| /* |
| * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family |
| * of PCI-SCSI IO processors. |
| * |
| * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> |
| * |
| * This driver is derived from the Linux sym53c8xx driver. |
| * Copyright (C) 1998-2000 Gerard Roudier |
| * |
| * The sym53c8xx driver is derived from the ncr53c8xx driver that had been |
| * a port of the FreeBSD ncr driver to Linux-1.2.13. |
| * |
| * The original ncr driver has been written for 386bsd and FreeBSD by |
| * Wolfgang Stanglmeier <wolf@cologne.de> |
| * Stefan Esser <se@mi.Uni-Koeln.de> |
| * Copyright (C) 1994 Wolfgang Stanglmeier |
| * |
| * Other major contributions: |
| * |
| * NVRAM detection and reading. |
| * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> |
| * |
| *----------------------------------------------------------------------------- |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| /* |
| * Scripts for SYMBIOS-Processor |
| * |
| * We have to know the offsets of all labels before we reach |
| * them (for forward jumps). Therefore we declare a struct |
| * here. If you make changes inside the script, |
| * |
| * DONT FORGET TO CHANGE THE LENGTHS HERE! |
| */ |
| |
| /* |
| * Script fragments which are loaded into the on-chip RAM |
| * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. |
| * Must not exceed 4K bytes. |
| */ |
| struct SYM_FWA_SCR { |
| u32 start [ 14]; |
| u32 getjob_begin [ 4]; |
| u32 getjob_end [ 4]; |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| u32 select [ 6]; |
| #else |
| u32 select [ 4]; |
| #endif |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| u32 is_dmap_dirty [ 4]; |
| #endif |
| u32 wf_sel_done [ 2]; |
| u32 sel_done [ 2]; |
| u32 send_ident [ 2]; |
| #ifdef SYM_CONF_IARB_SUPPORT |
| u32 select2 [ 8]; |
| #else |
| u32 select2 [ 2]; |
| #endif |
| u32 command [ 2]; |
| u32 dispatch [ 28]; |
| u32 sel_no_cmd [ 10]; |
| u32 init [ 6]; |
| u32 clrack [ 4]; |
| u32 datai_done [ 10]; |
| u32 datai_done_wsr [ 20]; |
| u32 datao_done [ 10]; |
| u32 datao_done_wss [ 6]; |
| u32 datai_phase [ 4]; |
| u32 datao_phase [ 6]; |
| u32 msg_in [ 2]; |
| u32 msg_in2 [ 10]; |
| #ifdef SYM_CONF_IARB_SUPPORT |
| u32 status [ 14]; |
| #else |
| u32 status [ 10]; |
| #endif |
| u32 complete [ 6]; |
| u32 complete2 [ 12]; |
| u32 done [ 14]; |
| u32 done_end [ 2]; |
| u32 complete_error [ 4]; |
| u32 save_dp [ 12]; |
| u32 restore_dp [ 8]; |
| u32 disconnect [ 12]; |
| #ifdef SYM_CONF_IARB_SUPPORT |
| u32 idle [ 4]; |
| #else |
| u32 idle [ 2]; |
| #endif |
| #ifdef SYM_CONF_IARB_SUPPORT |
| u32 ungetjob [ 6]; |
| #else |
| u32 ungetjob [ 4]; |
| #endif |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| u32 reselect [ 4]; |
| #else |
| u32 reselect [ 2]; |
| #endif |
| u32 reselected [ 22]; |
| u32 resel_scntl4 [ 20]; |
| u32 resel_lun0 [ 6]; |
| #if SYM_CONF_MAX_TASK*4 > 512 |
| u32 resel_tag [ 26]; |
| #elif SYM_CONF_MAX_TASK*4 > 256 |
| u32 resel_tag [ 20]; |
| #else |
| u32 resel_tag [ 16]; |
| #endif |
| u32 resel_dsa [ 2]; |
| u32 resel_dsa1 [ 4]; |
| u32 resel_no_tag [ 6]; |
| u32 data_in [SYM_CONF_MAX_SG * 2]; |
| u32 data_in2 [ 4]; |
| u32 data_out [SYM_CONF_MAX_SG * 2]; |
| u32 data_out2 [ 4]; |
| u32 pm0_data [ 12]; |
| u32 pm0_data_out [ 6]; |
| u32 pm0_data_end [ 6]; |
| u32 pm1_data [ 12]; |
| u32 pm1_data_out [ 6]; |
| u32 pm1_data_end [ 6]; |
| }; |
| |
| /* |
| * Script fragments which stay in main memory for all chips |
| * except for chips that support 8K on-chip RAM. |
| */ |
| struct SYM_FWB_SCR { |
| u32 start64 [ 2]; |
| u32 no_data [ 2]; |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| u32 sel_for_abort [ 18]; |
| #else |
| u32 sel_for_abort [ 16]; |
| #endif |
| u32 sel_for_abort_1 [ 2]; |
| u32 msg_in_etc [ 12]; |
| u32 msg_received [ 4]; |
| u32 msg_weird_seen [ 4]; |
| u32 msg_extended [ 20]; |
| u32 msg_bad [ 6]; |
| u32 msg_weird [ 4]; |
| u32 msg_weird1 [ 8]; |
| |
| u32 wdtr_resp [ 6]; |
| u32 send_wdtr [ 4]; |
| u32 sdtr_resp [ 6]; |
| u32 send_sdtr [ 4]; |
| u32 ppr_resp [ 6]; |
| u32 send_ppr [ 4]; |
| u32 nego_bad_phase [ 4]; |
| u32 msg_out [ 4]; |
| u32 msg_out_done [ 4]; |
| u32 data_ovrun [ 2]; |
| u32 data_ovrun1 [ 22]; |
| u32 data_ovrun2 [ 8]; |
| u32 abort_resel [ 16]; |
| u32 resend_ident [ 4]; |
| u32 ident_break [ 4]; |
| u32 ident_break_atn [ 4]; |
| u32 sdata_in [ 6]; |
| u32 resel_bad_lun [ 4]; |
| u32 bad_i_t_l [ 4]; |
| u32 bad_i_t_l_q [ 4]; |
| u32 bad_status [ 6]; |
| u32 pm_handle [ 20]; |
| u32 pm_handle1 [ 4]; |
| u32 pm_save [ 4]; |
| u32 pm0_save [ 12]; |
| u32 pm_save_end [ 4]; |
| u32 pm1_save [ 14]; |
| |
| /* WSR handling */ |
| u32 pm_wsr_handle [ 38]; |
| u32 wsr_ma_helper [ 4]; |
| |
| /* Data area */ |
| u32 zero [ 1]; |
| u32 scratch [ 1]; |
| u32 pm0_data_addr [ 1]; |
| u32 pm1_data_addr [ 1]; |
| u32 done_pos [ 1]; |
| u32 startpos [ 1]; |
| u32 targtbl [ 1]; |
| }; |
| |
| /* |
| * Script fragments used at initialisations. |
| * Only runs out of main memory. |
| */ |
| struct SYM_FWZ_SCR { |
| u32 snooptest [ 6]; |
| u32 snoopend [ 2]; |
| }; |
| |
| static struct SYM_FWA_SCR SYM_FWA_SCR = { |
| /*--------------------------< START >----------------------------*/ { |
| /* |
| * Switch the LED on. |
| * Will be patched with a NO_OP if LED |
| * not needed or not desired. |
| */ |
| SCR_REG_REG (gpreg, SCR_AND, 0xfe), |
| 0, |
| /* |
| * Clear SIGP. |
| */ |
| SCR_FROM_REG (ctest2), |
| 0, |
| /* |
| * Stop here if the C code wants to perform |
| * some error recovery procedure manually. |
| * (Indicate this by setting SEM in ISTAT) |
| */ |
| SCR_FROM_REG (istat), |
| 0, |
| /* |
| * Report to the C code the next position in |
| * the start queue the SCRIPTS will schedule. |
| * The C code must not change SCRATCHA. |
| */ |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (startpos), |
| SCR_INT ^ IFTRUE (MASK (SEM, SEM)), |
| SIR_SCRIPT_STOPPED, |
| /* |
| * Start the next job. |
| * |
| * @DSA = start point for this job. |
| * SCRATCHA = address of this job in the start queue. |
| * |
| * We will restore startpos with SCRATCHA if we fails the |
| * arbitration or if it is the idle job. |
| * |
| * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS |
| * is a critical path. If it is partially executed, it then |
| * may happen that the job address is not yet in the DSA |
| * and the next queue position points to the next JOB. |
| */ |
| SCR_LOAD_ABS (dsa, 4), |
| PADDR_B (startpos), |
| SCR_LOAD_REL (temp, 4), |
| 4, |
| }/*-------------------------< GETJOB_BEGIN >---------------------*/,{ |
| SCR_STORE_ABS (temp, 4), |
| PADDR_B (startpos), |
| SCR_LOAD_REL (dsa, 4), |
| 0, |
| }/*-------------------------< GETJOB_END >-----------------------*/,{ |
| SCR_LOAD_REL (temp, 4), |
| 0, |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< SELECT >---------------------------*/,{ |
| /* |
| * DSA contains the address of a scheduled |
| * data structure. |
| * |
| * SCRATCHA contains the address of the start queue |
| * entry which points to the next job. |
| * |
| * Set Initiator mode. |
| * |
| * (Target mode is left as an exercise for the reader) |
| */ |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| SCR_CLR (SCR_TRG), |
| 0, |
| #endif |
| /* |
| * And try to select this target. |
| */ |
| SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select), |
| PADDR_A (ungetjob), |
| /* |
| * Now there are 4 possibilities: |
| * |
| * (1) The chip loses arbitration. |
| * This is ok, because it will try again, |
| * when the bus becomes idle. |
| * (But beware of the timeout function!) |
| * |
| * (2) The chip is reselected. |
| * Then the script processor takes the jump |
| * to the RESELECT label. |
| * |
| * (3) The chip wins arbitration. |
| * Then it will execute SCRIPTS instruction until |
| * the next instruction that checks SCSI phase. |
| * Then will stop and wait for selection to be |
| * complete or selection time-out to occur. |
| * |
| * After having won arbitration, the SCRIPTS |
| * processor is able to execute instructions while |
| * the SCSI core is performing SCSI selection. |
| */ |
| /* |
| * Initialize the status registers |
| */ |
| SCR_LOAD_REL (scr0, 4), |
| offsetof (struct sym_ccb, phys.head.status), |
| /* |
| * We may need help from CPU if the DMA segment |
| * registers aren't up-to-date for this IO. |
| * Patched with NOOP for chips that donnot |
| * support DAC addressing. |
| */ |
| #if SYM_CONF_DMA_ADDRESSING_MODE == 2 |
| }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{ |
| SCR_FROM_REG (HX_REG), |
| 0, |
| SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)), |
| SIR_DMAP_DIRTY, |
| #endif |
| }/*-------------------------< WF_SEL_DONE >----------------------*/,{ |
| SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| SIR_SEL_ATN_NO_MSG_OUT, |
| }/*-------------------------< SEL_DONE >-------------------------*/,{ |
| /* |
| * C1010-33 errata work-around. |
| * Due to a race, the SCSI core may not have |
| * loaded SCNTL3 on SEL_TBL instruction. |
| * We reload it once phase is stable. |
| * Patched with a NOOP for other chips. |
| */ |
| SCR_LOAD_REL (scntl3, 1), |
| offsetof(struct sym_dsb, select.sel_scntl3), |
| }/*-------------------------< SEND_IDENT >-----------------------*/,{ |
| /* |
| * Selection complete. |
| * Send the IDENTIFY and possibly the TAG message |
| * and negotiation message if present. |
| */ |
| SCR_MOVE_TBL ^ SCR_MSG_OUT, |
| offsetof (struct sym_dsb, smsg), |
| }/*-------------------------< SELECT2 >--------------------------*/,{ |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * Set IMMEDIATE ARBITRATION if we have been given |
| * a hint to do so. (Some job to do after this one). |
| */ |
| SCR_FROM_REG (HF_REG), |
| 0, |
| SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), |
| 8, |
| SCR_REG_REG (scntl1, SCR_OR, IARB), |
| 0, |
| #endif |
| /* |
| * Anticipate the COMMAND phase. |
| * This is the PHASE we expect at this point. |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), |
| PADDR_A (sel_no_cmd), |
| }/*-------------------------< COMMAND >--------------------------*/,{ |
| /* |
| * ... and send the command |
| */ |
| SCR_MOVE_TBL ^ SCR_COMMAND, |
| offsetof (struct sym_dsb, cmd), |
| }/*-------------------------< DISPATCH >-------------------------*/,{ |
| /* |
| * MSG_IN is the only phase that shall be |
| * entered at least once for each (re)selection. |
| * So we test it first. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), |
| PADDR_A (msg_in), |
| SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), |
| PADDR_A (datao_phase), |
| SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), |
| PADDR_A (datai_phase), |
| SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), |
| PADDR_A (status), |
| SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), |
| PADDR_A (command), |
| SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), |
| PADDR_B (msg_out), |
| /* |
| * Discard as many illegal phases as |
| * required and tell the C code about. |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)), |
| 16, |
| SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, |
| HADDR_1 (scratch), |
| SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)), |
| -16, |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)), |
| 16, |
| SCR_MOVE_ABS (1) ^ SCR_ILG_IN, |
| HADDR_1 (scratch), |
| SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)), |
| -16, |
| SCR_INT, |
| SIR_BAD_PHASE, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< SEL_NO_CMD >-----------------------*/,{ |
| /* |
| * The target does not switch to command |
| * phase after IDENTIFY has been sent. |
| * |
| * If it stays in MSG OUT phase send it |
| * the IDENTIFY again. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), |
| PADDR_B (resend_ident), |
| /* |
| * If target does not switch to MSG IN phase |
| * and we sent a negotiation, assert the |
| * failure immediately. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), |
| PADDR_A (dispatch), |
| SCR_FROM_REG (HS_REG), |
| 0, |
| SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), |
| SIR_NEGO_FAILED, |
| /* |
| * Jump to dispatcher. |
| */ |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< INIT >-----------------------------*/,{ |
| /* |
| * Wait for the SCSI RESET signal to be |
| * inactive before restarting operations, |
| * since the chip may hang on SEL_ATN |
| * if SCSI RESET is active. |
| */ |
| SCR_FROM_REG (sstat0), |
| 0, |
| SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), |
| -16, |
| SCR_JUMP, |
| PADDR_A (start), |
| }/*-------------------------< CLRACK >---------------------------*/,{ |
| /* |
| * Terminate possible pending message phase. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATAI_DONE >-----------------------*/,{ |
| /* |
| * Save current pointer to LASTP. |
| */ |
| SCR_STORE_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| /* |
| * If the SWIDE is not full, jump to dispatcher. |
| * We anticipate a STATUS phase. |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)), |
| PADDR_A (datai_done_wsr), |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), |
| PADDR_A (status), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{ |
| /* |
| * The SWIDE is full. |
| * Clear this condition. |
| */ |
| SCR_REG_REG (scntl2, SCR_OR, WSR), |
| 0, |
| /* |
| * We are expecting an IGNORE RESIDUE message |
| * from the device, otherwise we are in data |
| * overrun condition. Check against MSG_IN phase. |
| */ |
| SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| SIR_SWIDE_OVERRUN, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR_A (dispatch), |
| /* |
| * We are in MSG_IN phase, |
| * Read the first byte of the message. |
| * If it is not an IGNORE RESIDUE message, |
| * signal overrun and jump to message |
| * processing. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin[0]), |
| SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)), |
| SIR_SWIDE_OVERRUN, |
| SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), |
| PADDR_A (msg_in2), |
| /* |
| * We got the message we expected. |
| * Read the 2nd byte, and jump to dispatcher. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin[1]), |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATAO_DONE >-----------------------*/,{ |
| /* |
| * Save current pointer to LASTP. |
| */ |
| SCR_STORE_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| /* |
| * If the SODL is not full jump to dispatcher. |
| * We anticipate a STATUS phase. |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)), |
| PADDR_A (datao_done_wss), |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), |
| PADDR_A (status), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{ |
| /* |
| * The SODL is full, clear this condition. |
| */ |
| SCR_REG_REG (scntl2, SCR_OR, WSS), |
| 0, |
| /* |
| * And signal a DATA UNDERRUN condition |
| * to the C code. |
| */ |
| SCR_INT, |
| SIR_SODL_UNDERRUN, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATAI_PHASE >----------------------*/,{ |
| /* |
| * Jump to current pointer. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< DATAO_PHASE >----------------------*/,{ |
| /* |
| * C1010-66 errata work-around. |
| * Extra clocks of data hold must be inserted |
| * in DATA OUT phase on 33 MHz PCI BUS. |
| * Patched with a NOOP for other chips. |
| */ |
| SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)), |
| 0, |
| /* |
| * Jump to current pointer. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< MSG_IN >---------------------------*/,{ |
| /* |
| * Get the first byte of the message. |
| * |
| * The script processor doesn't negate the |
| * ACK signal after this transfer. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin[0]), |
| }/*-------------------------< MSG_IN2 >--------------------------*/,{ |
| /* |
| * Check first against 1 byte messages |
| * that we handle from SCRIPTS. |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), |
| PADDR_A (complete), |
| SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), |
| PADDR_A (disconnect), |
| SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), |
| PADDR_A (save_dp), |
| SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), |
| PADDR_A (restore_dp), |
| /* |
| * We handle all other messages from the |
| * C code, so no need to waste on-chip RAM |
| * for those ones. |
| */ |
| SCR_JUMP, |
| PADDR_B (msg_in_etc), |
| }/*-------------------------< STATUS >---------------------------*/,{ |
| /* |
| * get the status |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_STATUS, |
| HADDR_1 (scratch), |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, |
| * since we may have to tamper the start queue from |
| * the C code. |
| */ |
| SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), |
| 8, |
| SCR_REG_REG (scntl1, SCR_AND, ~IARB), |
| 0, |
| #endif |
| /* |
| * save status to scsi_status. |
| * mark as complete. |
| */ |
| SCR_TO_REG (SS_REG), |
| 0, |
| SCR_LOAD_REG (HS_REG, HS_COMPLETE), |
| 0, |
| /* |
| * Anticipate the MESSAGE PHASE for |
| * the TASK COMPLETE message. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), |
| PADDR_A (msg_in), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< COMPLETE >-------------------------*/,{ |
| /* |
| * Complete message. |
| * |
| * When we terminate the cycle by clearing ACK, |
| * the target may disconnect immediately. |
| * |
| * We don't want to be told of an "unexpected disconnect", |
| * so we disable this feature. |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| /* |
| * Terminate cycle ... |
| */ |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| /* |
| * ... and wait for the disconnect. |
| */ |
| SCR_WAIT_DISC, |
| 0, |
| }/*-------------------------< COMPLETE2 >------------------------*/,{ |
| /* |
| * Save host status. |
| */ |
| SCR_STORE_REL (scr0, 4), |
| offsetof (struct sym_ccb, phys.head.status), |
| /* |
| * Some bridges may reorder DMA writes to memory. |
| * We donnot want the CPU to deal with completions |
| * without all the posted write having been flushed |
| * to memory. This DUMMY READ should flush posted |
| * buffers prior to the CPU having to deal with |
| * completions. |
| */ |
| SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ |
| offsetof (struct sym_ccb, phys.head.status), |
| |
| /* |
| * If command resulted in not GOOD status, |
| * call the C code if needed. |
| */ |
| SCR_FROM_REG (SS_REG), |
| 0, |
| SCR_CALL ^ IFFALSE (DATA (S_GOOD)), |
| PADDR_B (bad_status), |
| /* |
| * If we performed an auto-sense, call |
| * the C code to synchronyze task aborts |
| * with UNIT ATTENTION conditions. |
| */ |
| SCR_FROM_REG (HF_REG), |
| 0, |
| SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), |
| PADDR_A (complete_error), |
| }/*-------------------------< DONE >-----------------------------*/,{ |
| /* |
| * Copy the DSA to the DONE QUEUE and |
| * signal completion to the host. |
| * If we are interrupted between DONE |
| * and DONE_END, we must reset, otherwise |
| * the completed CCB may be lost. |
| */ |
| SCR_STORE_ABS (dsa, 4), |
| PADDR_B (scratch), |
| SCR_LOAD_ABS (dsa, 4), |
| PADDR_B (done_pos), |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (scratch), |
| SCR_STORE_REL (scratcha, 4), |
| 0, |
| /* |
| * The instruction below reads the DONE QUEUE next |
| * free position from memory. |
| * In addition it ensures that all PCI posted writes |
| * are flushed and so the DSA value of the done |
| * CCB is visible by the CPU before INTFLY is raised. |
| */ |
| SCR_LOAD_REL (scratcha, 4), |
| 4, |
| SCR_INT_FLY, |
| 0, |
| SCR_STORE_ABS (scratcha, 4), |
| PADDR_B (done_pos), |
| }/*-------------------------< DONE_END >-------------------------*/,{ |
| SCR_JUMP, |
| PADDR_A (start), |
| }/*-------------------------< COMPLETE_ERROR >-------------------*/,{ |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (startpos), |
| SCR_INT, |
| SIR_COMPLETE_ERROR, |
| }/*-------------------------< SAVE_DP >--------------------------*/,{ |
| /* |
| * Clear ACK immediately. |
| * No need to delay it. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| * Keep track we received a SAVE DP, so |
| * we will switch to the other PM context |
| * on the next PM since the DP may point |
| * to the current PM context. |
| */ |
| SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), |
| 0, |
| /* |
| * SAVE_DP message: |
| * Copy LASTP to SAVEP. |
| */ |
| SCR_LOAD_REL (scratcha, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| SCR_STORE_REL (scratcha, 4), |
| offsetof (struct sym_ccb, phys.head.savep), |
| /* |
| * Anticipate the MESSAGE PHASE for |
| * the DISCONNECT message. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), |
| PADDR_A (msg_in), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< RESTORE_DP >-----------------------*/,{ |
| /* |
| * Clear ACK immediately. |
| * No need to delay it. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| * Copy SAVEP to LASTP. |
| */ |
| SCR_LOAD_REL (scratcha, 4), |
| offsetof (struct sym_ccb, phys.head.savep), |
| SCR_STORE_REL (scratcha, 4), |
| offsetof (struct sym_ccb, phys.head.lastp), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DISCONNECT >-----------------------*/,{ |
| /* |
| * DISCONNECTing ... |
| * |
| * disable the "unexpected disconnect" feature, |
| * and remove the ACK signal. |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| /* |
| * Wait for the disconnect. |
| */ |
| SCR_WAIT_DISC, |
| 0, |
| /* |
| * Status is: DISCONNECTED. |
| */ |
| SCR_LOAD_REG (HS_REG, HS_DISCONNECT), |
| 0, |
| /* |
| * Save host status. |
| */ |
| SCR_STORE_REL (scr0, 4), |
| offsetof (struct sym_ccb, phys.head.status), |
| SCR_JUMP, |
| PADDR_A (start), |
| }/*-------------------------< IDLE >-----------------------------*/,{ |
| /* |
| * Nothing to do? |
| * Switch the LED off and wait for reselect. |
| * Will be patched with a NO_OP if LED |
| * not needed or not desired. |
| */ |
| SCR_REG_REG (gpreg, SCR_OR, 0x01), |
| 0, |
| #ifdef SYM_CONF_IARB_SUPPORT |
| SCR_JUMPR, |
| 8, |
| #endif |
| }/*-------------------------< UNGETJOB >-------------------------*/,{ |
| #ifdef SYM_CONF_IARB_SUPPORT |
| /* |
| * Set IMMEDIATE ARBITRATION, for the next time. |
| * This will give us better chance to win arbitration |
| * for the job we just wanted to do. |
| */ |
| SCR_REG_REG (scntl1, SCR_OR, IARB), |
| 0, |
| #endif |
| /* |
| * We are not able to restart the SCRIPTS if we are |
| * interrupted and these instruction haven't been |
| * all executed. BTW, this is very unlikely to |
| * happen, but we check that from the C code. |
| */ |
| SCR_LOAD_REG (dsa, 0xff), |
| 0, |
| SCR_STORE_ABS (scratcha, 4), |
| PADDR_B (startpos), |
| }/*-------------------------< RESELECT >-------------------------*/,{ |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| /* |
| * Make sure we are in initiator mode. |
| */ |
| SCR_CLR (SCR_TRG), |
| 0, |
| #endif |
| /* |
| * Sleep waiting for a reselection. |
| */ |
| SCR_WAIT_RESEL, |
| PADDR_A(start), |
| }/*-------------------------< RESELECTED >-----------------------*/,{ |
| /* |
| * Switch the LED on. |
| * Will be patched with a NO_OP if LED |
| * not needed or not desired. |
| */ |
| SCR_REG_REG (gpreg, SCR_AND, 0xfe), |
| 0, |
| /* |
| * load the target id into the sdid |
| */ |
| SCR_REG_SFBR (ssid, SCR_AND, 0x8F), |
| 0, |
| SCR_TO_REG (sdid), |
| 0, |
| /* |
| * Load the target control block address |
| */ |
| SCR_LOAD_ABS (dsa, 4), |
| PADDR_B (targtbl), |
| SCR_SFBR_REG (dsa, SCR_SHL, 0), |
| 0, |
| SCR_REG_REG (dsa, SCR_SHL, 0), |
| 0, |
| SCR_REG_REG (dsa, SCR_AND, 0x3c), |
| 0, |
| SCR_LOAD_REL (dsa, 4), |
| 0, |
| /* |
| * We expect MESSAGE IN phase. |
| * If not, get help from the C code. |
| */ |
| SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| SIR_RESEL_NO_MSG_IN, |
| /* |
| * Load the legacy synchronous transfer registers. |
| */ |
| SCR_LOAD_REL (scntl3, 1), |
| offsetof(struct sym_tcb, head.wval), |
| SCR_LOAD_REL (sxfer, 1), |
| offsetof(struct sym_tcb, head.sval), |
| }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{ |
| /* |
| * The C1010 uses a new synchronous timing scheme. |
| * Will be patched with a NO_OP if not a C1010. |
| */ |
| SCR_LOAD_REL (scntl4, 1), |
| offsetof(struct sym_tcb, head.uval), |
| /* |
| * Get the IDENTIFY message. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin), |
| /* |
| * If IDENTIFY LUN #0, use a faster path |
| * to find the LCB structure. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)), |
| PADDR_A (resel_lun0), |
| /* |
| * If message isn't an IDENTIFY, |
| * tell the C code about. |
| */ |
| SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), |
| SIR_RESEL_NO_IDENTIFY, |
| /* |
| * It is an IDENTIFY message, |
| * Load the LUN control block address. |
| */ |
| SCR_LOAD_REL (dsa, 4), |
| offsetof(struct sym_tcb, head.luntbl_sa), |
| SCR_SFBR_REG (dsa, SCR_SHL, 0), |
| 0, |
| SCR_REG_REG (dsa, SCR_SHL, 0), |
| 0, |
| SCR_REG_REG (dsa, SCR_AND, 0xfc), |
| 0, |
| SCR_LOAD_REL (dsa, 4), |
| 0, |
| SCR_JUMPR, |
| 8, |
| }/*-------------------------< RESEL_LUN0 >-----------------------*/,{ |
| /* |
| * LUN 0 special case (but usual one :)) |
| */ |
| SCR_LOAD_REL (dsa, 4), |
| offsetof(struct sym_tcb, head.lun0_sa), |
| /* |
| * Jump indirectly to the reselect action for this LUN. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof(struct sym_lcb, head.resel_sa), |
| SCR_RETURN, |
| 0, |
| /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ |
| }/*-------------------------< RESEL_TAG >------------------------*/,{ |
| /* |
| * ACK the IDENTIFY previously received. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| * It shall be a tagged command. |
| * Read SIMPLE+TAG. |
| * The C code will deal with errors. |
| * Aggressive optimization, isn't it? :) |
| */ |
| SCR_MOVE_ABS (2) ^ SCR_MSG_IN, |
| HADDR_1 (msgin), |
| /* |
| * Load the pointer to the tagged task |
| * table for this LUN. |
| */ |
| SCR_LOAD_REL (dsa, 4), |
| offsetof(struct sym_lcb, head.itlq_tbl_sa), |
| /* |
| * The SIDL still contains the TAG value. |
| * Aggressive optimization, isn't it? :):) |
| */ |
| SCR_REG_SFBR (sidl, SCR_SHL, 0), |
| 0, |
| #if SYM_CONF_MAX_TASK*4 > 512 |
| SCR_JUMPR ^ IFFALSE (CARRYSET), |
| 8, |
| SCR_REG_REG (dsa1, SCR_OR, 2), |
| 0, |
| SCR_REG_REG (sfbr, SCR_SHL, 0), |
| 0, |
| SCR_JUMPR ^ IFFALSE (CARRYSET), |
| 8, |
| SCR_REG_REG (dsa1, SCR_OR, 1), |
| 0, |
| #elif SYM_CONF_MAX_TASK*4 > 256 |
| SCR_JUMPR ^ IFFALSE (CARRYSET), |
| 8, |
| SCR_REG_REG (dsa1, SCR_OR, 1), |
| 0, |
| #endif |
| /* |
| * Retrieve the DSA of this task. |
| * JUMP indirectly to the restart point of the CCB. |
| */ |
| SCR_SFBR_REG (dsa, SCR_AND, 0xfc), |
| 0, |
| SCR_LOAD_REL (dsa, 4), |
| 0, |
| SCR_LOAD_REL (temp, 4), |
| offsetof(struct sym_ccb, phys.head.go.restart), |
| SCR_RETURN, |
| 0, |
| /* In normal situations we branch to RESEL_DSA */ |
| }/*-------------------------< RESEL_DSA >------------------------*/,{ |
| /* |
| * ACK the IDENTIFY or TAG previously received. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| }/*-------------------------< RESEL_DSA1 >-----------------------*/,{ |
| /* |
| * Initialize the status registers |
| */ |
| SCR_LOAD_REL (scr0, 4), |
| offsetof (struct sym_ccb, phys.head.status), |
| /* |
| * Jump to dispatcher. |
| */ |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< RESEL_NO_TAG >---------------------*/,{ |
| /* |
| * Load the DSA with the unique ITL task. |
| */ |
| SCR_LOAD_REL (dsa, 4), |
| offsetof(struct sym_lcb, head.itl_task_sa), |
| /* |
| * JUMP indirectly to the restart point of the CCB. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof(struct sym_ccb, phys.head.go.restart), |
| SCR_RETURN, |
| 0, |
| /* In normal situations we branch to RESEL_DSA */ |
| }/*-------------------------< DATA_IN >--------------------------*/,{ |
| /* |
| * Because the size depends on the |
| * #define SYM_CONF_MAX_SG parameter, |
| * it is filled in at runtime. |
| * |
| * ##===========< i=0; i<SYM_CONF_MAX_SG >========= |
| * || SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| * || offsetof (struct sym_dsb, data[ i]), |
| * ##========================================== |
| */ |
| 0 |
| }/*-------------------------< DATA_IN2 >-------------------------*/,{ |
| SCR_CALL, |
| PADDR_A (datai_done), |
| SCR_JUMP, |
| PADDR_B (data_ovrun), |
| }/*-------------------------< DATA_OUT >-------------------------*/,{ |
| /* |
| * Because the size depends on the |
| * #define SYM_CONF_MAX_SG parameter, |
| * it is filled in at runtime. |
| * |
| * ##===========< i=0; i<SYM_CONF_MAX_SG >========= |
| * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, |
| * || offsetof (struct sym_dsb, data[ i]), |
| * ##========================================== |
| */ |
| 0 |
| }/*-------------------------< DATA_OUT2 >------------------------*/,{ |
| SCR_CALL, |
| PADDR_A (datao_done), |
| SCR_JUMP, |
| PADDR_B (data_ovrun), |
| }/*-------------------------< PM0_DATA >-------------------------*/,{ |
| /* |
| * Read our host flags to SFBR, so we will be able |
| * to check against the data direction we expect. |
| */ |
| SCR_FROM_REG (HF_REG), |
| 0, |
| /* |
| * Check against actual DATA PHASE. |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| PADDR_A (pm0_data_out), |
| /* |
| * Actual phase is DATA IN. |
| * Check against expected direction. |
| */ |
| SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), |
| PADDR_B (data_ovrun), |
| /* |
| * Keep track we are moving data from the |
| * PM0 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), |
| 0, |
| /* |
| * Move the data to memory. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| offsetof (struct sym_ccb, phys.pm0.sg), |
| SCR_JUMP, |
| PADDR_A (pm0_data_end), |
| }/*-------------------------< PM0_DATA_OUT >---------------------*/,{ |
| /* |
| * Actual phase is DATA OUT. |
| * Check against expected direction. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), |
| PADDR_B (data_ovrun), |
| /* |
| * Keep track we are moving data from the |
| * PM0 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), |
| 0, |
| /* |
| * Move the data from memory. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_OUT, |
| offsetof (struct sym_ccb, phys.pm0.sg), |
| }/*-------------------------< PM0_DATA_END >---------------------*/,{ |
| /* |
| * Clear the flag that told we were moving |
| * data from the PM0 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), |
| 0, |
| /* |
| * Return to the previous DATA script which |
| * is guaranteed by design (if no bug) to be |
| * the main DATA script for this transfer. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.pm0.ret), |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< PM1_DATA >-------------------------*/,{ |
| /* |
| * Read our host flags to SFBR, so we will be able |
| * to check against the data direction we expect. |
| */ |
| SCR_FROM_REG (HF_REG), |
| 0, |
| /* |
| * Check against actual DATA PHASE. |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| PADDR_A (pm1_data_out), |
| /* |
| * Actual phase is DATA IN. |
| * Check against expected direction. |
| */ |
| SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), |
| PADDR_B (data_ovrun), |
| /* |
| * Keep track we are moving data from the |
| * PM1 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), |
| 0, |
| /* |
| * Move the data to memory. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| offsetof (struct sym_ccb, phys.pm1.sg), |
| SCR_JUMP, |
| PADDR_A (pm1_data_end), |
| }/*-------------------------< PM1_DATA_OUT >---------------------*/,{ |
| /* |
| * Actual phase is DATA OUT. |
| * Check against expected direction. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), |
| PADDR_B (data_ovrun), |
| /* |
| * Keep track we are moving data from the |
| * PM1 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), |
| 0, |
| /* |
| * Move the data from memory. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_OUT, |
| offsetof (struct sym_ccb, phys.pm1.sg), |
| }/*-------------------------< PM1_DATA_END >---------------------*/,{ |
| /* |
| * Clear the flag that told we were moving |
| * data from the PM1 DATA mini-script. |
| */ |
| SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), |
| 0, |
| /* |
| * Return to the previous DATA script which |
| * is guaranteed by design (if no bug) to be |
| * the main DATA script for this transfer. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof (struct sym_ccb, phys.pm1.ret), |
| SCR_RETURN, |
| 0, |
| }/*-------------------------<>-----------------------------------*/ |
| }; |
| |
| static struct SYM_FWB_SCR SYM_FWB_SCR = { |
| /*--------------------------< START64 >--------------------------*/ { |
| /* |
| * SCRIPT entry point for the 895A, 896 and 1010. |
| * For now, there is no specific stuff for those |
| * chips at this point, but this may come. |
| */ |
| SCR_JUMP, |
| PADDR_A (init), |
| }/*-------------------------< NO_DATA >--------------------------*/,{ |
| SCR_JUMP, |
| PADDR_B (data_ovrun), |
| }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{ |
| /* |
| * We are jumped here by the C code, if we have |
| * some target to reset or some disconnected |
| * job to abort. Since error recovery is a serious |
| * busyness, we will really reset the SCSI BUS, if |
| * case of a SCSI interrupt occurring in this path. |
| */ |
| #ifdef SYM_CONF_TARGET_ROLE_SUPPORT |
| /* |
| * Set initiator mode. |
| */ |
| SCR_CLR (SCR_TRG), |
| 0, |
| #endif |
| /* |
| * And try to select this target. |
| */ |
| SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), |
| PADDR_A (reselect), |
| /* |
| * Wait for the selection to complete or |
| * the selection to time out. |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| -8, |
| /* |
| * Call the C code. |
| */ |
| SCR_INT, |
| SIR_TARGET_SELECTED, |
| /* |
| * The C code should let us continue here. |
| * Send the 'kiss of death' message. |
| * We expect an immediate disconnect once |
| * the target has eaten the message. |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_MOVE_TBL ^ SCR_MSG_OUT, |
| offsetof (struct sym_hcb, abrt_tbl), |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| SCR_WAIT_DISC, |
| 0, |
| /* |
| * Tell the C code that we are done. |
| */ |
| SCR_INT, |
| SIR_ABORT_SENT, |
| }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{ |
| /* |
| * Jump at scheduler. |
| */ |
| SCR_JUMP, |
| PADDR_A (start), |
| }/*-------------------------< MSG_IN_ETC >-----------------------*/,{ |
| /* |
| * If it is an EXTENDED (variable size message) |
| * Handle it. |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), |
| PADDR_B (msg_extended), |
| /* |
| * Let the C code handle any other |
| * 1 byte message. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)), |
| PADDR_B (msg_received), |
| SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)), |
| PADDR_B (msg_received), |
| /* |
| * We donnot handle 2 bytes messages from SCRIPTS. |
| * So, let the C code deal with these ones too. |
| */ |
| SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)), |
| PADDR_B (msg_weird_seen), |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin[1]), |
| }/*-------------------------< MSG_RECEIVED >---------------------*/,{ |
| SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ |
| 0, |
| SCR_INT, |
| SIR_MSG_RECEIVED, |
| }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{ |
| SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ |
| 0, |
| SCR_INT, |
| SIR_MSG_WEIRD, |
| }/*-------------------------< MSG_EXTENDED >---------------------*/,{ |
| /* |
| * Clear ACK and get the next byte |
| * assumed to be the message length. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (msgin[1]), |
| /* |
| * Try to catch some unlikely situations as 0 length |
| * or too large the length. |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (0)), |
| PADDR_B (msg_weird_seen), |
| SCR_TO_REG (scratcha), |
| 0, |
| SCR_REG_REG (sfbr, SCR_ADD, (256-8)), |
| 0, |
| SCR_JUMP ^ IFTRUE (CARRYSET), |
| PADDR_B (msg_weird_seen), |
| /* |
| * We donnot handle extended messages from SCRIPTS. |
| * Read the amount of data correponding to the |
| * message length and call the C code. |
| */ |
| SCR_STORE_REL (scratcha, 1), |
| offsetof (struct sym_dsb, smsg_ext.size), |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_MOVE_TBL ^ SCR_MSG_IN, |
| offsetof (struct sym_dsb, smsg_ext), |
| SCR_JUMP, |
| PADDR_B (msg_received), |
| }/*-------------------------< MSG_BAD >--------------------------*/,{ |
| /* |
| * unimplemented message - reject it. |
| */ |
| SCR_INT, |
| SIR_REJECT_TO_SEND, |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_JUMP, |
| PADDR_A (clrack), |
| }/*-------------------------< MSG_WEIRD >------------------------*/,{ |
| /* |
| * weird message received |
| * ignore all MSG IN phases and reject it. |
| */ |
| SCR_INT, |
| SIR_REJECT_TO_SEND, |
| SCR_SET (SCR_ATN), |
| 0, |
| }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR_A (dispatch), |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| HADDR_1 (scratch), |
| SCR_JUMP, |
| PADDR_B (msg_weird1), |
| }/*-------------------------< WDTR_RESP >------------------------*/,{ |
| /* |
| * let the target fetch our answer. |
| */ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDR_B (nego_bad_phase), |
| }/*-------------------------< SEND_WDTR >------------------------*/,{ |
| /* |
| * Send the M_X_WIDE_REQ |
| */ |
| SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, |
| HADDR_1 (msgout), |
| SCR_JUMP, |
| PADDR_B (msg_out_done), |
| }/*-------------------------< SDTR_RESP >------------------------*/,{ |
| /* |
| * let the target fetch our answer. |
| */ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDR_B (nego_bad_phase), |
| }/*-------------------------< SEND_SDTR >------------------------*/,{ |
| /* |
| * Send the M_X_SYNC_REQ |
| */ |
| SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, |
| HADDR_1 (msgout), |
| SCR_JUMP, |
| PADDR_B (msg_out_done), |
| }/*-------------------------< PPR_RESP >-------------------------*/,{ |
| /* |
| * let the target fetch our answer. |
| */ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDR_B (nego_bad_phase), |
| }/*-------------------------< SEND_PPR >-------------------------*/,{ |
| /* |
| * Send the M_X_PPR_REQ |
| */ |
| SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, |
| HADDR_1 (msgout), |
| SCR_JUMP, |
| PADDR_B (msg_out_done), |
| }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{ |
| SCR_INT, |
| SIR_NEGO_PROTO, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< MSG_OUT >--------------------------*/,{ |
| /* |
| * The target requests a message. |
| * We donnot send messages that may |
| * require the device to go to bus free. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, |
| HADDR_1 (msgout), |
| /* |
| * ... wait for the next phase |
| * if it's a message out, send it again, ... |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), |
| PADDR_B (msg_out), |
| }/*-------------------------< MSG_OUT_DONE >---------------------*/,{ |
| /* |
| * Let the C code be aware of the |
| * sent message and clear the message. |
| */ |
| SCR_INT, |
| SIR_MSG_OUT_DONE, |
| /* |
| * ... and process the next phase |
| */ |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< DATA_OVRUN >-----------------------*/,{ |
| /* |
| * Use scratcha to count the extra bytes. |
| */ |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (zero), |
| }/*-------------------------< DATA_OVRUN1 >----------------------*/,{ |
| /* |
| * The target may want to transfer too much data. |
| * |
| * If phase is DATA OUT write 1 byte and count it. |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), |
| 16, |
| SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT, |
| HADDR_1 (scratch), |
| SCR_JUMP, |
| PADDR_B (data_ovrun2), |
| /* |
| * If WSR is set, clear this condition, and |
| * count this byte. |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), |
| 16, |
| SCR_REG_REG (scntl2, SCR_OR, WSR), |
| 0, |
| SCR_JUMP, |
| PADDR_B (data_ovrun2), |
| /* |
| * Finally check against DATA IN phase. |
| * Signal data overrun to the C code |
| * and jump to dispatcher if not so. |
| * Read 1 byte otherwise and count it. |
| */ |
| SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)), |
| 16, |
| SCR_INT, |
| SIR_DATA_OVERRUN, |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| SCR_CHMOV_ABS (1) ^ SCR_DATA_IN, |
| HADDR_1 (scratch), |
| }/*-------------------------< DATA_OVRUN2 >----------------------*/,{ |
| /* |
| * Count this byte. |
| * This will allow to return a negative |
| * residual to user. |
| */ |
| SCR_REG_REG (scratcha, SCR_ADD, 0x01), |
| 0, |
| SCR_REG_REG (scratcha1, SCR_ADDC, 0), |
| 0, |
| SCR_REG_REG (scratcha2, SCR_ADDC, 0), |
| 0, |
| /* |
| * .. and repeat as required. |
| */ |
| SCR_JUMP, |
| PADDR_B (data_ovrun1), |
| }/*-------------------------< ABORT_RESEL >----------------------*/,{ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| * send the abort/abortag/reset message |
| * we expect an immediate disconnect |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, |
| HADDR_1 (msgout), |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| SCR_WAIT_DISC, |
| 0, |
| SCR_INT, |
| SIR_RESEL_ABORTED, |
| SCR_JUMP, |
| PADDR_A (start), |
| }/*-------------------------< RESEND_IDENT >---------------------*/,{ |
| /* |
| * The target stays in MSG OUT phase after having acked |
| * Identify [+ Tag [+ Extended message ]]. Targets shall |
| * behave this way on parity error. |
| * We must send it again all the messages. |
| */ |
| SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ |
| 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ |
| SCR_JUMP, |
| PADDR_A (send_ident), |
| }/*-------------------------< IDENT_BREAK >----------------------*/,{ |
| SCR_CLR (SCR_ATN), |
| 0, |
| SCR_JUMP, |
| PADDR_A (select2), |
| }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_JUMP, |
| PADDR_A (select2), |
| }/*-------------------------< SDATA_IN >-------------------------*/,{ |
| SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| offsetof (struct sym_dsb, sense), |
| SCR_CALL, |
| PADDR_A (datai_done), |
| SCR_JUMP, |
| PADDR_B (data_ovrun), |
| }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{ |
| /* |
| * Message is an IDENTIFY, but lun is unknown. |
| * Signal problem to C code for logging the event. |
| * Send a M_ABORT to clear all pending tasks. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_LUN, |
| SCR_JUMP, |
| PADDR_B (abort_resel), |
| }/*-------------------------< BAD_I_T_L >------------------------*/,{ |
| /* |
| * We donnot have a task for that I_T_L. |
| * Signal problem to C code for logging the event. |
| * Send a M_ABORT message. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_I_T_L, |
| SCR_JUMP, |
| PADDR_B (abort_resel), |
| }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{ |
| /* |
| * We donnot have a task that matches the tag. |
| * Signal problem to C code for logging the event. |
| * Send a M_ABORTTAG message. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_I_T_L_Q, |
| SCR_JUMP, |
| PADDR_B (abort_resel), |
| }/*-------------------------< BAD_STATUS >-----------------------*/,{ |
| /* |
| * Anything different from INTERMEDIATE |
| * CONDITION MET should be a bad SCSI status, |
| * given that GOOD status has already been tested. |
| * Call the C code. |
| */ |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (startpos), |
| SCR_INT ^ IFFALSE (DATA (S_COND_MET)), |
| SIR_BAD_SCSI_STATUS, |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< PM_HANDLE >------------------------*/,{ |
| /* |
| * Phase mismatch handling. |
| * |
| * Since we have to deal with 2 SCSI data pointers |
| * (current and saved), we need at least 2 contexts. |
| * Each context (pm0 and pm1) has a saved area, a |
| * SAVE mini-script and a DATA phase mini-script. |
| */ |
| /* |
| * Get the PM handling flags. |
| */ |
| SCR_FROM_REG (HF_REG), |
| 0, |
| /* |
| * If no flags (1rst PM for example), avoid |
| * all the below heavy flags testing. |
| * This makes the normal case a bit faster. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), |
| PADDR_B (pm_handle1), |
| /* |
| * If we received a SAVE DP, switch to the |
| * other PM context since the savep may point |
| * to the current PM context. |
| */ |
| SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), |
| 8, |
| SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), |
| 0, |
| /* |
| * If we have been interrupt in a PM DATA mini-script, |
| * we take the return address from the corresponding |
| * saved area. |
| * This ensure the return address always points to the |
| * main DATA script for this transfer. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), |
| PADDR_B (pm_handle1), |
| SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), |
| 16, |
| SCR_LOAD_REL (ia, 4), |
| offsetof(struct sym_ccb, phys.pm0.ret), |
| SCR_JUMP, |
| PADDR_B (pm_save), |
| SCR_LOAD_REL (ia, 4), |
| offsetof(struct sym_ccb, phys.pm1.ret), |
| SCR_JUMP, |
| PADDR_B (pm_save), |
| }/*-------------------------< PM_HANDLE1 >-----------------------*/,{ |
| /* |
| * Normal case. |
| * Update the return address so that it |
| * will point after the interrupted MOVE. |
| */ |
| SCR_REG_REG (ia, SCR_ADD, 8), |
| 0, |
| SCR_REG_REG (ia1, SCR_ADDC, 0), |
| 0, |
| }/*-------------------------< PM_SAVE >--------------------------*/,{ |
| /* |
| * Clear all the flags that told us if we were |
| * interrupted in a PM DATA mini-script and/or |
| * we received a SAVE DP. |
| */ |
| SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), |
| 0, |
| /* |
| * Choose the current PM context. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), |
| PADDR_B (pm1_save), |
| }/*-------------------------< PM0_SAVE >-------------------------*/,{ |
| SCR_STORE_REL (ia, 4), |
| offsetof(struct sym_ccb, phys.pm0.ret), |
| /* |
| * If WSR bit is set, either UA and RBC may |
| * have to be changed whether the device wants |
| * to ignore this residue or not. |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), |
| PADDR_B (pm_wsr_handle), |
| /* |
| * Save the remaining byte count, the updated |
| * address and the return address. |
| */ |
| SCR_STORE_REL (rbc, 4), |
| offsetof(struct sym_ccb, phys.pm0.sg.size), |
| SCR_STORE_REL (ua, 4), |
| offsetof(struct sym_ccb, phys.pm0.sg.addr), |
| /* |
| * Set the current pointer at the PM0 DATA mini-script. |
| */ |
| SCR_LOAD_ABS (ia, 4), |
| PADDR_B (pm0_data_addr), |
| }/*-------------------------< PM_SAVE_END >----------------------*/,{ |
| SCR_STORE_REL (ia, 4), |
| offsetof(struct sym_ccb, phys.head.lastp), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| }/*-------------------------< PM1_SAVE >-------------------------*/,{ |
| SCR_STORE_REL (ia, 4), |
| offsetof(struct sym_ccb, phys.pm1.ret), |
| /* |
| * If WSR bit is set, either UA and RBC may |
| * have to be changed whether the device wants |
| * to ignore this residue or not. |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), |
| PADDR_B (pm_wsr_handle), |
| /* |
| * Save the remaining byte count, the updated |
| * address and the return address. |
| */ |
| SCR_STORE_REL (rbc, 4), |
| offsetof(struct sym_ccb, phys.pm1.sg.size), |
| SCR_STORE_REL (ua, 4), |
| offsetof(struct sym_ccb, phys.pm1.sg.addr), |
| /* |
| * Set the current pointer at the PM1 DATA mini-script. |
| */ |
| SCR_LOAD_ABS (ia, 4), |
| PADDR_B (pm1_data_addr), |
| SCR_JUMP, |
| PADDR_B (pm_save_end), |
| }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{ |
| /* |
| * Phase mismatch handling from SCRIPT with WSR set. |
| * Such a condition can occur if the chip wants to |
| * execute a CHMOV(size > 1) when the WSR bit is |
| * set and the target changes PHASE. |
| * |
| * We must move the residual byte to memory. |
| * |
| * UA contains bit 0..31 of the address to |
| * move the residual byte. |
| * Move it to the table indirect. |
| */ |
| SCR_STORE_REL (ua, 4), |
| offsetof (struct sym_ccb, phys.wresid.addr), |
| /* |
| * Increment UA (move address to next position). |
| */ |
| SCR_REG_REG (ua, SCR_ADD, 1), |
| 0, |
| SCR_REG_REG (ua1, SCR_ADDC, 0), |
| 0, |
| SCR_REG_REG (ua2, SCR_ADDC, 0), |
| 0, |
| SCR_REG_REG (ua3, SCR_ADDC, 0), |
| 0, |
| /* |
| * Compute SCRATCHA as: |
| * - size to transfer = 1 byte. |
| * - bit 24..31 = high address bit [32...39]. |
| */ |
| SCR_LOAD_ABS (scratcha, 4), |
| PADDR_B (zero), |
| SCR_REG_REG (scratcha, SCR_OR, 1), |
| 0, |
| SCR_FROM_REG (rbc3), |
| 0, |
| SCR_TO_REG (scratcha3), |
| 0, |
| /* |
| * Move this value to the table indirect. |
| */ |
| SCR_STORE_REL (scratcha, 4), |
| offsetof (struct sym_ccb, phys.wresid.size), |
| /* |
| * Wait for a valid phase. |
| * While testing with bogus QUANTUM drives, the C1010 |
| * sometimes raised a spurious phase mismatch with |
| * WSR and the CHMOV(1) triggered another PM. |
| * Waiting explicitely for the PHASE seemed to avoid |
| * the nested phase mismatch. Btw, this didn't happen |
| * using my IBM drives. |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| 0, |
| /* |
| * Perform the move of the residual byte. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| offsetof (struct sym_ccb, phys.wresid), |
| /* |
| * We can now handle the phase mismatch with UA fixed. |
| * RBC[0..23]=0 is a special case that does not require |
| * a PM context. The C code also checks against this. |
| */ |
| SCR_FROM_REG (rbc), |
| 0, |
| SCR_RETURN ^ IFFALSE (DATA (0)), |
| 0, |
| SCR_FROM_REG (rbc1), |
| 0, |
| SCR_RETURN ^ IFFALSE (DATA (0)), |
| 0, |
| SCR_FROM_REG (rbc2), |
| 0, |
| SCR_RETURN ^ IFFALSE (DATA (0)), |
| 0, |
| /* |
| * RBC[0..23]=0. |
| * Not only we donnot need a PM context, but this would |
| * lead to a bogus CHMOV(0). This condition means that |
| * the residual was the last byte to move from this CHMOV. |
| * So, we just have to move the current data script pointer |
| * (i.e. TEMP) to the SCRIPTS address following the |
| * interrupted CHMOV and jump to dispatcher. |
| * IA contains the data pointer to save. |
| */ |
| SCR_JUMP, |
| PADDR_B (pm_save_end), |
| }/*-------------------------< WSR_MA_HELPER >--------------------*/,{ |
| /* |
| * Helper for the C code when WSR bit is set. |
| * Perform the move of the residual byte. |
| */ |
| SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| offsetof (struct sym_ccb, phys.wresid), |
| SCR_JUMP, |
| PADDR_A (dispatch), |
| |
| }/*-------------------------< ZERO >-----------------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< SCRATCH >--------------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< DONE_POS >-------------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< STARTPOS >-------------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------< TARGTBL >--------------------------*/,{ |
| SCR_DATA_ZERO, |
| }/*-------------------------<>-----------------------------------*/ |
| }; |
| |
| static struct SYM_FWZ_SCR SYM_FWZ_SCR = { |
| /*-------------------------< SNOOPTEST >------------------------*/{ |
| /* |
| * Read the variable from memory. |
| */ |
| SCR_LOAD_REL (scratcha, 4), |
| offsetof(struct sym_hcb, scratch), |
| /* |
| * Write the variable to memory. |
| */ |
| SCR_STORE_REL (temp, 4), |
| offsetof(struct sym_hcb, scratch), |
| /* |
| * Read back the variable from memory. |
| */ |
| SCR_LOAD_REL (temp, 4), |
| offsetof(struct sym_hcb, scratch), |
| }/*-------------------------< SNOOPEND >-------------------------*/,{ |
| /* |
| * And stop. |
| */ |
| SCR_INT, |
| 99, |
| }/*-------------------------<>-----------------------------------*/ |
| }; |