| /* |
| * Copyright (c) Red Hat Inc. |
| |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sub license, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Dave Airlie <airlied@redhat.com> |
| * Jerome Glisse <jglisse@redhat.com> |
| * Pauli Nieminen <suokkos@gmail.com> |
| */ |
| |
| /* simple list based uncached page pool |
| * - Pool collects resently freed pages for reuse |
| * - Use page->lru to keep a free list |
| * - doesn't track currently in use pages |
| */ |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/highmem.h> |
| #include <linux/mm_types.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/agp.h> |
| |
| #include "ttm/ttm_bo_driver.h" |
| #include "ttm/ttm_page_alloc.h" |
| |
| |
| #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *)) |
| #define SMALL_ALLOCATION 16 |
| #define FREE_ALL_PAGES (~0U) |
| /* times are in msecs */ |
| #define PAGE_FREE_INTERVAL 1000 |
| |
| /** |
| * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages. |
| * |
| * @lock: Protects the shared pool from concurrnet access. Must be used with |
| * irqsave/irqrestore variants because pool allocator maybe called from |
| * delayed work. |
| * @fill_lock: Prevent concurrent calls to fill. |
| * @list: Pool of free uc/wc pages for fast reuse. |
| * @gfp_flags: Flags to pass for alloc_page. |
| * @npages: Number of pages in pool. |
| */ |
| struct ttm_page_pool { |
| spinlock_t lock; |
| bool fill_lock; |
| struct list_head list; |
| int gfp_flags; |
| unsigned npages; |
| char *name; |
| unsigned long nfrees; |
| unsigned long nrefills; |
| }; |
| |
| struct ttm_pool_opts { |
| unsigned alloc_size; |
| unsigned max_size; |
| unsigned small; |
| }; |
| |
| #define NUM_POOLS 4 |
| |
| /** |
| * struct ttm_pool_manager - Holds memory pools for fst allocation |
| * |
| * Manager is read only object for pool code so it doesn't need locking. |
| * |
| * @free_interval: minimum number of jiffies between freeing pages from pool. |
| * @page_alloc_inited: reference counting for pool allocation. |
| * @work: Work that is used to shrink the pool. Work is only run when there is |
| * some pages to free. |
| * @small_allocation: Limit in number of pages what is small allocation. |
| * |
| * @pools: All pool objects in use. |
| **/ |
| struct ttm_pool_manager { |
| struct shrinker mm_shrink; |
| atomic_t page_alloc_inited; |
| struct ttm_pool_opts options; |
| |
| union { |
| struct ttm_page_pool pools[NUM_POOLS]; |
| struct { |
| struct ttm_page_pool wc_pool; |
| struct ttm_page_pool uc_pool; |
| struct ttm_page_pool wc_pool_dma32; |
| struct ttm_page_pool uc_pool_dma32; |
| } ; |
| }; |
| }; |
| |
| static struct ttm_pool_manager _manager = { |
| .page_alloc_inited = ATOMIC_INIT(0) |
| }; |
| |
| #ifdef CONFIG_X86 |
| /* TODO: add this to x86 like _uc, this version here is inefficient */ |
| static int set_pages_array_wc(struct page **pages, int addrinarray) |
| { |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| set_memory_wc((unsigned long)page_address(pages[i]), 1); |
| return 0; |
| } |
| #else |
| static int set_pages_array_wb(struct page **pages, int addrinarray) |
| { |
| #ifdef TTM_HAS_AGP |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| unmap_page_from_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| |
| static int set_pages_array_wc(struct page **pages, int addrinarray) |
| { |
| #ifdef TTM_HAS_AGP |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| map_page_into_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| |
| static int set_pages_array_uc(struct page **pages, int addrinarray) |
| { |
| #ifdef TTM_HAS_AGP |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| map_page_into_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| #endif |
| |
| /** |
| * Select the right pool or requested caching state and ttm flags. */ |
| static struct ttm_page_pool *ttm_get_pool(int flags, |
| enum ttm_caching_state cstate) |
| { |
| int pool_index; |
| |
| if (cstate == tt_cached) |
| return NULL; |
| |
| if (cstate == tt_wc) |
| pool_index = 0x0; |
| else |
| pool_index = 0x1; |
| |
| if (flags & TTM_PAGE_FLAG_DMA32) |
| pool_index |= 0x2; |
| |
| return &_manager.pools[pool_index]; |
| } |
| |
| /* set memory back to wb and free the pages. */ |
| static void ttm_pages_put(struct page *pages[], unsigned npages) |
| { |
| unsigned i; |
| if (set_pages_array_wb(pages, npages)) |
| printk(KERN_ERR "[ttm] Failed to set %d pages to wb!\n", |
| npages); |
| for (i = 0; i < npages; ++i) |
| __free_page(pages[i]); |
| } |
| |
| static void ttm_pool_update_free_locked(struct ttm_page_pool *pool, |
| unsigned freed_pages) |
| { |
| pool->npages -= freed_pages; |
| pool->nfrees += freed_pages; |
| } |
| |
| /** |
| * Free pages from pool. |
| * |
| * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC |
| * number of pages in one go. |
| * |
| * @pool: to free the pages from |
| * @free_all: If set to true will free all pages in pool |
| **/ |
| static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free) |
| { |
| unsigned long irq_flags; |
| struct page *p; |
| struct page **pages_to_free; |
| unsigned freed_pages = 0, |
| npages_to_free = nr_free; |
| |
| if (NUM_PAGES_TO_ALLOC < nr_free) |
| npages_to_free = NUM_PAGES_TO_ALLOC; |
| |
| pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), |
| GFP_KERNEL); |
| if (!pages_to_free) { |
| printk(KERN_ERR "Failed to allocate memory for pool free operation.\n"); |
| return 0; |
| } |
| |
| restart: |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| |
| list_for_each_entry_reverse(p, &pool->list, lru) { |
| if (freed_pages >= npages_to_free) |
| break; |
| |
| pages_to_free[freed_pages++] = p; |
| /* We can only remove NUM_PAGES_TO_ALLOC at a time. */ |
| if (freed_pages >= NUM_PAGES_TO_ALLOC) { |
| /* remove range of pages from the pool */ |
| __list_del(p->lru.prev, &pool->list); |
| |
| ttm_pool_update_free_locked(pool, freed_pages); |
| /** |
| * Because changing page caching is costly |
| * we unlock the pool to prevent stalling. |
| */ |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| |
| ttm_pages_put(pages_to_free, freed_pages); |
| if (likely(nr_free != FREE_ALL_PAGES)) |
| nr_free -= freed_pages; |
| |
| if (NUM_PAGES_TO_ALLOC >= nr_free) |
| npages_to_free = nr_free; |
| else |
| npages_to_free = NUM_PAGES_TO_ALLOC; |
| |
| freed_pages = 0; |
| |
| /* free all so restart the processing */ |
| if (nr_free) |
| goto restart; |
| |
| /* Not allowed to fall tough or break because |
| * following context is inside spinlock while we are |
| * outside here. |
| */ |
| goto out; |
| |
| } |
| } |
| |
| /* remove range of pages from the pool */ |
| if (freed_pages) { |
| __list_del(&p->lru, &pool->list); |
| |
| ttm_pool_update_free_locked(pool, freed_pages); |
| nr_free -= freed_pages; |
| } |
| |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| |
| if (freed_pages) |
| ttm_pages_put(pages_to_free, freed_pages); |
| out: |
| kfree(pages_to_free); |
| return nr_free; |
| } |
| |
| /* Get good estimation how many pages are free in pools */ |
| static int ttm_pool_get_num_unused_pages(void) |
| { |
| unsigned i; |
| int total = 0; |
| for (i = 0; i < NUM_POOLS; ++i) |
| total += _manager.pools[i].npages; |
| |
| return total; |
| } |
| |
| /** |
| * Calback for mm to request pool to reduce number of page held. |
| */ |
| static int ttm_pool_mm_shrink(int shrink_pages, gfp_t gfp_mask) |
| { |
| static atomic_t start_pool = ATOMIC_INIT(0); |
| unsigned i; |
| unsigned pool_offset = atomic_add_return(1, &start_pool); |
| struct ttm_page_pool *pool; |
| |
| pool_offset = pool_offset % NUM_POOLS; |
| /* select start pool in round robin fashion */ |
| for (i = 0; i < NUM_POOLS; ++i) { |
| unsigned nr_free = shrink_pages; |
| if (shrink_pages == 0) |
| break; |
| pool = &_manager.pools[(i + pool_offset)%NUM_POOLS]; |
| shrink_pages = ttm_page_pool_free(pool, nr_free); |
| } |
| /* return estimated number of unused pages in pool */ |
| return ttm_pool_get_num_unused_pages(); |
| } |
| |
| static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager) |
| { |
| manager->mm_shrink.shrink = &ttm_pool_mm_shrink; |
| manager->mm_shrink.seeks = 1; |
| register_shrinker(&manager->mm_shrink); |
| } |
| |
| static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager) |
| { |
| unregister_shrinker(&manager->mm_shrink); |
| } |
| |
| static int ttm_set_pages_caching(struct page **pages, |
| enum ttm_caching_state cstate, unsigned cpages) |
| { |
| int r = 0; |
| /* Set page caching */ |
| switch (cstate) { |
| case tt_uncached: |
| r = set_pages_array_uc(pages, cpages); |
| if (r) |
| printk(KERN_ERR "[ttm] Failed to set %d pages to uc!\n", |
| cpages); |
| break; |
| case tt_wc: |
| r = set_pages_array_wc(pages, cpages); |
| if (r) |
| printk(KERN_ERR "[ttm] Failed to set %d pages to wc!\n", |
| cpages); |
| break; |
| default: |
| break; |
| } |
| return r; |
| } |
| |
| /** |
| * Free pages the pages that failed to change the caching state. If there is |
| * any pages that have changed their caching state already put them to the |
| * pool. |
| */ |
| static void ttm_handle_caching_state_failure(struct list_head *pages, |
| int ttm_flags, enum ttm_caching_state cstate, |
| struct page **failed_pages, unsigned cpages) |
| { |
| unsigned i; |
| /* Failed pages has to be reed */ |
| for (i = 0; i < cpages; ++i) { |
| list_del(&failed_pages[i]->lru); |
| __free_page(failed_pages[i]); |
| } |
| } |
| |
| /** |
| * Allocate new pages with correct caching. |
| * |
| * This function is reentrant if caller updates count depending on number of |
| * pages returned in pages array. |
| */ |
| static int ttm_alloc_new_pages(struct list_head *pages, int gfp_flags, |
| int ttm_flags, enum ttm_caching_state cstate, unsigned count) |
| { |
| struct page **caching_array; |
| struct page *p; |
| int r = 0; |
| unsigned i, cpages; |
| unsigned max_cpages = min(count, |
| (unsigned)(PAGE_SIZE/sizeof(struct page *))); |
| |
| /* allocate array for page caching change */ |
| caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL); |
| |
| if (!caching_array) { |
| printk(KERN_ERR "[ttm] unable to allocate table for new pages."); |
| return -ENOMEM; |
| } |
| |
| for (i = 0, cpages = 0; i < count; ++i) { |
| p = alloc_page(gfp_flags); |
| |
| if (!p) { |
| printk(KERN_ERR "[ttm] unable to get page %u\n", i); |
| |
| /* store already allocated pages in the pool after |
| * setting the caching state */ |
| if (cpages) { |
| r = ttm_set_pages_caching(caching_array, cstate, cpages); |
| if (r) |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| } |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| #ifdef CONFIG_HIGHMEM |
| /* gfp flags of highmem page should never be dma32 so we |
| * we should be fine in such case |
| */ |
| if (!PageHighMem(p)) |
| #endif |
| { |
| caching_array[cpages++] = p; |
| if (cpages == max_cpages) { |
| |
| r = ttm_set_pages_caching(caching_array, |
| cstate, cpages); |
| if (r) { |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| goto out; |
| } |
| cpages = 0; |
| } |
| } |
| |
| list_add(&p->lru, pages); |
| } |
| |
| if (cpages) { |
| r = ttm_set_pages_caching(caching_array, cstate, cpages); |
| if (r) |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| } |
| out: |
| kfree(caching_array); |
| |
| return r; |
| } |
| |
| /** |
| * Fill the given pool if there isn't enough pages and requested number of |
| * pages is small. |
| */ |
| static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, |
| int ttm_flags, enum ttm_caching_state cstate, unsigned count, |
| unsigned long *irq_flags) |
| { |
| struct page *p; |
| int r; |
| unsigned cpages = 0; |
| /** |
| * Only allow one pool fill operation at a time. |
| * If pool doesn't have enough pages for the allocation new pages are |
| * allocated from outside of pool. |
| */ |
| if (pool->fill_lock) |
| return; |
| |
| pool->fill_lock = true; |
| |
| /* If allocation request is small and there is not enough |
| * pages in pool we fill the pool first */ |
| if (count < _manager.options.small |
| && count > pool->npages) { |
| struct list_head new_pages; |
| unsigned alloc_size = _manager.options.alloc_size; |
| |
| /** |
| * Can't change page caching if in irqsave context. We have to |
| * drop the pool->lock. |
| */ |
| spin_unlock_irqrestore(&pool->lock, *irq_flags); |
| |
| INIT_LIST_HEAD(&new_pages); |
| r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags, |
| cstate, alloc_size); |
| spin_lock_irqsave(&pool->lock, *irq_flags); |
| |
| if (!r) { |
| list_splice(&new_pages, &pool->list); |
| ++pool->nrefills; |
| pool->npages += alloc_size; |
| } else { |
| printk(KERN_ERR "[ttm] Failed to fill pool (%p).", pool); |
| /* If we have any pages left put them to the pool. */ |
| list_for_each_entry(p, &pool->list, lru) { |
| ++cpages; |
| } |
| list_splice(&new_pages, &pool->list); |
| pool->npages += cpages; |
| } |
| |
| } |
| pool->fill_lock = false; |
| } |
| |
| /** |
| * Cut count nubmer of pages from the pool and put them to return list |
| * |
| * @return count of pages still to allocate to fill the request. |
| */ |
| static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool, |
| struct list_head *pages, int ttm_flags, |
| enum ttm_caching_state cstate, unsigned count) |
| { |
| unsigned long irq_flags; |
| struct list_head *p; |
| unsigned i; |
| |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags); |
| |
| if (count >= pool->npages) { |
| /* take all pages from the pool */ |
| list_splice_init(&pool->list, pages); |
| count -= pool->npages; |
| pool->npages = 0; |
| goto out; |
| } |
| /* find the last pages to include for requested number of pages. Split |
| * pool to begin and halves to reduce search space. */ |
| if (count <= pool->npages/2) { |
| i = 0; |
| list_for_each(p, &pool->list) { |
| if (++i == count) |
| break; |
| } |
| } else { |
| i = pool->npages + 1; |
| list_for_each_prev(p, &pool->list) { |
| if (--i == count) |
| break; |
| } |
| } |
| /* Cut count number of pages from pool */ |
| list_cut_position(pages, &pool->list, p); |
| pool->npages -= count; |
| count = 0; |
| out: |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| return count; |
| } |
| |
| /* |
| * On success pages list will hold count number of correctly |
| * cached pages. |
| */ |
| int ttm_get_pages(struct list_head *pages, int flags, |
| enum ttm_caching_state cstate, unsigned count) |
| { |
| struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); |
| struct page *p = NULL; |
| int gfp_flags = 0; |
| int r; |
| |
| /* set zero flag for page allocation if required */ |
| if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) |
| gfp_flags |= __GFP_ZERO; |
| |
| /* No pool for cached pages */ |
| if (pool == NULL) { |
| if (flags & TTM_PAGE_FLAG_DMA32) |
| gfp_flags |= GFP_DMA32; |
| else |
| gfp_flags |= __GFP_HIGHMEM; |
| |
| for (r = 0; r < count; ++r) { |
| p = alloc_page(gfp_flags); |
| if (!p) { |
| |
| printk(KERN_ERR "[ttm] unable to allocate page."); |
| return -ENOMEM; |
| } |
| |
| list_add(&p->lru, pages); |
| } |
| return 0; |
| } |
| |
| |
| /* combine zero flag to pool flags */ |
| gfp_flags |= pool->gfp_flags; |
| |
| /* First we take pages from the pool */ |
| count = ttm_page_pool_get_pages(pool, pages, flags, cstate, count); |
| |
| /* clear the pages coming from the pool if requested */ |
| if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) { |
| list_for_each_entry(p, pages, lru) { |
| clear_page(page_address(p)); |
| } |
| } |
| |
| /* If pool didn't have enough pages allocate new one. */ |
| if (count > 0) { |
| /* ttm_alloc_new_pages doesn't reference pool so we can run |
| * multiple requests in parallel. |
| **/ |
| r = ttm_alloc_new_pages(pages, gfp_flags, flags, cstate, count); |
| if (r) { |
| /* If there is any pages in the list put them back to |
| * the pool. */ |
| printk(KERN_ERR "[ttm] Failed to allocate extra pages " |
| "for large request."); |
| ttm_put_pages(pages, 0, flags, cstate); |
| return r; |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| /* Put all pages in pages list to correct pool to wait for reuse */ |
| void ttm_put_pages(struct list_head *pages, unsigned page_count, int flags, |
| enum ttm_caching_state cstate) |
| { |
| unsigned long irq_flags; |
| struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); |
| struct page *p, *tmp; |
| |
| if (pool == NULL) { |
| /* No pool for this memory type so free the pages */ |
| |
| list_for_each_entry_safe(p, tmp, pages, lru) { |
| __free_page(p); |
| } |
| /* Make the pages list empty */ |
| INIT_LIST_HEAD(pages); |
| return; |
| } |
| if (page_count == 0) { |
| list_for_each_entry_safe(p, tmp, pages, lru) { |
| ++page_count; |
| } |
| } |
| |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| list_splice_init(pages, &pool->list); |
| pool->npages += page_count; |
| /* Check that we don't go over the pool limit */ |
| page_count = 0; |
| if (pool->npages > _manager.options.max_size) { |
| page_count = pool->npages - _manager.options.max_size; |
| /* free at least NUM_PAGES_TO_ALLOC number of pages |
| * to reduce calls to set_memory_wb */ |
| if (page_count < NUM_PAGES_TO_ALLOC) |
| page_count = NUM_PAGES_TO_ALLOC; |
| } |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| if (page_count) |
| ttm_page_pool_free(pool, page_count); |
| } |
| |
| static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags, |
| char *name) |
| { |
| spin_lock_init(&pool->lock); |
| pool->fill_lock = false; |
| INIT_LIST_HEAD(&pool->list); |
| pool->npages = pool->nfrees = 0; |
| pool->gfp_flags = flags; |
| pool->name = name; |
| } |
| |
| int ttm_page_alloc_init(unsigned max_pages) |
| { |
| if (atomic_add_return(1, &_manager.page_alloc_inited) > 1) |
| return 0; |
| |
| printk(KERN_INFO "[ttm] Initializing pool allocator.\n"); |
| |
| ttm_page_pool_init_locked(&_manager.wc_pool, GFP_HIGHUSER, "wc"); |
| |
| ttm_page_pool_init_locked(&_manager.uc_pool, GFP_HIGHUSER, "uc"); |
| |
| ttm_page_pool_init_locked(&_manager.wc_pool_dma32, GFP_USER | GFP_DMA32, |
| "wc dma"); |
| |
| ttm_page_pool_init_locked(&_manager.uc_pool_dma32, GFP_USER | GFP_DMA32, |
| "uc dma"); |
| |
| _manager.options.max_size = max_pages; |
| _manager.options.small = SMALL_ALLOCATION; |
| _manager.options.alloc_size = NUM_PAGES_TO_ALLOC; |
| |
| ttm_pool_mm_shrink_init(&_manager); |
| |
| return 0; |
| } |
| |
| void ttm_page_alloc_fini() |
| { |
| int i; |
| |
| if (atomic_sub_return(1, &_manager.page_alloc_inited) > 0) |
| return; |
| |
| printk(KERN_INFO "[ttm] Finilizing pool allocator.\n"); |
| ttm_pool_mm_shrink_fini(&_manager); |
| |
| for (i = 0; i < NUM_POOLS; ++i) |
| ttm_page_pool_free(&_manager.pools[i], FREE_ALL_PAGES); |
| } |
| |
| int ttm_page_alloc_debugfs(struct seq_file *m, void *data) |
| { |
| struct ttm_page_pool *p; |
| unsigned i; |
| char *h[] = {"pool", "refills", "pages freed", "size"}; |
| if (atomic_read(&_manager.page_alloc_inited) == 0) { |
| seq_printf(m, "No pool allocator running.\n"); |
| return 0; |
| } |
| seq_printf(m, "%6s %12s %13s %8s\n", |
| h[0], h[1], h[2], h[3]); |
| for (i = 0; i < NUM_POOLS; ++i) { |
| p = &_manager.pools[i]; |
| |
| seq_printf(m, "%6s %12ld %13ld %8d\n", |
| p->name, p->nrefills, |
| p->nfrees, p->npages); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_page_alloc_debugfs); |