| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle |
| * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| * Copyright (C) 2007 Maciej W. Rozycki |
| * Copyright (C) 2014, Imagination Technologies Ltd. |
| */ |
| #ifndef _ASM_UACCESS_H |
| #define _ASM_UACCESS_H |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/thread_info.h> |
| #include <asm/asm-eva.h> |
| |
| /* |
| * The fs value determines whether argument validity checking should be |
| * performed or not. If get_fs() == USER_DS, checking is performed, with |
| * get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * For historical reasons, these macros are grossly misnamed. |
| */ |
| #ifdef CONFIG_32BIT |
| |
| #ifdef CONFIG_KVM_GUEST |
| #define __UA_LIMIT 0x40000000UL |
| #else |
| #define __UA_LIMIT 0x80000000UL |
| #endif |
| |
| #define __UA_ADDR ".word" |
| #define __UA_LA "la" |
| #define __UA_ADDU "addu" |
| #define __UA_t0 "$8" |
| #define __UA_t1 "$9" |
| |
| #endif /* CONFIG_32BIT */ |
| |
| #ifdef CONFIG_64BIT |
| |
| extern u64 __ua_limit; |
| |
| #define __UA_LIMIT __ua_limit |
| |
| #define __UA_ADDR ".dword" |
| #define __UA_LA "dla" |
| #define __UA_ADDU "daddu" |
| #define __UA_t0 "$12" |
| #define __UA_t1 "$13" |
| |
| #endif /* CONFIG_64BIT */ |
| |
| /* |
| * USER_DS is a bitmask that has the bits set that may not be set in a valid |
| * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but |
| * the arithmetic we're doing only works if the limit is a power of two, so |
| * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid |
| * address in this range it's the process's problem, not ours :-) |
| */ |
| |
| #ifdef CONFIG_KVM_GUEST |
| #define KERNEL_DS ((mm_segment_t) { 0x80000000UL }) |
| #define USER_DS ((mm_segment_t) { 0xC0000000UL }) |
| #else |
| #define KERNEL_DS ((mm_segment_t) { 0UL }) |
| #define USER_DS ((mm_segment_t) { __UA_LIMIT }) |
| #endif |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| #define get_ds() (KERNEL_DS) |
| #define get_fs() (current_thread_info()->addr_limit) |
| #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| |
| #define segment_eq(a, b) ((a).seg == (b).seg) |
| |
| /* |
| * eva_kernel_access() - determine whether kernel memory access on an EVA system |
| * |
| * Determines whether memory accesses should be performed to kernel memory |
| * on a system using Extended Virtual Addressing (EVA). |
| * |
| * Return: true if a kernel memory access on an EVA system, else false. |
| */ |
| static inline bool eva_kernel_access(void) |
| { |
| if (!config_enabled(CONFIG_EVA)) |
| return false; |
| |
| return segment_eq(get_fs(), get_ds()); |
| } |
| |
| /* |
| * Is a address valid? This does a straighforward calculation rather |
| * than tests. |
| * |
| * Address valid if: |
| * - "addr" doesn't have any high-bits set |
| * - AND "size" doesn't have any high-bits set |
| * - AND "addr+size" doesn't have any high-bits set |
| * - OR we are in kernel mode. |
| * |
| * __ua_size() is a trick to avoid runtime checking of positive constant |
| * sizes; for those we already know at compile time that the size is ok. |
| */ |
| #define __ua_size(size) \ |
| ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size)) |
| |
| /* |
| * access_ok: - Checks if a user space pointer is valid |
| * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that |
| * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe |
| * to write to a block, it is always safe to read from it. |
| * @addr: User space pointer to start of block to check |
| * @size: Size of block to check |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Checks if a pointer to a block of memory in user space is valid. |
| * |
| * Returns true (nonzero) if the memory block may be valid, false (zero) |
| * if it is definitely invalid. |
| * |
| * Note that, depending on architecture, this function probably just |
| * checks that the pointer is in the user space range - after calling |
| * this function, memory access functions may still return -EFAULT. |
| */ |
| |
| #define __access_mask get_fs().seg |
| |
| #define __access_ok(addr, size, mask) \ |
| ({ \ |
| unsigned long __addr = (unsigned long) (addr); \ |
| unsigned long __size = size; \ |
| unsigned long __mask = mask; \ |
| unsigned long __ok; \ |
| \ |
| __chk_user_ptr(addr); \ |
| __ok = (signed long)(__mask & (__addr | (__addr + __size) | \ |
| __ua_size(__size))); \ |
| __ok == 0; \ |
| }) |
| |
| #define access_ok(type, addr, size) \ |
| likely(__access_ok((addr), (size), __access_mask)) |
| |
| /* |
| * put_user: - Write a simple value into user space. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #define put_user(x,ptr) \ |
| __put_user_check((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * get_user: - Get a simple variable from user space. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define get_user(x,ptr) \ |
| __get_user_check((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * __put_user: - Write a simple value into user space, with less checking. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #define __put_user(x,ptr) \ |
| __put_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * __get_user: - Get a simple variable from user space, with less checking. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define __get_user(x,ptr) \ |
| __get_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| |
| struct __large_struct { unsigned long buf[100]; }; |
| #define __m(x) (*(struct __large_struct __user *)(x)) |
| |
| /* |
| * Yuck. We need two variants, one for 64bit operation and one |
| * for 32 bit mode and old iron. |
| */ |
| #ifndef CONFIG_EVA |
| #define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr) |
| #else |
| /* |
| * Kernel specific functions for EVA. We need to use normal load instructions |
| * to read data from kernel when operating in EVA mode. We use these macros to |
| * avoid redefining __get_user_asm for EVA. |
| */ |
| #undef _loadd |
| #undef _loadw |
| #undef _loadh |
| #undef _loadb |
| #ifdef CONFIG_32BIT |
| #define _loadd _loadw |
| #else |
| #define _loadd(reg, addr) "ld " reg ", " addr |
| #endif |
| #define _loadw(reg, addr) "lw " reg ", " addr |
| #define _loadh(reg, addr) "lh " reg ", " addr |
| #define _loadb(reg, addr) "lb " reg ", " addr |
| |
| #define __get_kernel_common(val, size, ptr) \ |
| do { \ |
| switch (size) { \ |
| case 1: __get_data_asm(val, _loadb, ptr); break; \ |
| case 2: __get_data_asm(val, _loadh, ptr); break; \ |
| case 4: __get_data_asm(val, _loadw, ptr); break; \ |
| case 8: __GET_DW(val, _loadd, ptr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| } while (0) |
| #endif |
| |
| #ifdef CONFIG_32BIT |
| #define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr) |
| #endif |
| #ifdef CONFIG_64BIT |
| #define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr) |
| #endif |
| |
| extern void __get_user_unknown(void); |
| |
| #define __get_user_common(val, size, ptr) \ |
| do { \ |
| switch (size) { \ |
| case 1: __get_data_asm(val, user_lb, ptr); break; \ |
| case 2: __get_data_asm(val, user_lh, ptr); break; \ |
| case 4: __get_data_asm(val, user_lw, ptr); break; \ |
| case 8: __GET_DW(val, user_ld, ptr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| } while (0) |
| |
| #define __get_user_nocheck(x, ptr, size) \ |
| ({ \ |
| int __gu_err; \ |
| \ |
| if (eva_kernel_access()) { \ |
| __get_kernel_common((x), size, ptr); \ |
| } else { \ |
| __chk_user_ptr(ptr); \ |
| __get_user_common((x), size, ptr); \ |
| } \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_check(x, ptr, size) \ |
| ({ \ |
| int __gu_err = -EFAULT; \ |
| const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \ |
| \ |
| might_fault(); \ |
| if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \ |
| if (eva_kernel_access()) \ |
| __get_kernel_common((x), size, __gu_ptr); \ |
| else \ |
| __get_user_common((x), size, __gu_ptr); \ |
| } else \ |
| (x) = 0; \ |
| \ |
| __gu_err; \ |
| }) |
| |
| #define __get_data_asm(val, insn, addr) \ |
| { \ |
| long __gu_tmp; \ |
| \ |
| __asm__ __volatile__( \ |
| "1: "insn("%1", "%3")" \n" \ |
| "2: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "3: li %0, %4 \n" \ |
| " move %1, $0 \n" \ |
| " j 2b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " "__UA_ADDR "\t1b, 3b \n" \ |
| " .previous \n" \ |
| : "=r" (__gu_err), "=r" (__gu_tmp) \ |
| : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \ |
| \ |
| (val) = (__typeof__(*(addr))) __gu_tmp; \ |
| } |
| |
| /* |
| * Get a long long 64 using 32 bit registers. |
| */ |
| #define __get_data_asm_ll32(val, insn, addr) \ |
| { \ |
| union { \ |
| unsigned long long l; \ |
| __typeof__(*(addr)) t; \ |
| } __gu_tmp; \ |
| \ |
| __asm__ __volatile__( \ |
| "1: " insn("%1", "(%3)")" \n" \ |
| "2: " insn("%D1", "4(%3)")" \n" \ |
| "3: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "4: li %0, %4 \n" \ |
| " move %1, $0 \n" \ |
| " move %D1, $0 \n" \ |
| " j 3b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 4b \n" \ |
| " " __UA_ADDR " 2b, 4b \n" \ |
| " .previous \n" \ |
| : "=r" (__gu_err), "=&r" (__gu_tmp.l) \ |
| : "0" (0), "r" (addr), "i" (-EFAULT)); \ |
| \ |
| (val) = __gu_tmp.t; \ |
| } |
| |
| #ifndef CONFIG_EVA |
| #define __put_kernel_common(ptr, size) __put_user_common(ptr, size) |
| #else |
| /* |
| * Kernel specific functions for EVA. We need to use normal load instructions |
| * to read data from kernel when operating in EVA mode. We use these macros to |
| * avoid redefining __get_data_asm for EVA. |
| */ |
| #undef _stored |
| #undef _storew |
| #undef _storeh |
| #undef _storeb |
| #ifdef CONFIG_32BIT |
| #define _stored _storew |
| #else |
| #define _stored(reg, addr) "ld " reg ", " addr |
| #endif |
| |
| #define _storew(reg, addr) "sw " reg ", " addr |
| #define _storeh(reg, addr) "sh " reg ", " addr |
| #define _storeb(reg, addr) "sb " reg ", " addr |
| |
| #define __put_kernel_common(ptr, size) \ |
| do { \ |
| switch (size) { \ |
| case 1: __put_data_asm(_storeb, ptr); break; \ |
| case 2: __put_data_asm(_storeh, ptr); break; \ |
| case 4: __put_data_asm(_storew, ptr); break; \ |
| case 8: __PUT_DW(_stored, ptr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| } while(0) |
| #endif |
| |
| /* |
| * Yuck. We need two variants, one for 64bit operation and one |
| * for 32 bit mode and old iron. |
| */ |
| #ifdef CONFIG_32BIT |
| #define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr) |
| #endif |
| #ifdef CONFIG_64BIT |
| #define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr) |
| #endif |
| |
| #define __put_user_common(ptr, size) \ |
| do { \ |
| switch (size) { \ |
| case 1: __put_data_asm(user_sb, ptr); break; \ |
| case 2: __put_data_asm(user_sh, ptr); break; \ |
| case 4: __put_data_asm(user_sw, ptr); break; \ |
| case 8: __PUT_DW(user_sd, ptr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| } while (0) |
| |
| #define __put_user_nocheck(x, ptr, size) \ |
| ({ \ |
| __typeof__(*(ptr)) __pu_val; \ |
| int __pu_err = 0; \ |
| \ |
| __pu_val = (x); \ |
| if (eva_kernel_access()) { \ |
| __put_kernel_common(ptr, size); \ |
| } else { \ |
| __chk_user_ptr(ptr); \ |
| __put_user_common(ptr, size); \ |
| } \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_check(x, ptr, size) \ |
| ({ \ |
| __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| __typeof__(*(ptr)) __pu_val = (x); \ |
| int __pu_err = -EFAULT; \ |
| \ |
| might_fault(); \ |
| if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \ |
| if (eva_kernel_access()) \ |
| __put_kernel_common(__pu_addr, size); \ |
| else \ |
| __put_user_common(__pu_addr, size); \ |
| } \ |
| \ |
| __pu_err; \ |
| }) |
| |
| #define __put_data_asm(insn, ptr) \ |
| { \ |
| __asm__ __volatile__( \ |
| "1: "insn("%z2", "%3")" # __put_data_asm \n" \ |
| "2: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "3: li %0, %4 \n" \ |
| " j 2b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 3b \n" \ |
| " .previous \n" \ |
| : "=r" (__pu_err) \ |
| : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \ |
| "i" (-EFAULT)); \ |
| } |
| |
| #define __put_data_asm_ll32(insn, ptr) \ |
| { \ |
| __asm__ __volatile__( \ |
| "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \ |
| "2: "insn("%D2", "4(%3)")" \n" \ |
| "3: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "4: li %0, %4 \n" \ |
| " j 3b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 4b \n" \ |
| " " __UA_ADDR " 2b, 4b \n" \ |
| " .previous" \ |
| : "=r" (__pu_err) \ |
| : "0" (0), "r" (__pu_val), "r" (ptr), \ |
| "i" (-EFAULT)); \ |
| } |
| |
| extern void __put_user_unknown(void); |
| |
| /* |
| * ul{b,h,w} are macros and there are no equivalent macros for EVA. |
| * EVA unaligned access is handled in the ADE exception handler. |
| */ |
| #ifndef CONFIG_EVA |
| /* |
| * put_user_unaligned: - Write a simple value into user space. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #define put_user_unaligned(x,ptr) \ |
| __put_user_unaligned_check((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * get_user_unaligned: - Get a simple variable from user space. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define get_user_unaligned(x,ptr) \ |
| __get_user_unaligned_check((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * __put_user_unaligned: - Write a simple value into user space, with less checking. |
| * @x: Value to copy to user space. |
| * @ptr: Destination address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple value from kernel space to user |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and @x must be assignable |
| * to the result of dereferencing @ptr. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| */ |
| #define __put_user_unaligned(x,ptr) \ |
| __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * __get_user_unaligned: - Get a simple variable from user space, with less checking. |
| * @x: Variable to store result. |
| * @ptr: Source address, in user space. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * This macro copies a single simple variable from user space to kernel |
| * space. It supports simple types like char and int, but not larger |
| * data types like structures or arrays. |
| * |
| * @ptr must have pointer-to-simple-variable type, and the result of |
| * dereferencing @ptr must be assignable to @x without a cast. |
| * |
| * Caller must check the pointer with access_ok() before calling this |
| * function. |
| * |
| * Returns zero on success, or -EFAULT on error. |
| * On error, the variable @x is set to zero. |
| */ |
| #define __get_user_unaligned(x,ptr) \ |
| __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * Yuck. We need two variants, one for 64bit operation and one |
| * for 32 bit mode and old iron. |
| */ |
| #ifdef CONFIG_32BIT |
| #define __GET_USER_UNALIGNED_DW(val, ptr) \ |
| __get_user_unaligned_asm_ll32(val, ptr) |
| #endif |
| #ifdef CONFIG_64BIT |
| #define __GET_USER_UNALIGNED_DW(val, ptr) \ |
| __get_user_unaligned_asm(val, "uld", ptr) |
| #endif |
| |
| extern void __get_user_unaligned_unknown(void); |
| |
| #define __get_user_unaligned_common(val, size, ptr) \ |
| do { \ |
| switch (size) { \ |
| case 1: __get_data_asm(val, "lb", ptr); break; \ |
| case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \ |
| case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \ |
| case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \ |
| default: __get_user_unaligned_unknown(); break; \ |
| } \ |
| } while (0) |
| |
| #define __get_user_unaligned_nocheck(x,ptr,size) \ |
| ({ \ |
| int __gu_err; \ |
| \ |
| __get_user_unaligned_common((x), size, ptr); \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_unaligned_check(x,ptr,size) \ |
| ({ \ |
| int __gu_err = -EFAULT; \ |
| const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \ |
| \ |
| if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \ |
| __get_user_unaligned_common((x), size, __gu_ptr); \ |
| \ |
| __gu_err; \ |
| }) |
| |
| #define __get_data_unaligned_asm(val, insn, addr) \ |
| { \ |
| long __gu_tmp; \ |
| \ |
| __asm__ __volatile__( \ |
| "1: " insn " %1, %3 \n" \ |
| "2: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "3: li %0, %4 \n" \ |
| " move %1, $0 \n" \ |
| " j 2b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " "__UA_ADDR "\t1b, 3b \n" \ |
| " "__UA_ADDR "\t1b + 4, 3b \n" \ |
| " .previous \n" \ |
| : "=r" (__gu_err), "=r" (__gu_tmp) \ |
| : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \ |
| \ |
| (val) = (__typeof__(*(addr))) __gu_tmp; \ |
| } |
| |
| /* |
| * Get a long long 64 using 32 bit registers. |
| */ |
| #define __get_user_unaligned_asm_ll32(val, addr) \ |
| { \ |
| unsigned long long __gu_tmp; \ |
| \ |
| __asm__ __volatile__( \ |
| "1: ulw %1, (%3) \n" \ |
| "2: ulw %D1, 4(%3) \n" \ |
| " move %0, $0 \n" \ |
| "3: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "4: li %0, %4 \n" \ |
| " move %1, $0 \n" \ |
| " move %D1, $0 \n" \ |
| " j 3b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 4b \n" \ |
| " " __UA_ADDR " 1b + 4, 4b \n" \ |
| " " __UA_ADDR " 2b, 4b \n" \ |
| " " __UA_ADDR " 2b + 4, 4b \n" \ |
| " .previous \n" \ |
| : "=r" (__gu_err), "=&r" (__gu_tmp) \ |
| : "0" (0), "r" (addr), "i" (-EFAULT)); \ |
| (val) = (__typeof__(*(addr))) __gu_tmp; \ |
| } |
| |
| /* |
| * Yuck. We need two variants, one for 64bit operation and one |
| * for 32 bit mode and old iron. |
| */ |
| #ifdef CONFIG_32BIT |
| #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr) |
| #endif |
| #ifdef CONFIG_64BIT |
| #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr) |
| #endif |
| |
| #define __put_user_unaligned_common(ptr, size) \ |
| do { \ |
| switch (size) { \ |
| case 1: __put_data_asm("sb", ptr); break; \ |
| case 2: __put_user_unaligned_asm("ush", ptr); break; \ |
| case 4: __put_user_unaligned_asm("usw", ptr); break; \ |
| case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \ |
| default: __put_user_unaligned_unknown(); break; \ |
| } while (0) |
| |
| #define __put_user_unaligned_nocheck(x,ptr,size) \ |
| ({ \ |
| __typeof__(*(ptr)) __pu_val; \ |
| int __pu_err = 0; \ |
| \ |
| __pu_val = (x); \ |
| __put_user_unaligned_common(ptr, size); \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_unaligned_check(x,ptr,size) \ |
| ({ \ |
| __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| __typeof__(*(ptr)) __pu_val = (x); \ |
| int __pu_err = -EFAULT; \ |
| \ |
| if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \ |
| __put_user_unaligned_common(__pu_addr, size); \ |
| \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_unaligned_asm(insn, ptr) \ |
| { \ |
| __asm__ __volatile__( \ |
| "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \ |
| "2: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "3: li %0, %4 \n" \ |
| " j 2b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 3b \n" \ |
| " .previous \n" \ |
| : "=r" (__pu_err) \ |
| : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \ |
| "i" (-EFAULT)); \ |
| } |
| |
| #define __put_user_unaligned_asm_ll32(ptr) \ |
| { \ |
| __asm__ __volatile__( \ |
| "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \ |
| "2: sw %D2, 4(%3) \n" \ |
| "3: \n" \ |
| " .insn \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| "4: li %0, %4 \n" \ |
| " j 3b \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " " __UA_ADDR " 1b, 4b \n" \ |
| " " __UA_ADDR " 1b + 4, 4b \n" \ |
| " " __UA_ADDR " 2b, 4b \n" \ |
| " " __UA_ADDR " 2b + 4, 4b \n" \ |
| " .previous" \ |
| : "=r" (__pu_err) \ |
| : "0" (0), "r" (__pu_val), "r" (ptr), \ |
| "i" (-EFAULT)); \ |
| } |
| |
| extern void __put_user_unaligned_unknown(void); |
| #endif |
| |
| /* |
| * We're generating jump to subroutines which will be outside the range of |
| * jump instructions |
| */ |
| #ifdef MODULE |
| #define __MODULE_JAL(destination) \ |
| ".set\tnoat\n\t" \ |
| __UA_LA "\t$1, " #destination "\n\t" \ |
| "jalr\t$1\n\t" \ |
| ".set\tat\n\t" |
| #else |
| #define __MODULE_JAL(destination) \ |
| "jal\t" #destination "\n\t" |
| #endif |
| |
| #if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) && \ |
| defined(CONFIG_CPU_HAS_PREFETCH)) |
| #define DADDI_SCRATCH "$3" |
| #else |
| #define DADDI_SCRATCH "$0" |
| #endif |
| |
| extern size_t __copy_user(void *__to, const void *__from, size_t __n); |
| |
| #ifndef CONFIG_EVA |
| #define __invoke_copy_to_user(to, from, n) \ |
| ({ \ |
| register void __user *__cu_to_r __asm__("$4"); \ |
| register const void *__cu_from_r __asm__("$5"); \ |
| register long __cu_len_r __asm__("$6"); \ |
| \ |
| __cu_to_r = (to); \ |
| __cu_from_r = (from); \ |
| __cu_len_r = (n); \ |
| __asm__ __volatile__( \ |
| __MODULE_JAL(__copy_user) \ |
| : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ |
| : \ |
| : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ |
| DADDI_SCRATCH, "memory"); \ |
| __cu_len_r; \ |
| }) |
| |
| #define __invoke_copy_to_kernel(to, from, n) \ |
| __invoke_copy_to_user(to, from, n) |
| |
| #endif |
| |
| /* |
| * __copy_to_user: - Copy a block of data into user space, with less checking. |
| * @to: Destination address, in user space. |
| * @from: Source address, in kernel space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Copy data from kernel space to user space. Caller must check |
| * the specified block with access_ok() before calling this function. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| */ |
| #define __copy_to_user(to, from, n) \ |
| ({ \ |
| void __user *__cu_to; \ |
| const void *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| might_fault(); \ |
| if (eva_kernel_access()) \ |
| __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \ |
| __cu_len); \ |
| else \ |
| __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \ |
| __cu_len); \ |
| __cu_len; \ |
| }) |
| |
| extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n); |
| |
| #define __copy_to_user_inatomic(to, from, n) \ |
| ({ \ |
| void __user *__cu_to; \ |
| const void *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) \ |
| __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \ |
| __cu_len); \ |
| else \ |
| __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \ |
| __cu_len); \ |
| __cu_len; \ |
| }) |
| |
| #define __copy_from_user_inatomic(to, from, n) \ |
| ({ \ |
| void *__cu_to; \ |
| const void __user *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) \ |
| __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \ |
| __cu_from,\ |
| __cu_len);\ |
| else \ |
| __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| __cu_len; \ |
| }) |
| |
| /* |
| * copy_to_user: - Copy a block of data into user space. |
| * @to: Destination address, in user space. |
| * @from: Source address, in kernel space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Copy data from kernel space to user space. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| */ |
| #define copy_to_user(to, from, n) \ |
| ({ \ |
| void __user *__cu_to; \ |
| const void *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) { \ |
| __cu_len = __invoke_copy_to_kernel(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| } else { \ |
| if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \ |
| might_fault(); \ |
| __cu_len = __invoke_copy_to_user(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| } \ |
| } \ |
| __cu_len; \ |
| }) |
| |
| #ifndef CONFIG_EVA |
| |
| #define __invoke_copy_from_user(to, from, n) \ |
| ({ \ |
| register void *__cu_to_r __asm__("$4"); \ |
| register const void __user *__cu_from_r __asm__("$5"); \ |
| register long __cu_len_r __asm__("$6"); \ |
| \ |
| __cu_to_r = (to); \ |
| __cu_from_r = (from); \ |
| __cu_len_r = (n); \ |
| __asm__ __volatile__( \ |
| ".set\tnoreorder\n\t" \ |
| __MODULE_JAL(__copy_user) \ |
| ".set\tnoat\n\t" \ |
| __UA_ADDU "\t$1, %1, %2\n\t" \ |
| ".set\tat\n\t" \ |
| ".set\treorder" \ |
| : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ |
| : \ |
| : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ |
| DADDI_SCRATCH, "memory"); \ |
| __cu_len_r; \ |
| }) |
| |
| #define __invoke_copy_from_kernel(to, from, n) \ |
| __invoke_copy_from_user(to, from, n) |
| |
| /* For userland <-> userland operations */ |
| #define ___invoke_copy_in_user(to, from, n) \ |
| __invoke_copy_from_user(to, from, n) |
| |
| /* For kernel <-> kernel operations */ |
| #define ___invoke_copy_in_kernel(to, from, n) \ |
| __invoke_copy_from_user(to, from, n) |
| |
| #define __invoke_copy_from_user_inatomic(to, from, n) \ |
| ({ \ |
| register void *__cu_to_r __asm__("$4"); \ |
| register const void __user *__cu_from_r __asm__("$5"); \ |
| register long __cu_len_r __asm__("$6"); \ |
| \ |
| __cu_to_r = (to); \ |
| __cu_from_r = (from); \ |
| __cu_len_r = (n); \ |
| __asm__ __volatile__( \ |
| ".set\tnoreorder\n\t" \ |
| __MODULE_JAL(__copy_user_inatomic) \ |
| ".set\tnoat\n\t" \ |
| __UA_ADDU "\t$1, %1, %2\n\t" \ |
| ".set\tat\n\t" \ |
| ".set\treorder" \ |
| : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ |
| : \ |
| : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ |
| DADDI_SCRATCH, "memory"); \ |
| __cu_len_r; \ |
| }) |
| |
| #define __invoke_copy_from_kernel_inatomic(to, from, n) \ |
| __invoke_copy_from_user_inatomic(to, from, n) \ |
| |
| #else |
| |
| /* EVA specific functions */ |
| |
| extern size_t __copy_user_inatomic_eva(void *__to, const void *__from, |
| size_t __n); |
| extern size_t __copy_from_user_eva(void *__to, const void *__from, |
| size_t __n); |
| extern size_t __copy_to_user_eva(void *__to, const void *__from, |
| size_t __n); |
| extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n); |
| |
| #define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \ |
| ({ \ |
| register void *__cu_to_r __asm__("$4"); \ |
| register const void __user *__cu_from_r __asm__("$5"); \ |
| register long __cu_len_r __asm__("$6"); \ |
| \ |
| __cu_to_r = (to); \ |
| __cu_from_r = (from); \ |
| __cu_len_r = (n); \ |
| __asm__ __volatile__( \ |
| ".set\tnoreorder\n\t" \ |
| __MODULE_JAL(func_ptr) \ |
| ".set\tnoat\n\t" \ |
| __UA_ADDU "\t$1, %1, %2\n\t" \ |
| ".set\tat\n\t" \ |
| ".set\treorder" \ |
| : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ |
| : \ |
| : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ |
| DADDI_SCRATCH, "memory"); \ |
| __cu_len_r; \ |
| }) |
| |
| #define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \ |
| ({ \ |
| register void *__cu_to_r __asm__("$4"); \ |
| register const void __user *__cu_from_r __asm__("$5"); \ |
| register long __cu_len_r __asm__("$6"); \ |
| \ |
| __cu_to_r = (to); \ |
| __cu_from_r = (from); \ |
| __cu_len_r = (n); \ |
| __asm__ __volatile__( \ |
| __MODULE_JAL(func_ptr) \ |
| : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \ |
| : \ |
| : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \ |
| DADDI_SCRATCH, "memory"); \ |
| __cu_len_r; \ |
| }) |
| |
| /* |
| * Source or destination address is in userland. We need to go through |
| * the TLB |
| */ |
| #define __invoke_copy_from_user(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva) |
| |
| #define __invoke_copy_from_user_inatomic(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, \ |
| __copy_user_inatomic_eva) |
| |
| #define __invoke_copy_to_user(to, from, n) \ |
| __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva) |
| |
| #define ___invoke_copy_in_user(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva) |
| |
| /* |
| * Source or destination address in the kernel. We are not going through |
| * the TLB |
| */ |
| #define __invoke_copy_from_kernel(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, __copy_user) |
| |
| #define __invoke_copy_from_kernel_inatomic(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic) |
| |
| #define __invoke_copy_to_kernel(to, from, n) \ |
| __invoke_copy_to_user_eva_generic(to, from, n, __copy_user) |
| |
| #define ___invoke_copy_in_kernel(to, from, n) \ |
| __invoke_copy_from_user_eva_generic(to, from, n, __copy_user) |
| |
| #endif /* CONFIG_EVA */ |
| |
| /* |
| * __copy_from_user: - Copy a block of data from user space, with less checking. |
| * @to: Destination address, in kernel space. |
| * @from: Source address, in user space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Copy data from user space to kernel space. Caller must check |
| * the specified block with access_ok() before calling this function. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| * |
| * If some data could not be copied, this function will pad the copied |
| * data to the requested size using zero bytes. |
| */ |
| #define __copy_from_user(to, from, n) \ |
| ({ \ |
| void *__cu_to; \ |
| const void __user *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| might_fault(); \ |
| __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \ |
| __cu_len); \ |
| __cu_len; \ |
| }) |
| |
| /* |
| * copy_from_user: - Copy a block of data from user space. |
| * @to: Destination address, in kernel space. |
| * @from: Source address, in user space. |
| * @n: Number of bytes to copy. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Copy data from user space to kernel space. |
| * |
| * Returns number of bytes that could not be copied. |
| * On success, this will be zero. |
| * |
| * If some data could not be copied, this function will pad the copied |
| * data to the requested size using zero bytes. |
| */ |
| #define copy_from_user(to, from, n) \ |
| ({ \ |
| void *__cu_to; \ |
| const void __user *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) { \ |
| __cu_len = __invoke_copy_from_kernel(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| } else { \ |
| if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \ |
| might_fault(); \ |
| __cu_len = __invoke_copy_from_user(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| } \ |
| } \ |
| __cu_len; \ |
| }) |
| |
| #define __copy_in_user(to, from, n) \ |
| ({ \ |
| void __user *__cu_to; \ |
| const void __user *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) { \ |
| __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \ |
| __cu_len); \ |
| } else { \ |
| might_fault(); \ |
| __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \ |
| __cu_len); \ |
| } \ |
| __cu_len; \ |
| }) |
| |
| #define copy_in_user(to, from, n) \ |
| ({ \ |
| void __user *__cu_to; \ |
| const void __user *__cu_from; \ |
| long __cu_len; \ |
| \ |
| __cu_to = (to); \ |
| __cu_from = (from); \ |
| __cu_len = (n); \ |
| if (eva_kernel_access()) { \ |
| __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \ |
| __cu_len); \ |
| } else { \ |
| if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\ |
| access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\ |
| might_fault(); \ |
| __cu_len = ___invoke_copy_in_user(__cu_to, \ |
| __cu_from, \ |
| __cu_len); \ |
| } \ |
| } \ |
| __cu_len; \ |
| }) |
| |
| /* |
| * __clear_user: - Zero a block of memory in user space, with less checking. |
| * @to: Destination address, in user space. |
| * @n: Number of bytes to zero. |
| * |
| * Zero a block of memory in user space. Caller must check |
| * the specified block with access_ok() before calling this function. |
| * |
| * Returns number of bytes that could not be cleared. |
| * On success, this will be zero. |
| */ |
| static inline __kernel_size_t |
| __clear_user(void __user *addr, __kernel_size_t size) |
| { |
| __kernel_size_t res; |
| |
| might_fault(); |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, $0\n\t" |
| "move\t$6, %2\n\t" |
| __MODULE_JAL(__bzero) |
| "move\t%0, $6" |
| : "=r" (res) |
| : "r" (addr), "r" (size) |
| : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"); |
| |
| return res; |
| } |
| |
| #define clear_user(addr,n) \ |
| ({ \ |
| void __user * __cl_addr = (addr); \ |
| unsigned long __cl_size = (n); \ |
| if (__cl_size && access_ok(VERIFY_WRITE, \ |
| __cl_addr, __cl_size)) \ |
| __cl_size = __clear_user(__cl_addr, __cl_size); \ |
| __cl_size; \ |
| }) |
| |
| /* |
| * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking. |
| * @dst: Destination address, in kernel space. This buffer must be at |
| * least @count bytes long. |
| * @src: Source address, in user space. |
| * @count: Maximum number of bytes to copy, including the trailing NUL. |
| * |
| * Copies a NUL-terminated string from userspace to kernel space. |
| * Caller must check the specified block with access_ok() before calling |
| * this function. |
| * |
| * On success, returns the length of the string (not including the trailing |
| * NUL). |
| * |
| * If access to userspace fails, returns -EFAULT (some data may have been |
| * copied). |
| * |
| * If @count is smaller than the length of the string, copies @count bytes |
| * and returns @count. |
| */ |
| static inline long |
| __strncpy_from_user(char *__to, const char __user *__from, long __len) |
| { |
| long res; |
| |
| if (eva_kernel_access()) { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| "move\t$6, %3\n\t" |
| __MODULE_JAL(__strncpy_from_kernel_nocheck_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (__to), "r" (__from), "r" (__len) |
| : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); |
| } else { |
| might_fault(); |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| "move\t$6, %3\n\t" |
| __MODULE_JAL(__strncpy_from_user_nocheck_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (__to), "r" (__from), "r" (__len) |
| : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); |
| } |
| |
| return res; |
| } |
| |
| /* |
| * strncpy_from_user: - Copy a NUL terminated string from userspace. |
| * @dst: Destination address, in kernel space. This buffer must be at |
| * least @count bytes long. |
| * @src: Source address, in user space. |
| * @count: Maximum number of bytes to copy, including the trailing NUL. |
| * |
| * Copies a NUL-terminated string from userspace to kernel space. |
| * |
| * On success, returns the length of the string (not including the trailing |
| * NUL). |
| * |
| * If access to userspace fails, returns -EFAULT (some data may have been |
| * copied). |
| * |
| * If @count is smaller than the length of the string, copies @count bytes |
| * and returns @count. |
| */ |
| static inline long |
| strncpy_from_user(char *__to, const char __user *__from, long __len) |
| { |
| long res; |
| |
| if (eva_kernel_access()) { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| "move\t$6, %3\n\t" |
| __MODULE_JAL(__strncpy_from_kernel_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (__to), "r" (__from), "r" (__len) |
| : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); |
| } else { |
| might_fault(); |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| "move\t$6, %3\n\t" |
| __MODULE_JAL(__strncpy_from_user_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (__to), "r" (__from), "r" (__len) |
| : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory"); |
| } |
| |
| return res; |
| } |
| |
| /* |
| * strlen_user: - Get the size of a string in user space. |
| * @str: The string to measure. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Get the size of a NUL-terminated string in user space. |
| * |
| * Returns the size of the string INCLUDING the terminating NUL. |
| * On exception, returns 0. |
| * |
| * If there is a limit on the length of a valid string, you may wish to |
| * consider using strnlen_user() instead. |
| */ |
| static inline long strlen_user(const char __user *s) |
| { |
| long res; |
| |
| if (eva_kernel_access()) { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| __MODULE_JAL(__strlen_kernel_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s) |
| : "$2", "$4", __UA_t0, "$31"); |
| } else { |
| might_fault(); |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| __MODULE_JAL(__strlen_kernel_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s) |
| : "$2", "$4", __UA_t0, "$31"); |
| } |
| |
| return res; |
| } |
| |
| /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ |
| static inline long __strnlen_user(const char __user *s, long n) |
| { |
| long res; |
| |
| if (eva_kernel_access()) { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| __MODULE_JAL(__strnlen_kernel_nocheck_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s), "r" (n) |
| : "$2", "$4", "$5", __UA_t0, "$31"); |
| } else { |
| might_fault(); |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| __MODULE_JAL(__strnlen_user_nocheck_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s), "r" (n) |
| : "$2", "$4", "$5", __UA_t0, "$31"); |
| } |
| |
| return res; |
| } |
| |
| /* |
| * strnlen_user: - Get the size of a string in user space. |
| * @str: The string to measure. |
| * |
| * Context: User context only. This function may sleep if pagefaults are |
| * enabled. |
| * |
| * Get the size of a NUL-terminated string in user space. |
| * |
| * Returns the size of the string INCLUDING the terminating NUL. |
| * On exception, returns 0. |
| * If the string is too long, returns a value greater than @n. |
| */ |
| static inline long strnlen_user(const char __user *s, long n) |
| { |
| long res; |
| |
| might_fault(); |
| if (eva_kernel_access()) { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| __MODULE_JAL(__strnlen_kernel_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s), "r" (n) |
| : "$2", "$4", "$5", __UA_t0, "$31"); |
| } else { |
| __asm__ __volatile__( |
| "move\t$4, %1\n\t" |
| "move\t$5, %2\n\t" |
| __MODULE_JAL(__strnlen_user_asm) |
| "move\t%0, $2" |
| : "=r" (res) |
| : "r" (s), "r" (n) |
| : "$2", "$4", "$5", __UA_t0, "$31"); |
| } |
| |
| return res; |
| } |
| |
| struct exception_table_entry |
| { |
| unsigned long insn; |
| unsigned long nextinsn; |
| }; |
| |
| extern int fixup_exception(struct pt_regs *regs); |
| |
| #endif /* _ASM_UACCESS_H */ |