649 * This object type represents a QMan congestion group, it is defined further
650 * down.
651 */
652struct qman_cgr;
653
654/*
655 * This enum, and the callback type that returns it, are used when handling
656 * dequeued frames via DQRR. Note that for "null" callbacks registered with the
657 * portal object (for handling dequeues that do not demux because contextB is
658 * NULL), the return value *MUST* be qman_cb_dqrr_consume.
659 */
660enum qman_cb_dqrr_result {
661 /* DQRR entry can be consumed */
662 qman_cb_dqrr_consume,
663 /* Like _consume, but requests parking - FQ must be held-active */
664 qman_cb_dqrr_park,
665 /* Does not consume, for DCA mode only. */
666 qman_cb_dqrr_defer,
667 /*
668 * Stop processing without consuming this ring entry. Exits the current
669 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
670 * an interrupt handler, the callback would typically call
671 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
672 * otherwise the interrupt will reassert immediately.
673 */
674 qman_cb_dqrr_stop,
675 /* Like qman_cb_dqrr_stop, but consumes the current entry. */
676 qman_cb_dqrr_consume_stop
677};
678typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
679 struct qman_fq *fq,
680 const struct qm_dqrr_entry *dqrr);
681
682/*
683 * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
684 * are always consumed after the callback returns.
685 */
686typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
687 const union qm_mr_entry *msg);
688
689/*
690 * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
691 * held-active + held-suspended are just "sched". Things like "retired" will not
692 * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
693 * then, to indicate it's completing and to gate attempts to retry the retire
694 * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
695 * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
696 * index rather than the FQ that ring entry corresponds to), so repeated park
697 * commands are allowed (if you're silly enough to try) but won't change FQ
698 * state, and the resulting park notifications move FQs from "sched" to
699 * "parked".
700 */
701enum qman_fq_state {
702 qman_fq_state_oos,
703 qman_fq_state_parked,
704 qman_fq_state_sched,
705 qman_fq_state_retired
706};
707
708#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
709#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
710#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
711#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
712#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
713#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
714
715/*
716 * Frame queue objects (struct qman_fq) are stored within memory passed to
717 * qman_create_fq(), as this allows stashing of caller-provided demux callback
718 * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
719 * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
720 * they should;
721 *
722 * (a) extend the qman_fq structure with their state; eg.
723 *
724 * // myfq is allocated and driver_fq callbacks filled in;
725 * struct my_fq {
726 * struct qman_fq base;
727 * int an_extra_field;
728 * [ ... add other fields to be associated with each FQ ...]
729 * } *myfq = some_my_fq_allocator();
730 * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
731 *
732 * // in a dequeue callback, access extra fields from 'fq' via a cast;
733 * struct my_fq *myfq = (struct my_fq *)fq;
734 * do_something_with(myfq->an_extra_field);
735 * [...]
736 *
737 * (b) when and if configuring the FQ for context stashing, specify how ever
738 * many cachelines are required to stash 'struct my_fq', to accelerate not
739 * only the QMan driver but the callback as well.
740 */
741
742struct qman_fq_cb {
743 qman_cb_dqrr dqrr; /* for dequeued frames */
744 qman_cb_mr ern; /* for s/w ERNs */
745 qman_cb_mr fqs; /* frame-queue state changes*/
746};
747
748struct qman_fq {
749 /* Caller of qman_create_fq() provides these demux callbacks */
750 struct qman_fq_cb cb;
751 /*
752 * These are internal to the driver, don't touch. In particular, they
753 * may change, be removed, or extended (so you shouldn't rely on
754 * sizeof(qman_fq) being a constant).
755 */
756 u32 fqid, idx;
757 unsigned long flags;
758 enum qman_fq_state state;
759 int cgr_groupid;
760};
761
762/*
763 * This callback type is used when handling congestion group entry/exit.
764 * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
765 */
766typedef void (*qman_cb_cgr)(struct qman_portal *qm,
767 struct qman_cgr *cgr, int congested);
768
769struct qman_cgr {
770 /* Set these prior to qman_create_cgr() */
771 u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
772 qman_cb_cgr cb;
773 /* These are private to the driver */
774 u16 chan; /* portal channel this object is created on */
775 struct list_head node;
776};
777
778/* Flags to qman_create_fq() */
779#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
780#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
781#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
782#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
783
784/* Flags to qman_init_fq() */
785#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
786#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
787
788 /* Portal Management */
789/**
790 * qman_p_irqsource_add - add processing sources to be interrupt-driven
791 * @bits: bitmask of QM_PIRQ_**I processing sources
792 *
793 * Adds processing sources that should be interrupt-driven (rather than
794 * processed via qman_poll_***() functions).
795 */
796void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
797
798/**
799 * qman_p_irqsource_remove - remove processing sources from being int-driven
800 * @bits: bitmask of QM_PIRQ_**I processing sources
801 *
802 * Removes processing sources from being interrupt-driven, so that they will
803 * instead be processed via qman_poll_***() functions.
804 */
805void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
806
807/**
808 * qman_affine_cpus - return a mask of cpus that have affine portals
809 */
810const cpumask_t *qman_affine_cpus(void);
811
812/**
813 * qman_affine_channel - return the channel ID of an portal
814 * @cpu: the cpu whose affine portal is the subject of the query
815 *
816 * If @cpu is -1, the affine portal for the current CPU will be used. It is a
817 * bug to call this function for any value of @cpu (other than -1) that is not a
818 * member of the mask returned from qman_affine_cpus().
819 */
820u16 qman_affine_channel(int cpu);
821
822/**
823 * qman_get_affine_portal - return the portal pointer affine to cpu
824 * @cpu: the cpu whose affine portal is the subject of the query
825 */
826struct qman_portal *qman_get_affine_portal(int cpu);
827
828/**
829 * qman_p_poll_dqrr - process DQRR (fast-path) entries
830 * @limit: the maximum number of DQRR entries to process
831 *
832 * Use of this function requires that DQRR processing not be interrupt-driven.
833 * The return value represents the number of DQRR entries processed.
834 */
835int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
836
837/**
838 * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
839 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
840 *
841 * Adds a set of pool channels to the portal's static dequeue command register
842 * (SDQCR). The requested pools are limited to those the portal has dequeue
843 * access to.
844 */
845void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
846
847 /* FQ management */
848/**
849 * qman_create_fq - Allocates a FQ
850 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
851 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
852 * @fq: memory for storing the 'fq', with callbacks filled in
853 *
854 * Creates a frame queue object for the given @fqid, unless the
855 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
856 * dynamically allocated (or the function fails if none are available). Once
857 * created, the caller should not touch the memory at 'fq' except as extended to
858 * adjacent memory for user-defined fields (see the definition of "struct
859 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
860 * pre-existing frame-queues that aren't to be otherwise interfered with, it
861 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
862 * causes the driver to honour any contextB modifications requested in the
863 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
864 * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
865 * software portals, the contextB field is controlled by the driver and can't be
866 * modified by the caller.
867 */
868int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
869
870/**
871 * qman_destroy_fq - Deallocates a FQ
872 * @fq: the frame queue object to release
873 *
874 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
875 * not deallocated but the caller regains ownership, to do with as desired. The
876 * FQ must be in the 'out-of-service' or in the 'parked' state.
877 */
878void qman_destroy_fq(struct qman_fq *fq);
879
880/**
881 * qman_fq_fqid - Queries the frame queue ID of a FQ object
882 * @fq: the frame queue object to query
883 */
884u32 qman_fq_fqid(struct qman_fq *fq);
885
886/**
887 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
888 * @fq: the frame queue object to modify, must be 'parked' or new.
889 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
890 * @opts: the FQ-modification settings, as defined in the low-level API
891 *
892 * The @opts parameter comes from the low-level portal API. Select
893 * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
894 * rather than parked. NB, @opts can be NULL.
895 *
896 * Note that some fields and options within @opts may be ignored or overwritten
897 * by the driver;
898 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
899 * affects one frame queue: @fq).
900 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
901 * 'fqd' structure's 'context_b' field are sometimes overwritten;
902 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
903 * initialised to a value used by the driver for demux.
904 * - if context_b is initialised for demux, so is context_a in case stashing
905 * is requested (see item 4).
906 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
907 * objects.)
908 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
909 * 'dest::channel' field will be overwritten to match the portal used to issue
910 * the command. If the WE_DESTWQ write-enable bit had already been set by the
911 * caller, the channel workqueue will be left as-is, otherwise the write-enable
912 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
913 * isn't set, the destination channel/workqueue fields and the write-enable bit
914 * are left as-is.
915 * 4. if the driver overwrites context_a/b for demux, then if
916 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
917 * context_a.address fields and will leave the stashing fields provided by the
918 * user alone, otherwise it will zero out the context_a.stashing fields.
919 */
920int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
921
922/**
923 * qman_schedule_fq - Schedules a FQ
924 * @fq: the frame queue object to schedule, must be 'parked'
925 *
926 * Schedules the frame queue, which must be Parked, which takes it to
927 * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
928 */
929int qman_schedule_fq(struct qman_fq *fq);
930
931/**
932 * qman_retire_fq - Retires a FQ
933 * @fq: the frame queue object to retire
934 * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
935 *
936 * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
937 * the retirement was started asynchronously, otherwise it returns negative for
938 * failure. When this function returns zero, @flags is set to indicate whether
939 * the retired FQ is empty and/or whether it has any ORL fragments (to show up
940 * as ERNs). Otherwise the corresponding flags will be known when a subsequent
941 * FQRN message shows up on the portal's message ring.
942 *
943 * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
944 * Active state), the completion will be via the message ring as a FQRN - but
945 * the corresponding callback may occur before this function returns!! Ie. the
946 * caller should be prepared to accept the callback as the function is called,
947 * not only once it has returned.
948 */
949int qman_retire_fq(struct qman_fq *fq, u32 *flags);
950
951/**
952 * qman_oos_fq - Puts a FQ "out of service"
953 * @fq: the frame queue object to be put out-of-service, must be 'retired'
954 *
955 * The frame queue must be retired and empty, and if any order restoration list
956 * was released as ERNs at the time of retirement, they must all be consumed.
957 */
958int qman_oos_fq(struct qman_fq *fq);
959
960/**
961 * qman_enqueue - Enqueue a frame to a frame queue
962 * @fq: the frame queue object to enqueue to
963 * @fd: a descriptor of the frame to be enqueued
964 *
965 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
966 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
967 * field is ignored. The return value is non-zero on error, such as ring full.
968 */
969int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
970
971/**
972 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
973 * @result: is set by the API to the base FQID of the allocated range
974 * @count: the number of FQIDs required
975 *
976 * Returns 0 on success, or a negative error code.
977 */
978int qman_alloc_fqid_range(u32 *result, u32 count);
979#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
980
981/**
982 * qman_release_fqid - Release the specified frame queue ID
983 * @fqid: the FQID to be released back to the resource pool
984 *
985 * This function can also be used to seed the allocator with
986 * FQID ranges that it can subsequently allocate from.
987 * Returns 0 on success, or a negative error code.
988 */
989int qman_release_fqid(u32 fqid);
990
991 /* Pool-channel management */
992/**
993 * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
994 * @result: is set by the API to the base pool-channel ID of the allocated range
995 * @count: the number of pool-channel IDs required
996 *
997 * Returns 0 on success, or a negative error code.
998 */
999int qman_alloc_pool_range(u32 *result, u32 count);
1000#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1001
1002/**
1003 * qman_release_pool - Release the specified pool-channel ID
1004 * @id: the pool-chan ID to be released back to the resource pool
1005 *
1006 * This function can also be used to seed the allocator with
1007 * pool-channel ID ranges that it can subsequently allocate from.
1008 * Returns 0 on success, or a negative error code.
1009 */
1010int qman_release_pool(u32 id);
1011
1012 /* CGR management */
1013/**
1014 * qman_create_cgr - Register a congestion group object
1015 * @cgr: the 'cgr' object, with fields filled in
1016 * @flags: QMAN_CGR_FLAG_* values
1017 * @opts: optional state of CGR settings
1018 *
1019 * Registers this object to receiving congestion entry/exit callbacks on the
1020 * portal affine to the cpu portal on which this API is executed. If opts is
1021 * NULL then only the callback (cgr->cb) function is registered. If @flags
1022 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1023 * any unspecified parameters) will be used rather than a modify hw hardware
1024 * (which only modifies the specified parameters).
1025 */
1026int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1027 struct qm_mcc_initcgr *opts);
1028
1029/**
1030 * qman_delete_cgr - Deregisters a congestion group object
1031 * @cgr: the 'cgr' object to deregister
1032 *
1033 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1034 * is executed. This must be excuted on the same affine portal on which it was
1035 * created.
1036 */
1037int qman_delete_cgr(struct qman_cgr *cgr);
1038
1039/**
1040 * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1041 * @cgr: the 'cgr' object to deregister
1042 *
1043 * This will select the proper CPU and run there qman_delete_cgr().
1044 */
1045void qman_delete_cgr_safe(struct qman_cgr *cgr);
1046
1047/**
1048 * qman_query_cgr_congested - Queries CGR's congestion status
1049 * @cgr: the 'cgr' object to query
1050 * @result: returns 'cgr's congestion status, 1 (true) if congested
1051 */
1052int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1053
1054/**
1055 * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1056 * @result: is set by the API to the base CGR ID of the allocated range
1057 * @count: the number of CGR IDs required
1058 *
1059 * Returns 0 on success, or a negative error code.
1060 */
1061int qman_alloc_cgrid_range(u32 *result, u32 count);
1062#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1063
1064/**
1065 * qman_release_cgrid - Release the specified CGR ID
1066 * @id: the CGR ID to be released back to the resource pool
1067 *
1068 * This function can also be used to seed the allocator with
1069 * CGR ID ranges that it can subsequently allocate from.
1070 * Returns 0 on success, or a negative error code.
1071 */
1072int qman_release_cgrid(u32 id);
1073
1074#endif /* __FSL_QMAN_H */