| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007-2009 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/netdevice.h> |
| #include <linux/ipv6.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/net_tstamp.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_vlan.h> |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/if_ether.h> |
| #include <linux/aer.h> |
| #ifdef CONFIG_IGB_DCA |
| #include <linux/dca.h> |
| #endif |
| #include "igb.h" |
| |
| #define DRV_VERSION "1.3.16-k2" |
| char igb_driver_name[] = "igb"; |
| char igb_driver_version[] = DRV_VERSION; |
| static const char igb_driver_string[] = |
| "Intel(R) Gigabit Ethernet Network Driver"; |
| static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation."; |
| |
| static const struct e1000_info *igb_info_tbl[] = { |
| [board_82575] = &e1000_82575_info, |
| }; |
| |
| static struct pci_device_id igb_pci_tbl[] = { |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, |
| /* required last entry */ |
| {0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, igb_pci_tbl); |
| |
| void igb_reset(struct igb_adapter *); |
| static int igb_setup_all_tx_resources(struct igb_adapter *); |
| static int igb_setup_all_rx_resources(struct igb_adapter *); |
| static void igb_free_all_tx_resources(struct igb_adapter *); |
| static void igb_free_all_rx_resources(struct igb_adapter *); |
| static void igb_setup_mrqc(struct igb_adapter *); |
| void igb_update_stats(struct igb_adapter *); |
| static int igb_probe(struct pci_dev *, const struct pci_device_id *); |
| static void __devexit igb_remove(struct pci_dev *pdev); |
| static int igb_sw_init(struct igb_adapter *); |
| static int igb_open(struct net_device *); |
| static int igb_close(struct net_device *); |
| static void igb_configure_tx(struct igb_adapter *); |
| static void igb_configure_rx(struct igb_adapter *); |
| static void igb_clean_all_tx_rings(struct igb_adapter *); |
| static void igb_clean_all_rx_rings(struct igb_adapter *); |
| static void igb_clean_tx_ring(struct igb_ring *); |
| static void igb_clean_rx_ring(struct igb_ring *); |
| static void igb_set_rx_mode(struct net_device *); |
| static void igb_update_phy_info(unsigned long); |
| static void igb_watchdog(unsigned long); |
| static void igb_watchdog_task(struct work_struct *); |
| static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); |
| static struct net_device_stats *igb_get_stats(struct net_device *); |
| static int igb_change_mtu(struct net_device *, int); |
| static int igb_set_mac(struct net_device *, void *); |
| static void igb_set_uta(struct igb_adapter *adapter); |
| static irqreturn_t igb_intr(int irq, void *); |
| static irqreturn_t igb_intr_msi(int irq, void *); |
| static irqreturn_t igb_msix_other(int irq, void *); |
| static irqreturn_t igb_msix_ring(int irq, void *); |
| #ifdef CONFIG_IGB_DCA |
| static void igb_update_dca(struct igb_q_vector *); |
| static void igb_setup_dca(struct igb_adapter *); |
| #endif /* CONFIG_IGB_DCA */ |
| static bool igb_clean_tx_irq(struct igb_q_vector *); |
| static int igb_poll(struct napi_struct *, int); |
| static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int); |
| static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); |
| static void igb_tx_timeout(struct net_device *); |
| static void igb_reset_task(struct work_struct *); |
| static void igb_vlan_rx_register(struct net_device *, struct vlan_group *); |
| static void igb_vlan_rx_add_vid(struct net_device *, u16); |
| static void igb_vlan_rx_kill_vid(struct net_device *, u16); |
| static void igb_restore_vlan(struct igb_adapter *); |
| static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); |
| static void igb_ping_all_vfs(struct igb_adapter *); |
| static void igb_msg_task(struct igb_adapter *); |
| static void igb_vmm_control(struct igb_adapter *); |
| static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter); |
| |
| #ifdef CONFIG_PM |
| static int igb_suspend(struct pci_dev *, pm_message_t); |
| static int igb_resume(struct pci_dev *); |
| #endif |
| static void igb_shutdown(struct pci_dev *); |
| #ifdef CONFIG_IGB_DCA |
| static int igb_notify_dca(struct notifier_block *, unsigned long, void *); |
| static struct notifier_block dca_notifier = { |
| .notifier_call = igb_notify_dca, |
| .next = NULL, |
| .priority = 0 |
| }; |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* for netdump / net console */ |
| static void igb_netpoll(struct net_device *); |
| #endif |
| #ifdef CONFIG_PCI_IOV |
| static unsigned int max_vfs = 0; |
| module_param(max_vfs, uint, 0); |
| MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " |
| "per physical function"); |
| #endif /* CONFIG_PCI_IOV */ |
| |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *, |
| pci_channel_state_t); |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); |
| static void igb_io_resume(struct pci_dev *); |
| |
| static struct pci_error_handlers igb_err_handler = { |
| .error_detected = igb_io_error_detected, |
| .slot_reset = igb_io_slot_reset, |
| .resume = igb_io_resume, |
| }; |
| |
| |
| static struct pci_driver igb_driver = { |
| .name = igb_driver_name, |
| .id_table = igb_pci_tbl, |
| .probe = igb_probe, |
| .remove = __devexit_p(igb_remove), |
| #ifdef CONFIG_PM |
| /* Power Managment Hooks */ |
| .suspend = igb_suspend, |
| .resume = igb_resume, |
| #endif |
| .shutdown = igb_shutdown, |
| .err_handler = &igb_err_handler |
| }; |
| |
| MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); |
| MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| /** |
| * igb_read_clock - read raw cycle counter (to be used by time counter) |
| */ |
| static cycle_t igb_read_clock(const struct cyclecounter *tc) |
| { |
| struct igb_adapter *adapter = |
| container_of(tc, struct igb_adapter, cycles); |
| struct e1000_hw *hw = &adapter->hw; |
| u64 stamp = 0; |
| int shift = 0; |
| |
| stamp |= (u64)rd32(E1000_SYSTIML) << shift; |
| stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); |
| return stamp; |
| } |
| |
| #ifdef DEBUG |
| /** |
| * igb_get_hw_dev_name - return device name string |
| * used by hardware layer to print debugging information |
| **/ |
| char *igb_get_hw_dev_name(struct e1000_hw *hw) |
| { |
| struct igb_adapter *adapter = hw->back; |
| return adapter->netdev->name; |
| } |
| |
| /** |
| * igb_get_time_str - format current NIC and system time as string |
| */ |
| static char *igb_get_time_str(struct igb_adapter *adapter, |
| char buffer[160]) |
| { |
| cycle_t hw = adapter->cycles.read(&adapter->cycles); |
| struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock)); |
| struct timespec sys; |
| struct timespec delta; |
| getnstimeofday(&sys); |
| |
| delta = timespec_sub(nic, sys); |
| |
| sprintf(buffer, |
| "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns", |
| hw, |
| (long)nic.tv_sec, nic.tv_nsec, |
| (long)sys.tv_sec, sys.tv_nsec, |
| (long)delta.tv_sec, delta.tv_nsec); |
| |
| return buffer; |
| } |
| #endif |
| |
| /** |
| * igb_init_module - Driver Registration Routine |
| * |
| * igb_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init igb_init_module(void) |
| { |
| int ret; |
| printk(KERN_INFO "%s - version %s\n", |
| igb_driver_string, igb_driver_version); |
| |
| printk(KERN_INFO "%s\n", igb_copyright); |
| |
| #ifdef CONFIG_IGB_DCA |
| dca_register_notify(&dca_notifier); |
| #endif |
| ret = pci_register_driver(&igb_driver); |
| return ret; |
| } |
| |
| module_init(igb_init_module); |
| |
| /** |
| * igb_exit_module - Driver Exit Cleanup Routine |
| * |
| * igb_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit igb_exit_module(void) |
| { |
| #ifdef CONFIG_IGB_DCA |
| dca_unregister_notify(&dca_notifier); |
| #endif |
| pci_unregister_driver(&igb_driver); |
| } |
| |
| module_exit(igb_exit_module); |
| |
| #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) |
| /** |
| * igb_cache_ring_register - Descriptor ring to register mapping |
| * @adapter: board private structure to initialize |
| * |
| * Once we know the feature-set enabled for the device, we'll cache |
| * the register offset the descriptor ring is assigned to. |
| **/ |
| static void igb_cache_ring_register(struct igb_adapter *adapter) |
| { |
| int i = 0, j = 0; |
| u32 rbase_offset = adapter->vfs_allocated_count; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| /* The queues are allocated for virtualization such that VF 0 |
| * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. |
| * In order to avoid collision we start at the first free queue |
| * and continue consuming queues in the same sequence |
| */ |
| if (adapter->vfs_allocated_count) { |
| for (; i < adapter->num_rx_queues; i++) |
| adapter->rx_ring[i].reg_idx = rbase_offset + |
| Q_IDX_82576(i); |
| for (; j < adapter->num_tx_queues; j++) |
| adapter->tx_ring[j].reg_idx = rbase_offset + |
| Q_IDX_82576(j); |
| } |
| case e1000_82575: |
| default: |
| for (; i < adapter->num_rx_queues; i++) |
| adapter->rx_ring[i].reg_idx = rbase_offset + i; |
| for (; j < adapter->num_tx_queues; j++) |
| adapter->tx_ring[j].reg_idx = rbase_offset + j; |
| break; |
| } |
| } |
| |
| static void igb_free_queues(struct igb_adapter *adapter) |
| { |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| |
| adapter->tx_ring = NULL; |
| adapter->rx_ring = NULL; |
| |
| adapter->num_rx_queues = 0; |
| adapter->num_tx_queues = 0; |
| } |
| |
| /** |
| * igb_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one ring per queue at run-time since we don't know the |
| * number of queues at compile-time. |
| **/ |
| static int igb_alloc_queues(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
| sizeof(struct igb_ring), GFP_KERNEL); |
| if (!adapter->tx_ring) |
| goto err; |
| |
| adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
| sizeof(struct igb_ring), GFP_KERNEL); |
| if (!adapter->rx_ring) |
| goto err; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| struct igb_ring *ring = &(adapter->tx_ring[i]); |
| ring->count = adapter->tx_ring_count; |
| ring->queue_index = i; |
| ring->pdev = adapter->pdev; |
| ring->netdev = adapter->netdev; |
| /* For 82575, context index must be unique per ring. */ |
| if (adapter->hw.mac.type == e1000_82575) |
| ring->flags = IGB_RING_FLAG_TX_CTX_IDX; |
| } |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| struct igb_ring *ring = &(adapter->rx_ring[i]); |
| ring->count = adapter->rx_ring_count; |
| ring->queue_index = i; |
| ring->pdev = adapter->pdev; |
| ring->netdev = adapter->netdev; |
| ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */ |
| /* set flag indicating ring supports SCTP checksum offload */ |
| if (adapter->hw.mac.type >= e1000_82576) |
| ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM; |
| } |
| |
| igb_cache_ring_register(adapter); |
| |
| return 0; |
| |
| err: |
| igb_free_queues(adapter); |
| |
| return -ENOMEM; |
| } |
| |
| #define IGB_N0_QUEUE -1 |
| static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) |
| { |
| u32 msixbm = 0; |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ivar, index; |
| int rx_queue = IGB_N0_QUEUE; |
| int tx_queue = IGB_N0_QUEUE; |
| |
| if (q_vector->rx_ring) |
| rx_queue = q_vector->rx_ring->reg_idx; |
| if (q_vector->tx_ring) |
| tx_queue = q_vector->tx_ring->reg_idx; |
| |
| switch (hw->mac.type) { |
| case e1000_82575: |
| /* The 82575 assigns vectors using a bitmask, which matches the |
| bitmask for the EICR/EIMS/EIMC registers. To assign one |
| or more queues to a vector, we write the appropriate bits |
| into the MSIXBM register for that vector. */ |
| if (rx_queue > IGB_N0_QUEUE) |
| msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; |
| if (tx_queue > IGB_N0_QUEUE) |
| msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; |
| array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); |
| q_vector->eims_value = msixbm; |
| break; |
| case e1000_82576: |
| /* 82576 uses a table-based method for assigning vectors. |
| Each queue has a single entry in the table to which we write |
| a vector number along with a "valid" bit. Sadly, the layout |
| of the table is somewhat counterintuitive. */ |
| if (rx_queue > IGB_N0_QUEUE) { |
| index = (rx_queue & 0x7); |
| ivar = array_rd32(E1000_IVAR0, index); |
| if (rx_queue < 8) { |
| /* vector goes into low byte of register */ |
| ivar = ivar & 0xFFFFFF00; |
| ivar |= msix_vector | E1000_IVAR_VALID; |
| } else { |
| /* vector goes into third byte of register */ |
| ivar = ivar & 0xFF00FFFF; |
| ivar |= (msix_vector | E1000_IVAR_VALID) << 16; |
| } |
| array_wr32(E1000_IVAR0, index, ivar); |
| } |
| if (tx_queue > IGB_N0_QUEUE) { |
| index = (tx_queue & 0x7); |
| ivar = array_rd32(E1000_IVAR0, index); |
| if (tx_queue < 8) { |
| /* vector goes into second byte of register */ |
| ivar = ivar & 0xFFFF00FF; |
| ivar |= (msix_vector | E1000_IVAR_VALID) << 8; |
| } else { |
| /* vector goes into high byte of register */ |
| ivar = ivar & 0x00FFFFFF; |
| ivar |= (msix_vector | E1000_IVAR_VALID) << 24; |
| } |
| array_wr32(E1000_IVAR0, index, ivar); |
| } |
| q_vector->eims_value = 1 << msix_vector; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| /** |
| * igb_configure_msix - Configure MSI-X hardware |
| * |
| * igb_configure_msix sets up the hardware to properly |
| * generate MSI-X interrupts. |
| **/ |
| static void igb_configure_msix(struct igb_adapter *adapter) |
| { |
| u32 tmp; |
| int i, vector = 0; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| adapter->eims_enable_mask = 0; |
| |
| /* set vector for other causes, i.e. link changes */ |
| switch (hw->mac.type) { |
| case e1000_82575: |
| tmp = rd32(E1000_CTRL_EXT); |
| /* enable MSI-X PBA support*/ |
| tmp |= E1000_CTRL_EXT_PBA_CLR; |
| |
| /* Auto-Mask interrupts upon ICR read. */ |
| tmp |= E1000_CTRL_EXT_EIAME; |
| tmp |= E1000_CTRL_EXT_IRCA; |
| |
| wr32(E1000_CTRL_EXT, tmp); |
| |
| /* enable msix_other interrupt */ |
| array_wr32(E1000_MSIXBM(0), vector++, |
| E1000_EIMS_OTHER); |
| adapter->eims_other = E1000_EIMS_OTHER; |
| |
| break; |
| |
| case e1000_82576: |
| /* Turn on MSI-X capability first, or our settings |
| * won't stick. And it will take days to debug. */ |
| wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | |
| E1000_GPIE_PBA | E1000_GPIE_EIAME | |
| E1000_GPIE_NSICR); |
| |
| /* enable msix_other interrupt */ |
| adapter->eims_other = 1 << vector; |
| tmp = (vector++ | E1000_IVAR_VALID) << 8; |
| |
| wr32(E1000_IVAR_MISC, tmp); |
| break; |
| default: |
| /* do nothing, since nothing else supports MSI-X */ |
| break; |
| } /* switch (hw->mac.type) */ |
| |
| adapter->eims_enable_mask |= adapter->eims_other; |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| igb_assign_vector(q_vector, vector++); |
| adapter->eims_enable_mask |= q_vector->eims_value; |
| } |
| |
| wrfl(); |
| } |
| |
| /** |
| * igb_request_msix - Initialize MSI-X interrupts |
| * |
| * igb_request_msix allocates MSI-X vectors and requests interrupts from the |
| * kernel. |
| **/ |
| static int igb_request_msix(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int i, err = 0, vector = 0; |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| &igb_msix_other, 0, netdev->name, adapter); |
| if (err) |
| goto out; |
| vector++; |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| |
| q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); |
| |
| if (q_vector->rx_ring && q_vector->tx_ring) |
| sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, |
| q_vector->rx_ring->queue_index); |
| else if (q_vector->tx_ring) |
| sprintf(q_vector->name, "%s-tx-%u", netdev->name, |
| q_vector->tx_ring->queue_index); |
| else if (q_vector->rx_ring) |
| sprintf(q_vector->name, "%s-rx-%u", netdev->name, |
| q_vector->rx_ring->queue_index); |
| else |
| sprintf(q_vector->name, "%s-unused", netdev->name); |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| &igb_msix_ring, 0, q_vector->name, |
| q_vector); |
| if (err) |
| goto out; |
| vector++; |
| } |
| |
| igb_configure_msix(adapter); |
| return 0; |
| out: |
| return err; |
| } |
| |
| static void igb_reset_interrupt_capability(struct igb_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| pci_disable_msix(adapter->pdev); |
| kfree(adapter->msix_entries); |
| adapter->msix_entries = NULL; |
| } else if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| pci_disable_msi(adapter->pdev); |
| } |
| } |
| |
| /** |
| * igb_free_q_vectors - Free memory allocated for interrupt vectors |
| * @adapter: board private structure to initialize |
| * |
| * This function frees the memory allocated to the q_vectors. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void igb_free_q_vectors(struct igb_adapter *adapter) |
| { |
| int v_idx; |
| |
| for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; |
| adapter->q_vector[v_idx] = NULL; |
| netif_napi_del(&q_vector->napi); |
| kfree(q_vector); |
| } |
| adapter->num_q_vectors = 0; |
| } |
| |
| /** |
| * igb_clear_interrupt_scheme - reset the device to a state of no interrupts |
| * |
| * This function resets the device so that it has 0 rx queues, tx queues, and |
| * MSI-X interrupts allocated. |
| */ |
| static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) |
| { |
| igb_free_queues(adapter); |
| igb_free_q_vectors(adapter); |
| igb_reset_interrupt_capability(adapter); |
| } |
| |
| /** |
| * igb_set_interrupt_capability - set MSI or MSI-X if supported |
| * |
| * Attempt to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static void igb_set_interrupt_capability(struct igb_adapter *adapter) |
| { |
| int err; |
| int numvecs, i; |
| |
| /* Number of supported queues. */ |
| adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); |
| adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus()); |
| |
| /* start with one vector for every rx queue */ |
| numvecs = adapter->num_rx_queues; |
| |
| /* if tx handler is seperate add 1 for every tx queue */ |
| numvecs += adapter->num_tx_queues; |
| |
| /* store the number of vectors reserved for queues */ |
| adapter->num_q_vectors = numvecs; |
| |
| /* add 1 vector for link status interrupts */ |
| numvecs++; |
| adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!adapter->msix_entries) |
| goto msi_only; |
| |
| for (i = 0; i < numvecs; i++) |
| adapter->msix_entries[i].entry = i; |
| |
| err = pci_enable_msix(adapter->pdev, |
| adapter->msix_entries, |
| numvecs); |
| if (err == 0) |
| goto out; |
| |
| igb_reset_interrupt_capability(adapter); |
| |
| /* If we can't do MSI-X, try MSI */ |
| msi_only: |
| #ifdef CONFIG_PCI_IOV |
| /* disable SR-IOV for non MSI-X configurations */ |
| if (adapter->vf_data) { |
| struct e1000_hw *hw = &adapter->hw; |
| /* disable iov and allow time for transactions to clear */ |
| pci_disable_sriov(adapter->pdev); |
| msleep(500); |
| |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); |
| msleep(100); |
| dev_info(&adapter->pdev->dev, "IOV Disabled\n"); |
| } |
| #endif |
| adapter->vfs_allocated_count = 0; |
| adapter->flags |= IGB_FLAG_QUEUE_PAIRS; |
| adapter->num_rx_queues = 1; |
| adapter->num_tx_queues = 1; |
| adapter->num_q_vectors = 1; |
| if (!pci_enable_msi(adapter->pdev)) |
| adapter->flags |= IGB_FLAG_HAS_MSI; |
| out: |
| /* Notify the stack of the (possibly) reduced Tx Queue count. */ |
| adapter->netdev->real_num_tx_queues = adapter->num_tx_queues; |
| return; |
| } |
| |
| /** |
| * igb_alloc_q_vectors - Allocate memory for interrupt vectors |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one q_vector per queue interrupt. If allocation fails we |
| * return -ENOMEM. |
| **/ |
| static int igb_alloc_q_vectors(struct igb_adapter *adapter) |
| { |
| struct igb_q_vector *q_vector; |
| struct e1000_hw *hw = &adapter->hw; |
| int v_idx; |
| |
| for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { |
| q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL); |
| if (!q_vector) |
| goto err_out; |
| q_vector->adapter = adapter; |
| q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0; |
| q_vector->itr_register = hw->hw_addr + E1000_EITR(0); |
| q_vector->itr_val = IGB_START_ITR; |
| q_vector->set_itr = 1; |
| netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); |
| adapter->q_vector[v_idx] = q_vector; |
| } |
| return 0; |
| |
| err_out: |
| while (v_idx) { |
| v_idx--; |
| q_vector = adapter->q_vector[v_idx]; |
| netif_napi_del(&q_vector->napi); |
| kfree(q_vector); |
| adapter->q_vector[v_idx] = NULL; |
| } |
| return -ENOMEM; |
| } |
| |
| static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, |
| int ring_idx, int v_idx) |
| { |
| struct igb_q_vector *q_vector; |
| |
| q_vector = adapter->q_vector[v_idx]; |
| q_vector->rx_ring = &adapter->rx_ring[ring_idx]; |
| q_vector->rx_ring->q_vector = q_vector; |
| q_vector->itr_val = adapter->rx_itr_setting; |
| if (q_vector->itr_val && q_vector->itr_val <= 3) |
| q_vector->itr_val = IGB_START_ITR; |
| } |
| |
| static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, |
| int ring_idx, int v_idx) |
| { |
| struct igb_q_vector *q_vector; |
| |
| q_vector = adapter->q_vector[v_idx]; |
| q_vector->tx_ring = &adapter->tx_ring[ring_idx]; |
| q_vector->tx_ring->q_vector = q_vector; |
| q_vector->itr_val = adapter->tx_itr_setting; |
| if (q_vector->itr_val && q_vector->itr_val <= 3) |
| q_vector->itr_val = IGB_START_ITR; |
| } |
| |
| /** |
| * igb_map_ring_to_vector - maps allocated queues to vectors |
| * |
| * This function maps the recently allocated queues to vectors. |
| **/ |
| static int igb_map_ring_to_vector(struct igb_adapter *adapter) |
| { |
| int i; |
| int v_idx = 0; |
| |
| if ((adapter->num_q_vectors < adapter->num_rx_queues) || |
| (adapter->num_q_vectors < adapter->num_tx_queues)) |
| return -ENOMEM; |
| |
| if (adapter->num_q_vectors >= |
| (adapter->num_rx_queues + adapter->num_tx_queues)) { |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_map_rx_ring_to_vector(adapter, i, v_idx++); |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx++); |
| } else { |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| if (i < adapter->num_tx_queues) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx); |
| igb_map_rx_ring_to_vector(adapter, i, v_idx++); |
| } |
| for (; i < adapter->num_tx_queues; i++) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx++); |
| } |
| return 0; |
| } |
| |
| /** |
| * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors |
| * |
| * This function initializes the interrupts and allocates all of the queues. |
| **/ |
| static int igb_init_interrupt_scheme(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int err; |
| |
| igb_set_interrupt_capability(adapter); |
| |
| err = igb_alloc_q_vectors(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); |
| goto err_alloc_q_vectors; |
| } |
| |
| err = igb_alloc_queues(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| goto err_alloc_queues; |
| } |
| |
| err = igb_map_ring_to_vector(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); |
| goto err_map_queues; |
| } |
| |
| |
| return 0; |
| err_map_queues: |
| igb_free_queues(adapter); |
| err_alloc_queues: |
| igb_free_q_vectors(adapter); |
| err_alloc_q_vectors: |
| igb_reset_interrupt_capability(adapter); |
| return err; |
| } |
| |
| /** |
| * igb_request_irq - initialize interrupts |
| * |
| * Attempts to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static int igb_request_irq(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int err = 0; |
| |
| if (adapter->msix_entries) { |
| err = igb_request_msix(adapter); |
| if (!err) |
| goto request_done; |
| /* fall back to MSI */ |
| igb_clear_interrupt_scheme(adapter); |
| if (!pci_enable_msi(adapter->pdev)) |
| adapter->flags |= IGB_FLAG_HAS_MSI; |
| igb_free_all_tx_resources(adapter); |
| igb_free_all_rx_resources(adapter); |
| adapter->num_tx_queues = 1; |
| adapter->num_rx_queues = 1; |
| adapter->num_q_vectors = 1; |
| err = igb_alloc_q_vectors(adapter); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Unable to allocate memory for vectors\n"); |
| goto request_done; |
| } |
| err = igb_alloc_queues(adapter); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Unable to allocate memory for queues\n"); |
| igb_free_q_vectors(adapter); |
| goto request_done; |
| } |
| igb_setup_all_tx_resources(adapter); |
| igb_setup_all_rx_resources(adapter); |
| } else { |
| switch (hw->mac.type) { |
| case e1000_82575: |
| wr32(E1000_MSIXBM(0), |
| (E1000_EICR_RX_QUEUE0 | |
| E1000_EICR_TX_QUEUE0 | |
| E1000_EIMS_OTHER)); |
| break; |
| case e1000_82576: |
| wr32(E1000_IVAR0, E1000_IVAR_VALID); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0, |
| netdev->name, adapter); |
| if (!err) |
| goto request_done; |
| |
| /* fall back to legacy interrupts */ |
| igb_reset_interrupt_capability(adapter); |
| adapter->flags &= ~IGB_FLAG_HAS_MSI; |
| } |
| |
| err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED, |
| netdev->name, adapter); |
| |
| if (err) |
| dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", |
| err); |
| |
| request_done: |
| return err; |
| } |
| |
| static void igb_free_irq(struct igb_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| int vector = 0, i; |
| |
| free_irq(adapter->msix_entries[vector++].vector, adapter); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| free_irq(adapter->msix_entries[vector++].vector, |
| q_vector); |
| } |
| } else { |
| free_irq(adapter->pdev->irq, adapter); |
| } |
| } |
| |
| /** |
| * igb_irq_disable - Mask off interrupt generation on the NIC |
| * @adapter: board private structure |
| **/ |
| static void igb_irq_disable(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* |
| * we need to be careful when disabling interrupts. The VFs are also |
| * mapped into these registers and so clearing the bits can cause |
| * issues on the VF drivers so we only need to clear what we set |
| */ |
| if (adapter->msix_entries) { |
| u32 regval = rd32(E1000_EIAM); |
| wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); |
| wr32(E1000_EIMC, adapter->eims_enable_mask); |
| regval = rd32(E1000_EIAC); |
| wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); |
| } |
| |
| wr32(E1000_IAM, 0); |
| wr32(E1000_IMC, ~0); |
| wrfl(); |
| synchronize_irq(adapter->pdev->irq); |
| } |
| |
| /** |
| * igb_irq_enable - Enable default interrupt generation settings |
| * @adapter: board private structure |
| **/ |
| static void igb_irq_enable(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->msix_entries) { |
| u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC; |
| u32 regval = rd32(E1000_EIAC); |
| wr32(E1000_EIAC, regval | adapter->eims_enable_mask); |
| regval = rd32(E1000_EIAM); |
| wr32(E1000_EIAM, regval | adapter->eims_enable_mask); |
| wr32(E1000_EIMS, adapter->eims_enable_mask); |
| if (adapter->vfs_allocated_count) { |
| wr32(E1000_MBVFIMR, 0xFF); |
| ims |= E1000_IMS_VMMB; |
| } |
| wr32(E1000_IMS, ims); |
| } else { |
| wr32(E1000_IMS, IMS_ENABLE_MASK); |
| wr32(E1000_IAM, IMS_ENABLE_MASK); |
| } |
| } |
| |
| static void igb_update_mng_vlan(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 vid = adapter->hw.mng_cookie.vlan_id; |
| u16 old_vid = adapter->mng_vlan_id; |
| |
| if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| /* add VID to filter table */ |
| igb_vfta_set(hw, vid, true); |
| adapter->mng_vlan_id = vid; |
| } else { |
| adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; |
| } |
| |
| if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && |
| (vid != old_vid) && |
| !vlan_group_get_device(adapter->vlgrp, old_vid)) { |
| /* remove VID from filter table */ |
| igb_vfta_set(hw, old_vid, false); |
| } |
| } |
| |
| /** |
| * igb_release_hw_control - release control of the h/w to f/w |
| * @adapter: address of board private structure |
| * |
| * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that the |
| * driver is no longer loaded. |
| * |
| **/ |
| static void igb_release_hw_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| |
| /* Let firmware take over control of h/w */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| wr32(E1000_CTRL_EXT, |
| ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| } |
| |
| |
| /** |
| * igb_get_hw_control - get control of the h/w from f/w |
| * @adapter: address of board private structure |
| * |
| * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that |
| * the driver is loaded. |
| * |
| **/ |
| static void igb_get_hw_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| |
| /* Let firmware know the driver has taken over */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| wr32(E1000_CTRL_EXT, |
| ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| } |
| |
| /** |
| * igb_configure - configure the hardware for RX and TX |
| * @adapter: private board structure |
| **/ |
| static void igb_configure(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int i; |
| |
| igb_get_hw_control(adapter); |
| igb_set_rx_mode(netdev); |
| |
| igb_restore_vlan(adapter); |
| |
| igb_setup_tctl(adapter); |
| igb_setup_mrqc(adapter); |
| igb_setup_rctl(adapter); |
| |
| igb_configure_tx(adapter); |
| igb_configure_rx(adapter); |
| |
| igb_rx_fifo_flush_82575(&adapter->hw); |
| |
| /* call igb_desc_unused which always leaves |
| * at least 1 descriptor unused to make sure |
| * next_to_use != next_to_clean */ |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| struct igb_ring *ring = &adapter->rx_ring[i]; |
| igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring)); |
| } |
| |
| |
| adapter->tx_queue_len = netdev->tx_queue_len; |
| } |
| |
| |
| /** |
| * igb_up - Open the interface and prepare it to handle traffic |
| * @adapter: board private structure |
| **/ |
| |
| int igb_up(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| /* hardware has been reset, we need to reload some things */ |
| igb_configure(adapter); |
| |
| clear_bit(__IGB_DOWN, &adapter->state); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| napi_enable(&q_vector->napi); |
| } |
| if (adapter->msix_entries) |
| igb_configure_msix(adapter); |
| |
| /* Clear any pending interrupts. */ |
| rd32(E1000_ICR); |
| igb_irq_enable(adapter); |
| |
| /* notify VFs that reset has been completed */ |
| if (adapter->vfs_allocated_count) { |
| u32 reg_data = rd32(E1000_CTRL_EXT); |
| reg_data |= E1000_CTRL_EXT_PFRSTD; |
| wr32(E1000_CTRL_EXT, reg_data); |
| } |
| |
| netif_tx_start_all_queues(adapter->netdev); |
| |
| /* start the watchdog. */ |
| hw->mac.get_link_status = 1; |
| schedule_work(&adapter->watchdog_task); |
| |
| return 0; |
| } |
| |
| void igb_down(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl, rctl; |
| int i; |
| |
| /* signal that we're down so the interrupt handler does not |
| * reschedule our watchdog timer */ |
| set_bit(__IGB_DOWN, &adapter->state); |
| |
| /* disable receives in the hardware */ |
| rctl = rd32(E1000_RCTL); |
| wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); |
| /* flush and sleep below */ |
| |
| netif_tx_stop_all_queues(netdev); |
| |
| /* disable transmits in the hardware */ |
| tctl = rd32(E1000_TCTL); |
| tctl &= ~E1000_TCTL_EN; |
| wr32(E1000_TCTL, tctl); |
| /* flush both disables and wait for them to finish */ |
| wrfl(); |
| msleep(10); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| napi_disable(&q_vector->napi); |
| } |
| |
| igb_irq_disable(adapter); |
| |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| netif_carrier_off(netdev); |
| |
| /* record the stats before reset*/ |
| igb_update_stats(adapter); |
| |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| |
| if (!pci_channel_offline(adapter->pdev)) |
| igb_reset(adapter); |
| igb_clean_all_tx_rings(adapter); |
| igb_clean_all_rx_rings(adapter); |
| #ifdef CONFIG_IGB_DCA |
| |
| /* since we reset the hardware DCA settings were cleared */ |
| igb_setup_dca(adapter); |
| #endif |
| } |
| |
| void igb_reinit_locked(struct igb_adapter *adapter) |
| { |
| WARN_ON(in_interrupt()); |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| igb_down(adapter); |
| igb_up(adapter); |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| } |
| |
| void igb_reset(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_fc_info *fc = &hw->fc; |
| u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
| u16 hwm; |
| |
| /* Repartition Pba for greater than 9k mtu |
| * To take effect CTRL.RST is required. |
| */ |
| switch (mac->type) { |
| case e1000_82576: |
| pba = rd32(E1000_RXPBS); |
| pba &= E1000_RXPBS_SIZE_MASK_82576; |
| break; |
| case e1000_82575: |
| default: |
| pba = E1000_PBA_34K; |
| break; |
| } |
| |
| if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && |
| (mac->type < e1000_82576)) { |
| /* adjust PBA for jumbo frames */ |
| wr32(E1000_PBA, pba); |
| |
| /* To maintain wire speed transmits, the Tx FIFO should be |
| * large enough to accommodate two full transmit packets, |
| * rounded up to the next 1KB and expressed in KB. Likewise, |
| * the Rx FIFO should be large enough to accommodate at least |
| * one full receive packet and is similarly rounded up and |
| * expressed in KB. */ |
| pba = rd32(E1000_PBA); |
| /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| tx_space = pba >> 16; |
| /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| pba &= 0xffff; |
| /* the tx fifo also stores 16 bytes of information about the tx |
| * but don't include ethernet FCS because hardware appends it */ |
| min_tx_space = (adapter->max_frame_size + |
| sizeof(union e1000_adv_tx_desc) - |
| ETH_FCS_LEN) * 2; |
| min_tx_space = ALIGN(min_tx_space, 1024); |
| min_tx_space >>= 10; |
| /* software strips receive CRC, so leave room for it */ |
| min_rx_space = adapter->max_frame_size; |
| min_rx_space = ALIGN(min_rx_space, 1024); |
| min_rx_space >>= 10; |
| |
| /* If current Tx allocation is less than the min Tx FIFO size, |
| * and the min Tx FIFO size is less than the current Rx FIFO |
| * allocation, take space away from current Rx allocation */ |
| if (tx_space < min_tx_space && |
| ((min_tx_space - tx_space) < pba)) { |
| pba = pba - (min_tx_space - tx_space); |
| |
| /* if short on rx space, rx wins and must trump tx |
| * adjustment */ |
| if (pba < min_rx_space) |
| pba = min_rx_space; |
| } |
| wr32(E1000_PBA, pba); |
| } |
| |
| /* flow control settings */ |
| /* The high water mark must be low enough to fit one full frame |
| * (or the size used for early receive) above it in the Rx FIFO. |
| * Set it to the lower of: |
| * - 90% of the Rx FIFO size, or |
| * - the full Rx FIFO size minus one full frame */ |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - 2 * adapter->max_frame_size)); |
| |
| if (mac->type < e1000_82576) { |
| fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
| fc->low_water = fc->high_water - 8; |
| } else { |
| fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ |
| fc->low_water = fc->high_water - 16; |
| } |
| fc->pause_time = 0xFFFF; |
| fc->send_xon = 1; |
| fc->current_mode = fc->requested_mode; |
| |
| /* disable receive for all VFs and wait one second */ |
| if (adapter->vfs_allocated_count) { |
| int i; |
| for (i = 0 ; i < adapter->vfs_allocated_count; i++) |
| adapter->vf_data[i].flags = 0; |
| |
| /* ping all the active vfs to let them know we are going down */ |
| igb_ping_all_vfs(adapter); |
| |
| /* disable transmits and receives */ |
| wr32(E1000_VFRE, 0); |
| wr32(E1000_VFTE, 0); |
| } |
| |
| /* Allow time for pending master requests to run */ |
| hw->mac.ops.reset_hw(hw); |
| wr32(E1000_WUC, 0); |
| |
| if (hw->mac.ops.init_hw(hw)) |
| dev_err(&pdev->dev, "Hardware Error\n"); |
| |
| igb_update_mng_vlan(adapter); |
| |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); |
| |
| igb_reset_adaptive(hw); |
| igb_get_phy_info(hw); |
| } |
| |
| static const struct net_device_ops igb_netdev_ops = { |
| .ndo_open = igb_open, |
| .ndo_stop = igb_close, |
| .ndo_start_xmit = igb_xmit_frame_adv, |
| .ndo_get_stats = igb_get_stats, |
| .ndo_set_rx_mode = igb_set_rx_mode, |
| .ndo_set_multicast_list = igb_set_rx_mode, |
| .ndo_set_mac_address = igb_set_mac, |
| .ndo_change_mtu = igb_change_mtu, |
| .ndo_do_ioctl = igb_ioctl, |
| .ndo_tx_timeout = igb_tx_timeout, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_vlan_rx_register = igb_vlan_rx_register, |
| .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = igb_netpoll, |
| #endif |
| }; |
| |
| /** |
| * igb_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in igb_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * igb_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| static int __devinit igb_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct igb_adapter *adapter; |
| struct e1000_hw *hw; |
| u16 eeprom_data = 0; |
| static int global_quad_port_a; /* global quad port a indication */ |
| const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; |
| unsigned long mmio_start, mmio_len; |
| int err, pci_using_dac; |
| u16 eeprom_apme_mask = IGB_EEPROM_APME; |
| u32 part_num; |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| pci_using_dac = 0; |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (!err) { |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (!err) |
| pci_using_dac = 1; |
| } else { |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, "No usable DMA " |
| "configuration, aborting\n"); |
| goto err_dma; |
| } |
| } |
| } |
| |
| err = pci_request_selected_regions(pdev, pci_select_bars(pdev, |
| IORESOURCE_MEM), |
| igb_driver_name); |
| if (err) |
| goto err_pci_reg; |
| |
| pci_enable_pcie_error_reporting(pdev); |
| |
| pci_set_master(pdev); |
| pci_save_state(pdev); |
| |
| err = -ENOMEM; |
| netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), |
| IGB_ABS_MAX_TX_QUEUES); |
| if (!netdev) |
| goto err_alloc_etherdev; |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| hw = &adapter->hw; |
| hw->back = adapter; |
| adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
| |
| mmio_start = pci_resource_start(pdev, 0); |
| mmio_len = pci_resource_len(pdev, 0); |
| |
| err = -EIO; |
| hw->hw_addr = ioremap(mmio_start, mmio_len); |
| if (!hw->hw_addr) |
| goto err_ioremap; |
| |
| netdev->netdev_ops = &igb_netdev_ops; |
| igb_set_ethtool_ops(netdev); |
| netdev->watchdog_timeo = 5 * HZ; |
| |
| strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| |
| netdev->mem_start = mmio_start; |
| netdev->mem_end = mmio_start + mmio_len; |
| |
| /* PCI config space info */ |
| hw->vendor_id = pdev->vendor; |
| hw->device_id = pdev->device; |
| hw->revision_id = pdev->revision; |
| hw->subsystem_vendor_id = pdev->subsystem_vendor; |
| hw->subsystem_device_id = pdev->subsystem_device; |
| |
| /* Copy the default MAC, PHY and NVM function pointers */ |
| memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| /* Initialize skew-specific constants */ |
| err = ei->get_invariants(hw); |
| if (err) |
| goto err_sw_init; |
| |
| /* setup the private structure */ |
| err = igb_sw_init(adapter); |
| if (err) |
| goto err_sw_init; |
| |
| igb_get_bus_info_pcie(hw); |
| |
| hw->phy.autoneg_wait_to_complete = false; |
| hw->mac.adaptive_ifs = true; |
| |
| /* Copper options */ |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| hw->phy.mdix = AUTO_ALL_MODES; |
| hw->phy.disable_polarity_correction = false; |
| hw->phy.ms_type = e1000_ms_hw_default; |
| } |
| |
| if (igb_check_reset_block(hw)) |
| dev_info(&pdev->dev, |
| "PHY reset is blocked due to SOL/IDER session.\n"); |
| |
| netdev->features = NETIF_F_SG | |
| NETIF_F_IP_CSUM | |
| NETIF_F_HW_VLAN_TX | |
| NETIF_F_HW_VLAN_RX | |
| NETIF_F_HW_VLAN_FILTER; |
| |
| netdev->features |= NETIF_F_IPV6_CSUM; |
| netdev->features |= NETIF_F_TSO; |
| netdev->features |= NETIF_F_TSO6; |
| |
| netdev->features |= NETIF_F_GRO; |
| |
| netdev->vlan_features |= NETIF_F_TSO; |
| netdev->vlan_features |= NETIF_F_TSO6; |
| netdev->vlan_features |= NETIF_F_IP_CSUM; |
| netdev->vlan_features |= NETIF_F_IPV6_CSUM; |
| netdev->vlan_features |= NETIF_F_SG; |
| |
| if (pci_using_dac) |
| netdev->features |= NETIF_F_HIGHDMA; |
| |
| if (adapter->hw.mac.type == e1000_82576) |
| netdev->features |= NETIF_F_SCTP_CSUM; |
| |
| adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); |
| |
| /* before reading the NVM, reset the controller to put the device in a |
| * known good starting state */ |
| hw->mac.ops.reset_hw(hw); |
| |
| /* make sure the NVM is good */ |
| if (igb_validate_nvm_checksum(hw) < 0) { |
| dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| /* copy the MAC address out of the NVM */ |
| if (hw->mac.ops.read_mac_addr(hw)) |
| dev_err(&pdev->dev, "NVM Read Error\n"); |
| |
| memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); |
| memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->perm_addr)) { |
| dev_err(&pdev->dev, "Invalid MAC Address\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| setup_timer(&adapter->watchdog_timer, &igb_watchdog, |
| (unsigned long) adapter); |
| setup_timer(&adapter->phy_info_timer, &igb_update_phy_info, |
| (unsigned long) adapter); |
| |
| INIT_WORK(&adapter->reset_task, igb_reset_task); |
| INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); |
| |
| /* Initialize link properties that are user-changeable */ |
| adapter->fc_autoneg = true; |
| hw->mac.autoneg = true; |
| hw->phy.autoneg_advertised = 0x2f; |
| |
| hw->fc.requested_mode = e1000_fc_default; |
| hw->fc.current_mode = e1000_fc_default; |
| |
| igb_validate_mdi_setting(hw); |
| |
| /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, |
| * enable the ACPI Magic Packet filter |
| */ |
| |
| if (hw->bus.func == 0) |
| hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
| else if (hw->bus.func == 1) |
| hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
| |
| if (eeprom_data & eeprom_apme_mask) |
| adapter->eeprom_wol |= E1000_WUFC_MAG; |
| |
| /* now that we have the eeprom settings, apply the special cases where |
| * the eeprom may be wrong or the board simply won't support wake on |
| * lan on a particular port */ |
| switch (pdev->device) { |
| case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| case E1000_DEV_ID_82576_FIBER: |
| case E1000_DEV_ID_82576_SERDES: |
| /* Wake events only supported on port A for dual fiber |
| * regardless of eeprom setting */ |
| if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82576_QUAD_COPPER: |
| /* if quad port adapter, disable WoL on all but port A */ |
| if (global_quad_port_a != 0) |
| adapter->eeprom_wol = 0; |
| else |
| adapter->flags |= IGB_FLAG_QUAD_PORT_A; |
| /* Reset for multiple quad port adapters */ |
| if (++global_quad_port_a == 4) |
| global_quad_port_a = 0; |
| break; |
| } |
| |
| /* initialize the wol settings based on the eeprom settings */ |
| adapter->wol = adapter->eeprom_wol; |
| device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| |
| /* reset the hardware with the new settings */ |
| igb_reset(adapter); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| |
| strcpy(netdev->name, "eth%d"); |
| err = register_netdev(netdev); |
| if (err) |
| goto err_register; |
| |
| /* carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| #ifdef CONFIG_IGB_DCA |
| if (dca_add_requester(&pdev->dev) == 0) { |
| adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| dev_info(&pdev->dev, "DCA enabled\n"); |
| igb_setup_dca(adapter); |
| } |
| |
| #endif |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| /* |
| * Initialize hardware timer: we keep it running just in case |
| * that some program needs it later on. |
| */ |
| memset(&adapter->cycles, 0, sizeof(adapter->cycles)); |
| adapter->cycles.read = igb_read_clock; |
| adapter->cycles.mask = CLOCKSOURCE_MASK(64); |
| adapter->cycles.mult = 1; |
| /** |
| * Scale the NIC clock cycle by a large factor so that |
| * relatively small clock corrections can be added or |
| * substracted at each clock tick. The drawbacks of a large |
| * factor are a) that the clock register overflows more quickly |
| * (not such a big deal) and b) that the increment per tick has |
| * to fit into 24 bits. As a result we need to use a shift of |
| * 19 so we can fit a value of 16 into the TIMINCA register. |
| */ |
| adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; |
| wr32(E1000_TIMINCA, |
| (1 << E1000_TIMINCA_16NS_SHIFT) | |
| (16 << IGB_82576_TSYNC_SHIFT)); |
| |
| /* Set registers so that rollover occurs soon to test this. */ |
| wr32(E1000_SYSTIML, 0x00000000); |
| wr32(E1000_SYSTIMH, 0xFF800000); |
| wrfl(); |
| |
| timecounter_init(&adapter->clock, |
| &adapter->cycles, |
| ktime_to_ns(ktime_get_real())); |
| /* |
| * Synchronize our NIC clock against system wall clock. NIC |
| * time stamp reading requires ~3us per sample, each sample |
| * was pretty stable even under load => only require 10 |
| * samples for each offset comparison. |
| */ |
| memset(&adapter->compare, 0, sizeof(adapter->compare)); |
| adapter->compare.source = &adapter->clock; |
| adapter->compare.target = ktime_get_real; |
| adapter->compare.num_samples = 10; |
| timecompare_update(&adapter->compare, 0); |
| break; |
| case e1000_82575: |
| /* 82575 does not support timesync */ |
| default: |
| break; |
| } |
| |
| dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); |
| /* print bus type/speed/width info */ |
| dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", |
| netdev->name, |
| ((hw->bus.speed == e1000_bus_speed_2500) |
| ? "2.5Gb/s" : "unknown"), |
| ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
| (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : |
| (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : |
| "unknown"), |
| netdev->dev_addr); |
| |
| igb_read_part_num(hw, &part_num); |
| dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name, |
| (part_num >> 8), (part_num & 0xff)); |
| |
| dev_info(&pdev->dev, |
| "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", |
| adapter->msix_entries ? "MSI-X" : |
| (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", |
| adapter->num_rx_queues, adapter->num_tx_queues); |
| |
| return 0; |
| |
| err_register: |
| igb_release_hw_control(adapter); |
| err_eeprom: |
| if (!igb_check_reset_block(hw)) |
| igb_reset_phy(hw); |
| |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| err_sw_init: |
| igb_clear_interrupt_scheme(adapter); |
| iounmap(hw->hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_selected_regions(pdev, pci_select_bars(pdev, |
| IORESOURCE_MEM)); |
| err_pci_reg: |
| err_dma: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| /** |
| * igb_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * igb_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| static void __devexit igb_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* flush_scheduled work may reschedule our watchdog task, so |
| * explicitly disable watchdog tasks from being rescheduled */ |
| set_bit(__IGB_DOWN, &adapter->state); |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| flush_scheduled_work(); |
| |
| #ifdef CONFIG_IGB_DCA |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| dev_info(&pdev->dev, "DCA disabled\n"); |
| dca_remove_requester(&pdev->dev); |
| adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); |
| } |
| #endif |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| igb_release_hw_control(adapter); |
| |
| unregister_netdev(netdev); |
| |
| if (!igb_check_reset_block(hw)) |
| igb_reset_phy(hw); |
| |
| igb_clear_interrupt_scheme(adapter); |
| |
| #ifdef CONFIG_PCI_IOV |
| /* reclaim resources allocated to VFs */ |
| if (adapter->vf_data) { |
| /* disable iov and allow time for transactions to clear */ |
| pci_disable_sriov(pdev); |
| msleep(500); |
| |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); |
| msleep(100); |
| dev_info(&pdev->dev, "IOV Disabled\n"); |
| } |
| #endif |
| iounmap(hw->hw_addr); |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| pci_release_selected_regions(pdev, pci_select_bars(pdev, |
| IORESOURCE_MEM)); |
| |
| free_netdev(netdev); |
| |
| pci_disable_pcie_error_reporting(pdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /** |
| * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space |
| * @adapter: board private structure to initialize |
| * |
| * This function initializes the vf specific data storage and then attempts to |
| * allocate the VFs. The reason for ordering it this way is because it is much |
| * mor expensive time wise to disable SR-IOV than it is to allocate and free |
| * the memory for the VFs. |
| **/ |
| static void __devinit igb_probe_vfs(struct igb_adapter * adapter) |
| { |
| #ifdef CONFIG_PCI_IOV |
| struct pci_dev *pdev = adapter->pdev; |
| |
| if (adapter->vfs_allocated_count > 7) |
| adapter->vfs_allocated_count = 7; |
| |
| if (adapter->vfs_allocated_count) { |
| adapter->vf_data = kcalloc(adapter->vfs_allocated_count, |
| sizeof(struct vf_data_storage), |
| GFP_KERNEL); |
| /* if allocation failed then we do not support SR-IOV */ |
| if (!adapter->vf_data) { |
| adapter->vfs_allocated_count = 0; |
| dev_err(&pdev->dev, "Unable to allocate memory for VF " |
| "Data Storage\n"); |
| } |
| } |
| |
| if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) { |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| #endif /* CONFIG_PCI_IOV */ |
| adapter->vfs_allocated_count = 0; |
| #ifdef CONFIG_PCI_IOV |
| } else { |
| unsigned char mac_addr[ETH_ALEN]; |
| int i; |
| dev_info(&pdev->dev, "%d vfs allocated\n", |
| adapter->vfs_allocated_count); |
| for (i = 0; i < adapter->vfs_allocated_count; i++) { |
| random_ether_addr(mac_addr); |
| igb_set_vf_mac(adapter, i, mac_addr); |
| } |
| } |
| #endif /* CONFIG_PCI_IOV */ |
| } |
| |
| /** |
| * igb_sw_init - Initialize general software structures (struct igb_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * igb_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| static int __devinit igb_sw_init(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); |
| |
| adapter->tx_ring_count = IGB_DEFAULT_TXD; |
| adapter->rx_ring_count = IGB_DEFAULT_RXD; |
| adapter->rx_itr_setting = IGB_DEFAULT_ITR; |
| adapter->tx_itr_setting = IGB_DEFAULT_ITR; |
| |
| adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
| adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| |
| #ifdef CONFIG_PCI_IOV |
| if (hw->mac.type == e1000_82576) |
| adapter->vfs_allocated_count = max_vfs; |
| |
| #endif /* CONFIG_PCI_IOV */ |
| /* This call may decrease the number of queues */ |
| if (igb_init_interrupt_scheme(adapter)) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| igb_probe_vfs(adapter); |
| |
| /* Explicitly disable IRQ since the NIC can be in any state. */ |
| igb_irq_disable(adapter); |
| |
| set_bit(__IGB_DOWN, &adapter->state); |
| return 0; |
| } |
| |
| /** |
| * igb_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog timer is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| static int igb_open(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| int i; |
| |
| /* disallow open during test */ |
| if (test_bit(__IGB_TESTING, &adapter->state)) |
| return -EBUSY; |
| |
| netif_carrier_off(netdev); |
| |
| /* allocate transmit descriptors */ |
| err = igb_setup_all_tx_resources(adapter); |
| if (err) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| err = igb_setup_all_rx_resources(adapter); |
| if (err) |
| goto err_setup_rx; |
| |
| /* e1000_power_up_phy(adapter); */ |
| |
| /* before we allocate an interrupt, we must be ready to handle it. |
| * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| * as soon as we call pci_request_irq, so we have to setup our |
| * clean_rx handler before we do so. */ |
| igb_configure(adapter); |
| |
| err = igb_request_irq(adapter); |
| if (err) |
| goto err_req_irq; |
| |
| /* From here on the code is the same as igb_up() */ |
| clear_bit(__IGB_DOWN, &adapter->state); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| napi_enable(&q_vector->napi); |
| } |
| |
| /* Clear any pending interrupts. */ |
| rd32(E1000_ICR); |
| |
| igb_irq_enable(adapter); |
| |
| /* notify VFs that reset has been completed */ |
| if (adapter->vfs_allocated_count) { |
| u32 reg_data = rd32(E1000_CTRL_EXT); |
| reg_data |= E1000_CTRL_EXT_PFRSTD; |
| wr32(E1000_CTRL_EXT, reg_data); |
| } |
| |
| netif_tx_start_all_queues(netdev); |
| |
| /* start the watchdog. */ |
| hw->mac.get_link_status = 1; |
| schedule_work(&adapter->watchdog_task); |
| |
| return 0; |
| |
| err_req_irq: |
| igb_release_hw_control(adapter); |
| /* e1000_power_down_phy(adapter); */ |
| igb_free_all_rx_resources(adapter); |
| err_setup_rx: |
| igb_free_all_tx_resources(adapter); |
| err_setup_tx: |
| igb_reset(adapter); |
| |
| return err; |
| } |
| |
| /** |
| * igb_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the driver's control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| static int igb_close(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); |
| igb_down(adapter); |
| |
| igb_free_irq(adapter); |
| |
| igb_free_all_tx_resources(adapter); |
| igb_free_all_rx_resources(adapter); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @tx_ring: tx descriptor ring (for a specific queue) to setup |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int igb_setup_tx_resources(struct igb_ring *tx_ring) |
| { |
| struct pci_dev *pdev = tx_ring->pdev; |
| int size; |
| |
| size = sizeof(struct igb_buffer) * tx_ring->count; |
| tx_ring->buffer_info = vmalloc(size); |
| if (!tx_ring->buffer_info) |
| goto err; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| |
| tx_ring->desc = pci_alloc_consistent(pdev, |
| tx_ring->size, |
| &tx_ring->dma); |
| |
| if (!tx_ring->desc) |
| goto err; |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| return 0; |
| |
| err: |
| vfree(tx_ring->buffer_info); |
| dev_err(&pdev->dev, |
| "Unable to allocate memory for the transmit descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * igb_setup_all_tx_resources - wrapper to allocate Tx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int igb_setup_all_tx_resources(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| err = igb_setup_tx_resources(&adapter->tx_ring[i]); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Allocation for Tx Queue %u failed\n", i); |
| for (i--; i >= 0; i--) |
| igb_free_tx_resources(&adapter->tx_ring[i]); |
| break; |
| } |
| } |
| |
| for (i = 0; i < IGB_MAX_TX_QUEUES; i++) { |
| int r_idx = i % adapter->num_tx_queues; |
| adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx]; |
| } |
| return err; |
| } |
| |
| /** |
| * igb_setup_tctl - configure the transmit control registers |
| * @adapter: Board private structure |
| **/ |
| void igb_setup_tctl(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl; |
| |
| /* disable queue 0 which is enabled by default on 82575 and 82576 */ |
| wr32(E1000_TXDCTL(0), 0); |
| |
| /* Program the Transmit Control Register */ |
| tctl = rd32(E1000_TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| igb_config_collision_dist(hw); |
| |
| /* Enable transmits */ |
| tctl |= E1000_TCTL_EN; |
| |
| wr32(E1000_TCTL, tctl); |
| } |
| |
| /** |
| * igb_configure_tx_ring - Configure transmit ring after Reset |
| * @adapter: board private structure |
| * @ring: tx ring to configure |
| * |
| * Configure a transmit ring after a reset. |
| **/ |
| void igb_configure_tx_ring(struct igb_adapter *adapter, |
| struct igb_ring *ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 txdctl; |
| u64 tdba = ring->dma; |
| int reg_idx = ring->reg_idx; |
| |
| /* disable the queue */ |
| txdctl = rd32(E1000_TXDCTL(reg_idx)); |
| wr32(E1000_TXDCTL(reg_idx), |
| txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); |
| wrfl(); |
| mdelay(10); |
| |
| wr32(E1000_TDLEN(reg_idx), |
| ring->count * sizeof(union e1000_adv_tx_desc)); |
| wr32(E1000_TDBAL(reg_idx), |
| tdba & 0x00000000ffffffffULL); |
| wr32(E1000_TDBAH(reg_idx), tdba >> 32); |
| |
| ring->head = hw->hw_addr + E1000_TDH(reg_idx); |
| ring->tail = hw->hw_addr + E1000_TDT(reg_idx); |
| writel(0, ring->head); |
| writel(0, ring->tail); |
| |
| txdctl |= IGB_TX_PTHRESH; |
| txdctl |= IGB_TX_HTHRESH << 8; |
| txdctl |= IGB_TX_WTHRESH << 16; |
| |
| txdctl |= E1000_TXDCTL_QUEUE_ENABLE; |
| wr32(E1000_TXDCTL(reg_idx), txdctl); |
| } |
| |
| /** |
| * igb_configure_tx - Configure transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void igb_configure_tx(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_configure_tx_ring(adapter, &adapter->tx_ring[i]); |
| } |
| |
| /** |
| * igb_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @rx_ring: rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int igb_setup_rx_resources(struct igb_ring *rx_ring) |
| { |
| struct pci_dev *pdev = rx_ring->pdev; |
| int size, desc_len; |
| |
| size = sizeof(struct igb_buffer) * rx_ring->count; |
| rx_ring->buffer_info = vmalloc(size); |
| if (!rx_ring->buffer_info) |
| goto err; |
| memset(rx_ring->buffer_info, 0, size); |
| |
| desc_len = sizeof(union e1000_adv_rx_desc); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * desc_len; |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| |
| rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, |
| &rx_ring->dma); |
| |
| if (!rx_ring->desc) |
| goto err; |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| return 0; |
| |
| err: |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| dev_err(&pdev->dev, "Unable to allocate memory for " |
| "the receive descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * igb_setup_all_rx_resources - wrapper to allocate Rx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int igb_setup_all_rx_resources(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| err = igb_setup_rx_resources(&adapter->rx_ring[i]); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Allocation for Rx Queue %u failed\n", i); |
| for (i--; i >= 0; i--) |
| igb_free_rx_resources(&adapter->rx_ring[i]); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * igb_setup_mrqc - configure the multiple receive queue control registers |
| * @adapter: Board private structure |
| **/ |
| static void igb_setup_mrqc(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mrqc, rxcsum; |
| u32 j, num_rx_queues, shift = 0, shift2 = 0; |
| union e1000_reta { |
| u32 dword; |
| u8 bytes[4]; |
| } reta; |
| static const u8 rsshash[40] = { |
| 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, |
| 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, |
| 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, |
| 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; |
| |
| /* Fill out hash function seeds */ |
| for (j = 0; j < 10; j++) { |
| u32 rsskey = rsshash[(j * 4)]; |
| rsskey |= rsshash[(j * 4) + 1] << 8; |
| rsskey |= rsshash[(j * 4) + 2] << 16; |
| rsskey |= rsshash[(j * 4) + 3] << 24; |
| array_wr32(E1000_RSSRK(0), j, rsskey); |
| } |
| |
| num_rx_queues = adapter->num_rx_queues; |
| |
| if (adapter->vfs_allocated_count) { |
| /* 82575 and 82576 supports 2 RSS queues for VMDq */ |
| switch (hw->mac.type) { |
| case e1000_82576: |
| shift = 3; |
| num_rx_queues = 2; |
| break; |
| case e1000_82575: |
| shift = 2; |
| shift2 = 6; |
| default: |
| break; |
| } |
| } else { |
| if (hw->mac.type == e1000_82575) |
| shift = 6; |
| } |
| |
| for (j = 0; j < (32 * 4); j++) { |
| reta.bytes[j & 3] = (j % num_rx_queues) << shift; |
| if (shift2) |
| reta.bytes[j & 3] |= num_rx_queues << shift2; |
| if ((j & 3) == 3) |
| wr32(E1000_RETA(j >> 2), reta.dword); |
| } |
| |
| /* |
| * Disable raw packet checksumming so that RSS hash is placed in |
| * descriptor on writeback. No need to enable TCP/UDP/IP checksum |
| * offloads as they are enabled by default |
| */ |
| rxcsum = rd32(E1000_RXCSUM); |
| rxcsum |= E1000_RXCSUM_PCSD; |
| |
| if (adapter->hw.mac.type >= e1000_82576) |
| /* Enable Receive Checksum Offload for SCTP */ |
| rxcsum |= E1000_RXCSUM_CRCOFL; |
| |
| /* Don't need to set TUOFL or IPOFL, they default to 1 */ |
| wr32(E1000_RXCSUM, rxcsum); |
| |
| /* If VMDq is enabled then we set the appropriate mode for that, else |
| * we default to RSS so that an RSS hash is calculated per packet even |
| * if we are only using one queue */ |
| if (adapter->vfs_allocated_count) { |
| if (hw->mac.type > e1000_82575) { |
| /* Set the default pool for the PF's first queue */ |
| u32 vtctl = rd32(E1000_VT_CTL); |
| vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | |
| E1000_VT_CTL_DISABLE_DEF_POOL); |
| vtctl |= adapter->vfs_allocated_count << |
| E1000_VT_CTL_DEFAULT_POOL_SHIFT; |
| wr32(E1000_VT_CTL, vtctl); |
| } |
| if (adapter->num_rx_queues > 1) |
| mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; |
| else |
| mrqc = E1000_MRQC_ENABLE_VMDQ; |
| } else { |
| mrqc = E1000_MRQC_ENABLE_RSS_4Q; |
| } |
| igb_vmm_control(adapter); |
| |
| mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | |
| E1000_MRQC_RSS_FIELD_IPV4_TCP); |
| mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP); |
| mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP | |
| E1000_MRQC_RSS_FIELD_IPV6_UDP); |
| mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); |
| |
| wr32(E1000_MRQC, mrqc); |
| } |
| |
| /** |
| * igb_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| void igb_setup_rctl(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| rctl = rd32(E1000_RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | |
| (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| /* |
| * enable stripping of CRC. It's unlikely this will break BMC |
| * redirection as it did with e1000. Newer features require |
| * that the HW strips the CRC. |
| */ |
| rctl |= E1000_RCTL_SECRC; |
| |
| /* |
| * disable store bad packets and clear size bits. |
| */ |
| rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); |
| |
| /* enable LPE to prevent packets larger than max_frame_size */ |
| rctl |= E1000_RCTL_LPE; |
| |
| /* disable queue 0 to prevent tail write w/o re-config */ |
| wr32(E1000_RXDCTL(0), 0); |
| |
| /* Attention!!! For SR-IOV PF driver operations you must enable |
| * queue drop for all VF and PF queues to prevent head of line blocking |
| * if an un-trusted VF does not provide descriptors to hardware. |
| */ |
| if (adapter->vfs_allocated_count) { |
| /* set all queue drop enable bits */ |
| wr32(E1000_QDE, ALL_QUEUES); |
| } |
| |
| wr32(E1000_RCTL, rctl); |
| } |
| |
| static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, |
| int vfn) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr; |
| |
| /* if it isn't the PF check to see if VFs are enabled and |
| * increase the size to support vlan tags */ |
| if (vfn < adapter->vfs_allocated_count && |
| adapter->vf_data[vfn].vlans_enabled) |
| size += VLAN_TAG_SIZE; |
| |
| vmolr = rd32(E1000_VMOLR(vfn)); |
| vmolr &= ~E1000_VMOLR_RLPML_MASK; |
| vmolr |= size | E1000_VMOLR_LPE; |
| wr32(E1000_VMOLR(vfn), vmolr); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_rlpml_set - set maximum receive packet size |
| * @adapter: board private structure |
| * |
| * Configure maximum receivable packet size. |
| **/ |
| static void igb_rlpml_set(struct igb_adapter *adapter) |
| { |
| u32 max_frame_size = adapter->max_frame_size; |
| struct e1000_hw *hw = &adapter->hw; |
| u16 pf_id = adapter->vfs_allocated_count; |
| |
| if (adapter->vlgrp) |
| max_frame_size += VLAN_TAG_SIZE; |
| |
| /* if vfs are enabled we set RLPML to the largest possible request |
| * size and set the VMOLR RLPML to the size we need */ |
| if (pf_id) { |
| igb_set_vf_rlpml(adapter, max_frame_size, pf_id); |
| max_frame_size = MAX_JUMBO_FRAME_SIZE; |
| } |
| |
| wr32(E1000_RLPML, max_frame_size); |
| } |
| |
| static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr; |
| |
| /* |
| * This register exists only on 82576 and newer so if we are older then |
| * we should exit and do nothing |
| */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| vmolr = rd32(E1000_VMOLR(vfn)); |
| vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */ |
| E1000_VMOLR_STRVLAN; /* Strip vlan tags */ |
| |
| /* clear all bits that might not be set */ |
| vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); |
| |
| if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count) |
| vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ |
| /* |
| * for VMDq only allow the VFs and pool 0 to accept broadcast and |
| * multicast packets |
| */ |
| if (vfn <= adapter->vfs_allocated_count) |
| vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ |
| |
| wr32(E1000_VMOLR(vfn), vmolr); |
| } |
| |
| /** |
| * igb_configure_rx_ring - Configure a receive ring after Reset |
| * @adapter: board private structure |
| * @ring: receive ring to be configured |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| void igb_configure_rx_ring(struct igb_adapter *adapter, |
| struct igb_ring *ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u64 rdba = ring->dma; |
| int reg_idx = ring->reg_idx; |
| u32 srrctl, rxdctl; |
| |
| /* disable the queue */ |
| rxdctl = rd32(E1000_RXDCTL(reg_idx)); |
| wr32(E1000_RXDCTL(reg_idx), |
| rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); |
| |
| /* Set DMA base address registers */ |
| wr32(E1000_RDBAL(reg_idx), |
| rdba & 0x00000000ffffffffULL); |
| wr32(E1000_RDBAH(reg_idx), rdba >> 32); |
| wr32(E1000_RDLEN(reg_idx), |
| ring->count * sizeof(union e1000_adv_rx_desc)); |
| |
| /* initialize head and tail */ |
| ring->head = hw->hw_addr + E1000_RDH(reg_idx); |
| ring->tail = hw->hw_addr + E1000_RDT(reg_idx); |
| writel(0, ring->head); |
| writel(0, ring->tail); |
| |
| /* set descriptor configuration */ |
| if (ring->rx_buffer_len < IGB_RXBUFFER_1024) { |
| srrctl = ALIGN(ring->rx_buffer_len, 64) << |
| E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; |
| #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 |
| srrctl |= IGB_RXBUFFER_16384 >> |
| E1000_SRRCTL_BSIZEPKT_SHIFT; |
| #else |
| srrctl |= (PAGE_SIZE / 2) >> |
| E1000_SRRCTL_BSIZEPKT_SHIFT; |
| #endif |
| srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; |
| } else { |
| srrctl = ALIGN(ring->rx_buffer_len, 1024) >> |
| E1000_SRRCTL_BSIZEPKT_SHIFT; |
| srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; |
| } |
| |
| wr32(E1000_SRRCTL(reg_idx), srrctl); |
| |
| /* set filtering for VMDQ pools */ |
| igb_set_vmolr(adapter, reg_idx & 0x7); |
| |
| /* enable receive descriptor fetching */ |
| rxdctl = rd32(E1000_RXDCTL(reg_idx)); |
| rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; |
| rxdctl &= 0xFFF00000; |
| rxdctl |= IGB_RX_PTHRESH; |
| rxdctl |= IGB_RX_HTHRESH << 8; |
| rxdctl |= IGB_RX_WTHRESH << 16; |
| wr32(E1000_RXDCTL(reg_idx), rxdctl); |
| } |
| |
| /** |
| * igb_configure_rx - Configure receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void igb_configure_rx(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| /* set UTA to appropriate mode */ |
| igb_set_uta(adapter); |
| |
| /* set the correct pool for the PF default MAC address in entry 0 */ |
| igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, |
| adapter->vfs_allocated_count); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring */ |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_configure_rx_ring(adapter, &adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_free_tx_resources - Free Tx Resources per Queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| void igb_free_tx_resources(struct igb_ring *tx_ring) |
| { |
| igb_clean_tx_ring(tx_ring); |
| |
| vfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!tx_ring->desc) |
| return; |
| |
| pci_free_consistent(tx_ring->pdev, tx_ring->size, |
| tx_ring->desc, tx_ring->dma); |
| |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * igb_free_all_tx_resources - Free Tx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all transmit software resources |
| **/ |
| static void igb_free_all_tx_resources(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_free_tx_resources(&adapter->tx_ring[i]); |
| } |
| |
| void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring, |
| struct igb_buffer *buffer_info) |
| { |
| buffer_info->dma = 0; |
| if (buffer_info->skb) { |
| skb_dma_unmap(&tx_ring->pdev->dev, |
| buffer_info->skb, |
| DMA_TO_DEVICE); |
| dev_kfree_skb_any(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| buffer_info->time_stamp = 0; |
| /* buffer_info must be completely set up in the transmit path */ |
| } |
| |
| /** |
| * igb_clean_tx_ring - Free Tx Buffers |
| * @tx_ring: ring to be cleaned |
| **/ |
| static void igb_clean_tx_ring(struct igb_ring *tx_ring) |
| { |
| struct igb_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| if (!tx_ring->buffer_info) |
| return; |
| /* Free all the Tx ring sk_buffs */ |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| igb_unmap_and_free_tx_resource(tx_ring, buffer_info); |
| } |
| |
| size = sizeof(struct igb_buffer) * tx_ring->count; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| } |
| |
| /** |
| * igb_clean_all_tx_rings - Free Tx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void igb_clean_all_tx_rings(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_clean_tx_ring(&adapter->tx_ring[i]); |
| } |
| |
| /** |
| * igb_free_rx_resources - Free Rx Resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| void igb_free_rx_resources(struct igb_ring *rx_ring) |
| { |
| igb_clean_rx_ring(rx_ring); |
| |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!rx_ring->desc) |
| return; |
| |
| pci_free_consistent(rx_ring->pdev, rx_ring->size, |
| rx_ring->desc, rx_ring->dma); |
| |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * igb_free_all_rx_resources - Free Rx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all receive software resources |
| **/ |
| static void igb_free_all_rx_resources(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_free_rx_resources(&adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_clean_rx_ring - Free Rx Buffers per Queue |
| * @rx_ring: ring to free buffers from |
| **/ |
| static void igb_clean_rx_ring(struct igb_ring *rx_ring) |
| { |
| struct igb_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| if (!rx_ring->buffer_info) |
| return; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| if (buffer_info->dma) { |
| pci_unmap_single(rx_ring->pdev, |
| buffer_info->dma, |
| rx_ring->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| } |
| |
| if (buffer_info->skb) { |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| if (buffer_info->page_dma) { |
| pci_unmap_page(rx_ring->pdev, |
| buffer_info->page_dma, |
| PAGE_SIZE / 2, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->page_dma = 0; |
| } |
| if (buffer_info->page) { |
| put_page(buffer_info->page); |
| buffer_info->page = NULL; |
| buffer_info->page_offset = 0; |
| } |
| } |
| |
| size = sizeof(struct igb_buffer) * rx_ring->count; |
| memset(rx_ring->buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * igb_clean_all_rx_rings - Free Rx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void igb_clean_all_rx_rings(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_clean_rx_ring(&adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int igb_set_mac(struct net_device *netdev, void *p) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); |
| |
| /* set the correct pool for the new PF MAC address in entry 0 */ |
| igb_rar_set_qsel(adapter, hw->mac.addr, 0, |
| adapter->vfs_allocated_count); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_write_mc_addr_list - write multicast addresses to MTA |
| * @netdev: network interface device structure |
| * |
| * Writes multicast address list to the MTA hash table. |
| * Returns: -ENOMEM on failure |
| * 0 on no addresses written |
| * X on writing X addresses to MTA |
| **/ |
| static int igb_write_mc_addr_list(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct dev_mc_list *mc_ptr = netdev->mc_list; |
| u8 *mta_list; |
| u32 vmolr = 0; |
| int i; |
| |
| if (!netdev->mc_count) { |
| /* nothing to program, so clear mc list */ |
| igb_update_mc_addr_list(hw, NULL, 0); |
| igb_restore_vf_multicasts(adapter); |
| return 0; |
| } |
| |
| mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC); |
| if (!mta_list) |
| return -ENOMEM; |
| |
| /* set vmolr receive overflow multicast bit */ |
| vmolr |= E1000_VMOLR_ROMPE; |
| |
| /* The shared function expects a packed array of only addresses. */ |
| mc_ptr = netdev->mc_list; |
| |
| for (i = 0; i < netdev->mc_count; i++) { |
| if (!mc_ptr) |
| break; |
| memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN); |
| mc_ptr = mc_ptr->next; |
| } |
| igb_update_mc_addr_list(hw, mta_list, i); |
| kfree(mta_list); |
| |
| return netdev->mc_count; |
| } |
| |
| /** |
| * igb_write_uc_addr_list - write unicast addresses to RAR table |
| * @netdev: network interface device structure |
| * |
| * Writes unicast address list to the RAR table. |
| * Returns: -ENOMEM on failure/insufficient address space |
| * 0 on no addresses written |
| * X on writing X addresses to the RAR table |
| **/ |
| static int igb_write_uc_addr_list(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned int vfn = adapter->vfs_allocated_count; |
| unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); |
| int count = 0; |
| |
| /* return ENOMEM indicating insufficient memory for addresses */ |
| if (netdev->uc.count > rar_entries) |
| return -ENOMEM; |
| |
| if (netdev->uc.count && rar_entries) { |
| struct netdev_hw_addr *ha; |
| list_for_each_entry(ha, &netdev->uc.list, list) { |
| if (!rar_entries) |
| break; |
| igb_rar_set_qsel(adapter, ha->addr, |
| rar_entries--, |
| vfn); |
| count++; |
| } |
| } |
| /* write the addresses in reverse order to avoid write combining */ |
| for (; rar_entries > 0 ; rar_entries--) { |
| wr32(E1000_RAH(rar_entries), 0); |
| wr32(E1000_RAL(rar_entries), 0); |
| } |
| wrfl(); |
| |
| return count; |
| } |
| |
| /** |
| * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The set_rx_mode entry point is called whenever the unicast or multicast |
| * address lists or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper unicast, multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| static void igb_set_rx_mode(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned int vfn = adapter->vfs_allocated_count; |
| u32 rctl, vmolr = 0; |
| int count; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| rctl = rd32(E1000_RCTL); |
| |
| /* clear the effected bits */ |
| rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); |
| } else { |
| if (netdev->flags & IFF_ALLMULTI) { |
| rctl |= E1000_RCTL_MPE; |
| vmolr |= E1000_VMOLR_MPME; |
| } else { |
| /* |
| * Write addresses to the MTA, if the attempt fails |
| * then we should just turn on promiscous mode so |
| * that we can at least receive multicast traffic |
| */ |
| count = igb_write_mc_addr_list(netdev); |
| if (count < 0) { |
| rctl |= E1000_RCTL_MPE; |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (count) { |
| vmolr |= E1000_VMOLR_ROMPE; |
| } |
| } |
| /* |
| * Write addresses to available RAR registers, if there is not |
| * sufficient space to store all the addresses then enable |
| * unicast promiscous mode |
| */ |
| count = igb_write_uc_addr_list(netdev); |
| if (count < 0) { |
| rctl |= E1000_RCTL_UPE; |
| vmolr |= E1000_VMOLR_ROPE; |
| } |
| rctl |= E1000_RCTL_VFE; |
| } |
| wr32(E1000_RCTL, rctl); |
| |
| /* |
| * In order to support SR-IOV and eventually VMDq it is necessary to set |
| * the VMOLR to enable the appropriate modes. Without this workaround |
| * we will have issues with VLAN tag stripping not being done for frames |
| * that are only arriving because we are the default pool |
| */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| vmolr |= rd32(E1000_VMOLR(vfn)) & |
| ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); |
| wr32(E1000_VMOLR(vfn), vmolr); |
| igb_restore_vf_multicasts(adapter); |
| } |
| |
| /* Need to wait a few seconds after link up to get diagnostic information from |
| * the phy */ |
| static void igb_update_phy_info(unsigned long data) |
| { |
| struct igb_adapter *adapter = (struct igb_adapter *) data; |
| igb_get_phy_info(&adapter->hw); |
| } |
| |
| /** |
| * igb_has_link - check shared code for link and determine up/down |
| * @adapter: pointer to driver private info |
| **/ |
| static bool igb_has_link(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool link_active = false; |
| s32 ret_val = 0; |
| |
| /* get_link_status is set on LSC (link status) interrupt or |
| * rx sequence error interrupt. get_link_status will stay |
| * false until the e1000_check_for_link establishes link |
| * for copper adapters ONLY |
| */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| if (hw->mac.get_link_status) { |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !hw->mac.get_link_status; |
| } else { |
| link_active = true; |
| } |
| break; |
| case e1000_media_type_internal_serdes: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = hw->mac.serdes_has_link; |
| break; |
| default: |
| case e1000_media_type_unknown: |
| break; |
| } |
| |
| return link_active; |
| } |
| |
| /** |
| * igb_watchdog - Timer Call-back |
| * @data: pointer to adapter cast into an unsigned long |
| **/ |
| static void igb_watchdog(unsigned long data) |
| { |
| struct igb_adapter *adapter = (struct igb_adapter *)data; |
| /* Do the rest outside of interrupt context */ |
| schedule_work(&adapter->watchdog_task); |
| } |
| |
| static void igb_watchdog_task(struct work_struct *work) |
| { |
| struct igb_adapter *adapter = container_of(work, |
| struct igb_adapter, watchdog_task); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct igb_ring *tx_ring = adapter->tx_ring; |
| u32 link; |
| int i; |
| |
| link = igb_has_link(adapter); |
| if (link) { |
| if (!netif_carrier_ok(netdev)) { |
| u32 ctrl; |
| hw->mac.ops.get_speed_and_duplex(hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| |
| ctrl = rd32(E1000_CTRL); |
| /* Links status message must follow this format */ |
| printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " |
| "Flow Control: %s\n", |
| netdev->name, |
| adapter->link_speed, |
| adapter->link_duplex == FULL_DUPLEX ? |
| "Full Duplex" : "Half Duplex", |
| ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
| E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
| E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
| E1000_CTRL_TFCE) ? "TX" : "None"))); |
| |
| /* tweak tx_queue_len according to speed/duplex and |
| * adjust the timeout factor */ |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| netdev->tx_queue_len = 10; |
| adapter->tx_timeout_factor = 14; |
| break; |
| case SPEED_100: |
| netdev->tx_queue_len = 100; |
| /* maybe add some timeout factor ? */ |
| break; |
| } |
| |
| netif_carrier_on(netdev); |
| |
| igb_ping_all_vfs(adapter); |
| |
| /* link state has changed, schedule phy info update */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| /* Links status message must follow this format */ |
| printk(KERN_INFO "igb: %s NIC Link is Down\n", |
| netdev->name); |
| netif_carrier_off(netdev); |
| |
| igb_ping_all_vfs(adapter); |
| |
| /* link state has changed, schedule phy info update */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| } |
| |
| igb_update_stats(adapter); |
| igb_update_adaptive(hw); |
| |
| if (!netif_carrier_ok(netdev)) { |
| if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { |
| /* We've lost link, so the controller stops DMA, |
| * but we've got queued Tx work that's never going |
| * to get done, so reset controller to flush Tx. |
| * (Do the reset outside of interrupt context). */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| /* return immediately since reset is imminent */ |
| return; |
| } |
| } |
| |
| /* Force detection of hung controller every watchdog period */ |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| adapter->tx_ring[i].detect_tx_hung = true; |
| |
| /* Cause software interrupt to ensure rx ring is cleaned */ |
| if (adapter->msix_entries) { |
| u32 eics = 0; |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| eics |= q_vector->eims_value; |
| } |
| wr32(E1000_EICS, eics); |
| } else { |
| wr32(E1000_ICS, E1000_ICS_RXDMT0); |
| } |
| |
| /* Reset the timer */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| |
| enum latency_range { |
| lowest_latency = 0, |
| low_latency = 1, |
| bulk_latency = 2, |
| latency_invalid = 255 |
| }; |
| |
| /** |
| * igb_update_ring_itr - update the dynamic ITR value based on packet size |
| * |
| * Stores a new ITR value based on strictly on packet size. This |
| * algorithm is less sophisticated than that used in igb_update_itr, |
| * due to the difficulty of synchronizing statistics across multiple |
| * receive rings. The divisors and thresholds used by this fuction |
| * were determined based on theoretical maximum wire speed and testing |
| * data, in order to minimize response time while increasing bulk |
| * throughput. |
| * This functionality is controlled by the InterruptThrottleRate module |
| * parameter (see igb_param.c) |
| * NOTE: This function is called only when operating in a multiqueue |
| * receive environment. |
| * @q_vector: pointer to q_vector |
| **/ |
| static void igb_update_ring_itr(struct igb_q_vector *q_vector) |
| { |
| int new_val = q_vector->itr_val; |
| int avg_wire_size = 0; |
| struct igb_adapter *adapter = q_vector->adapter; |
| |
| /* For non-gigabit speeds, just fix the interrupt rate at 4000 |
| * ints/sec - ITR timer value of 120 ticks. |
| */ |
| if (adapter->link_speed != SPEED_1000) { |
| new_val = 976; |
| goto set_itr_val; |
| } |
| |
| if (q_vector->rx_ring && q_vector->rx_ring->total_packets) { |
| struct igb_ring *ring = q_vector->rx_ring; |
| avg_wire_size = ring->total_bytes / ring->total_packets; |
| } |
| |
| if (q_vector->tx_ring && q_vector->tx_ring->total_packets) { |
| struct igb_ring *ring = q_vector->tx_ring; |
| avg_wire_size = max_t(u32, avg_wire_size, |
| (ring->total_bytes / |
| ring->total_packets)); |
| } |
| |
| /* if avg_wire_size isn't set no work was done */ |
| if (!avg_wire_size) |
| goto clear_counts; |
| |
| /* Add 24 bytes to size to account for CRC, preamble, and gap */ |
| avg_wire_size += 24; |
| |
| /* Don't starve jumbo frames */ |
| avg_wire_size = min(avg_wire_size, 3000); |
| |
| /* Give a little boost to mid-size frames */ |
| if ((avg_wire_size > 300) && (avg_wire_size < 1200)) |
| new_val = avg_wire_size / 3; |
| else |
| new_val = avg_wire_size / 2; |
| |
| set_itr_val: |
| if (new_val != q_vector->itr_val) { |
| q_vector->itr_val = new_val; |
| q_vector->set_itr = 1; |
| } |
| clear_counts: |
| if (q_vector->rx_ring) { |
| q_vector->rx_ring->total_bytes = 0; |
| q_vector->rx_ring->total_packets = 0; |
| } |
| if (q_vector->tx_ring) { |
| q_vector->tx_ring->total_bytes = 0; |
| q_vector->tx_ring->total_packets = 0; |
| } |
| } |
| |
| /** |
| * igb_update_itr - update the dynamic ITR value based on statistics |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. |
| * this functionality is controlled by the InterruptThrottleRate module |
| * parameter (see igb_param.c) |
| * NOTE: These calculations are only valid when operating in a single- |
| * queue environment. |
| * @adapter: pointer to adapter |
| * @itr_setting: current q_vector->itr_val |
| * @packets: the number of packets during this measurement interval |
| * @bytes: the number of bytes during this measurement interval |
| **/ |
| static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, |
| int packets, int bytes) |
| { |
| unsigned int retval = itr_setting; |
| |
| if (packets == 0) |
| goto update_itr_done; |
| |
| switch (itr_setting) { |
| case lowest_latency: |
| /* handle TSO and jumbo frames */ |
| if (bytes/packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 5) && (bytes > 512)) |
| retval = low_latency; |
| break; |
| case low_latency: /* 50 usec aka 20000 ints/s */ |
| if (bytes > 10000) { |
| /* this if handles the TSO accounting */ |
| if (bytes/packets > 8000) { |
| retval = bulk_latency; |
| } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
| retval = bulk_latency; |
| } else if ((packets > 35)) { |
| retval = lowest_latency; |
| } |
| } else if (bytes/packets > 2000) { |
| retval = bulk_latency; |
| } else if (packets <= 2 && bytes < 512) { |
| retval = lowest_latency; |
| } |
| break; |
| case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| if (bytes > 25000) { |
| if (packets > 35) |
| retval = low_latency; |
| } else if (bytes < 1500) { |
| retval = low_latency; |
| } |
| break; |
| } |
| |
| update_itr_done: |
| return retval; |
| } |
| |
| static void igb_set_itr(struct igb_adapter *adapter) |
| { |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| u16 current_itr; |
| u32 new_itr = q_vector->itr_val; |
| |
| /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| if (adapter->link_speed != SPEED_1000) { |
| current_itr = 0; |
| new_itr = 4000; |
| goto set_itr_now; |
| } |
| |
| adapter->rx_itr = igb_update_itr(adapter, |
| adapter->rx_itr, |
| adapter->rx_ring->total_packets, |
| adapter->rx_ring->total_bytes); |
| |
| adapter->tx_itr = igb_update_itr(adapter, |
| adapter->tx_itr, |
| adapter->tx_ring->total_packets, |
| adapter->tx_ring->total_bytes); |
| current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency) |
| current_itr = low_latency; |
| |
| switch (current_itr) { |
| /* counts and packets in update_itr are dependent on these numbers */ |
| case lowest_latency: |
| new_itr = 56; /* aka 70,000 ints/sec */ |
| break; |
| case low_latency: |
| new_itr = 196; /* aka 20,000 ints/sec */ |
| break; |
| case bulk_latency: |
| new_itr = 980; /* aka 4,000 ints/sec */ |
| break; |
| default: |
| break; |
| } |
| |
| set_itr_now: |
| adapter->rx_ring->total_bytes = 0; |
| adapter->rx_ring->total_packets = 0; |
| adapter->tx_ring->total_bytes = 0; |
| adapter->tx_ring->total_packets = 0; |
| |
| if (new_itr != q_vector->itr_val) { |
| /* this attempts to bias the interrupt rate towards Bulk |
| * by adding intermediate steps when interrupt rate is |
| * increasing */ |
| new_itr = new_itr > q_vector->itr_val ? |
| max((new_itr * q_vector->itr_val) / |
| (new_itr + (q_vector->itr_val >> 2)), |
| new_itr) : |
| new_itr; |
| /* Don't write the value here; it resets the adapter's |
| * internal timer, and causes us to delay far longer than |
| * we should between interrupts. Instead, we write the ITR |
| * value at the beginning of the next interrupt so the timing |
| * ends up being correct. |
| */ |
| q_vector->itr_val = new_itr; |
| q_vector->set_itr = 1; |
| } |
| |
| return; |
| } |
| |
| #define IGB_TX_FLAGS_CSUM 0x00000001 |
| #define IGB_TX_FLAGS_VLAN 0x00000002 |
| #define IGB_TX_FLAGS_TSO 0x00000004 |
| #define IGB_TX_FLAGS_IPV4 0x00000008 |
| #define IGB_TX_FLAGS_TSTAMP 0x00000010 |
| #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define IGB_TX_FLAGS_VLAN_SHIFT 16 |
| |
| static inline int igb_tso_adv(struct igb_ring *tx_ring, |
| struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) |
| { |
| struct e1000_adv_tx_context_desc *context_desc; |
| unsigned int i; |
| int err; |
| struct igb_buffer *buffer_info; |
| u32 info = 0, tu_cmd = 0; |
| u32 mss_l4len_idx, l4len; |
| *hdr_len = 0; |
| |
| if (skb_header_cloned(skb)) { |
| err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| l4len = tcp_hdrlen(skb); |
| *hdr_len += l4len; |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, |
| 0); |
| } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { |
| ipv6_hdr(skb)->payload_len = 0; |
| tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| } |
| |
| i = tx_ring->next_to_use; |
| |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); |
| /* VLAN MACLEN IPLEN */ |
| if (tx_flags & IGB_TX_FLAGS_VLAN) |
| info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); |
| info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); |
| *hdr_len += skb_network_offset(skb); |
| info |= skb_network_header_len(skb); |
| *hdr_len += skb_network_header_len(skb); |
| context_desc->vlan_macip_lens = cpu_to_le32(info); |
| |
| /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ |
| tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); |
| |
| if (skb->protocol == htons(ETH_P_IP)) |
| tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; |
| tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| |
| context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); |
| |
| /* MSS L4LEN IDX */ |
| mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); |
| mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); |
| |
| /* For 82575, context index must be unique per ring. */ |
| if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) |
| mss_l4len_idx |= tx_ring->reg_idx << 4; |
| |
| context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); |
| context_desc->seqnum_seed = 0; |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = 0; |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| |
| static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring, |
| struct sk_buff *skb, u32 tx_flags) |
| { |
| struct e1000_adv_tx_context_desc *context_desc; |
| struct pci_dev *pdev = tx_ring->pdev; |
| struct igb_buffer *buffer_info; |
| u32 info = 0, tu_cmd = 0; |
| unsigned int i; |
| |
| if ((skb->ip_summed == CHECKSUM_PARTIAL) || |
| (tx_flags & IGB_TX_FLAGS_VLAN)) { |
| i = tx_ring->next_to_use; |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); |
| |
| if (tx_flags & IGB_TX_FLAGS_VLAN) |
| info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); |
| |
| info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| info |= skb_network_header_len(skb); |
| |
| context_desc->vlan_macip_lens = cpu_to_le32(info); |
| |
| tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| __be16 protocol; |
| |
| if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { |
| const struct vlan_ethhdr *vhdr = |
| (const struct vlan_ethhdr*)skb->data; |
| |
| protocol = vhdr->h_vlan_encapsulated_proto; |
| } else { |
| protocol = skb->protocol; |
| } |
| |
| switch (protocol) { |
| case cpu_to_be16(ETH_P_IP): |
| tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; |
| if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| else if (ip_hdr(skb)->protocol == IPPROTO_SCTP) |
| tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; |
| break; |
| case cpu_to_be16(ETH_P_IPV6): |
| /* XXX what about other V6 headers?? */ |
| if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP) |
| tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) |
| dev_warn(&pdev->dev, |
| "partial checksum but proto=%x!\n", |
| skb->protocol); |
| break; |
| } |
| } |
| |
| context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); |
| context_desc->seqnum_seed = 0; |
| if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) |
| context_desc->mss_l4len_idx = |
| cpu_to_le32(tx_ring->reg_idx << 4); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = 0; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| tx_ring->next_to_use = i; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| #define IGB_MAX_TXD_PWR 16 |
| #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) |
| |
| static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb, |
| unsigned int first) |
| { |
| struct igb_buffer *buffer_info; |
| struct pci_dev *pdev = tx_ring->pdev; |
| unsigned int len = skb_headlen(skb); |
| unsigned int count = 0, i; |
| unsigned int f; |
| dma_addr_t *map; |
| |
| i = tx_ring->next_to_use; |
| |
| if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) { |
| dev_err(&pdev->dev, "TX DMA map failed\n"); |
| return 0; |
| } |
| |
| map = skb_shinfo(skb)->dma_maps; |
| |
| buffer_info = &tx_ring->buffer_info[i]; |
| BUG_ON(len >= IGB_MAX_DATA_PER_TXD); |
| buffer_info->length = len; |
| /* set time_stamp *before* dma to help avoid a possible race */ |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = skb_shinfo(skb)->dma_head; |
| |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { |
| struct skb_frag_struct *frag; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| len = frag->size; |
| |
| buffer_info = &tx_ring->buffer_info[i]; |
| BUG_ON(len >= IGB_MAX_DATA_PER_TXD); |
| buffer_info->length = len; |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| buffer_info->dma = map[count]; |
| count++; |
| } |
| |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[first].next_to_watch = i; |
| |
| return ++count; |
| } |
| |
| static inline void igb_tx_queue_adv(struct igb_ring *tx_ring, |
| int tx_flags, int count, u32 paylen, |
| u8 hdr_len) |
| { |
| union e1000_adv_tx_desc *tx_desc; |
| struct igb_buffer *buffer_info; |
| u32 olinfo_status = 0, cmd_type_len; |
| unsigned int i = tx_ring->next_to_use; |
| |
| cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | |
| E1000_ADVTXD_DCMD_DEXT); |
| |
| if (tx_flags & IGB_TX_FLAGS_VLAN) |
| cmd_type_len |= E1000_ADVTXD_DCMD_VLE; |
| |
| if (tx_flags & IGB_TX_FLAGS_TSTAMP) |
| cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; |
| |
| if (tx_flags & IGB_TX_FLAGS_TSO) { |
| cmd_type_len |= E1000_ADVTXD_DCMD_TSE; |
| |
| /* insert tcp checksum */ |
| olinfo_status |= E1000_TXD_POPTS_TXSM << 8; |
| |
| /* insert ip checksum */ |
| if (tx_flags & IGB_TX_FLAGS_IPV4) |
| olinfo_status |= E1000_TXD_POPTS_IXSM << 8; |
| |
| } else if (tx_flags & IGB_TX_FLAGS_CSUM) { |
| olinfo_status |= E1000_TXD_POPTS_TXSM << 8; |
| } |
| |
| if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) && |
| (tx_flags & (IGB_TX_FLAGS_CSUM | |
| IGB_TX_FLAGS_TSO | |
| IGB_TX_FLAGS_VLAN))) |
| olinfo_status |= tx_ring->reg_idx << 4; |
| |
| olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); |
| |
| do { |
| buffer_info = &tx_ring->buffer_info[i]; |
| tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); |
| tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| tx_desc->read.cmd_type_len = |
| cpu_to_le32(cmd_type_len | buffer_info->length); |
| tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); |
| count--; |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } while (count > 0); |
| |
| tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD); |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| |
| tx_ring->next_to_use = i; |
| writel(i, tx_ring->tail); |
| /* we need this if more than one processor can write to our tail |
| * at a time, it syncronizes IO on IA64/Altix systems */ |
| mmiowb(); |
| } |
| |
| static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) |
| { |
| struct net_device *netdev = tx_ring->netdev; |
| |
| netif_stop_subqueue(netdev, tx_ring->queue_index); |
| |
| /* Herbert's original patch had: |
| * smp_mb__after_netif_stop_queue(); |
| * but since that doesn't exist yet, just open code it. */ |
| smp_mb(); |
| |
| /* We need to check again in a case another CPU has just |
| * made room available. */ |
| if (igb_desc_unused(tx_ring) < size) |
| return -EBUSY; |
| |
| /* A reprieve! */ |
| netif_wake_subqueue(netdev, tx_ring->queue_index); |
| tx_ring->tx_stats.restart_queue++; |
| return 0; |
| } |
| |
| static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) |
| { |
| if (igb_desc_unused(tx_ring) >= size) |
| return 0; |
| return __igb_maybe_stop_tx(tx_ring, size); |
| } |
| |
| netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb, |
| struct igb_ring *tx_ring) |
| { |
| struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); |
| unsigned int first; |
| unsigned int tx_flags = 0; |
| u8 hdr_len = 0; |
| int tso = 0, count; |
| union skb_shared_tx *shtx = skb_tx(skb); |
| |
| /* need: 1 descriptor per page, |
| * + 2 desc gap to keep tail from touching head, |
| * + 1 desc for skb->data, |
| * + 1 desc for context descriptor, |
| * otherwise try next time */ |
| if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { |
| /* this is a hard error */ |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (unlikely(shtx->hardware)) { |
| shtx->in_progress = 1; |
| tx_flags |= IGB_TX_FLAGS_TSTAMP; |
| } |
| |
| if (vlan_tx_tag_present(skb) && adapter->vlgrp) { |
| tx_flags |= IGB_TX_FLAGS_VLAN; |
| tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| if (skb->protocol == htons(ETH_P_IP)) |
| tx_flags |= IGB_TX_FLAGS_IPV4; |
| |
| first = tx_ring->next_to_use; |
| if (skb_is_gso(skb)) { |
| tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len); |
| |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| } |
| |
| if (tso) |
| tx_flags |= IGB_TX_FLAGS_TSO; |
| else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) && |
| (skb->ip_summed == CHECKSUM_PARTIAL)) |
| tx_flags |= IGB_TX_FLAGS_CSUM; |
| |
| /* |
| * count reflects descriptors mapped, if 0 or less then mapping error |
| * has occured and we need to rewind the descriptor queue |
| */ |
| count = igb_tx_map_adv(tx_ring, skb, first); |
| if (count <= 0) { |
| dev_kfree_skb_any(skb); |
| tx_ring->buffer_info[first].time_stamp = 0; |
| tx_ring->next_to_use = first; |
| return NETDEV_TX_OK; |
| } |
| |
| igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len); |
| |
| /* Make sure there is space in the ring for the next send. */ |
| igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct igb_ring *tx_ring; |
| int r_idx = 0; |
| |
| if (test_bit(__IGB_DOWN, &adapter->state)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (skb->len <= 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1); |
| tx_ring = adapter->multi_tx_table[r_idx]; |
| |
| /* This goes back to the question of how to logically map a tx queue |
| * to a flow. Right now, performance is impacted slightly negatively |
| * if using multiple tx queues. If the stack breaks away from a |
| * single qdisc implementation, we can look at this again. */ |
| return igb_xmit_frame_ring_adv(skb, tx_ring); |
| } |
| |
| /** |
| * igb_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| **/ |
| static void igb_tx_timeout(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| |
| schedule_work(&adapter->reset_task); |
| wr32(E1000_EICS, |
| (adapter->eims_enable_mask & ~adapter->eims_other)); |
| } |
| |
| static void igb_reset_task(struct work_struct *work) |
| { |
| struct igb_adapter *adapter; |
| adapter = container_of(work, struct igb_adapter, reset_task); |
| |
| igb_reinit_locked(adapter); |
| } |
| |
| /** |
| * igb_get_stats - Get System Network Statistics |
| * @netdev: network interface device structure |
| * |
| * Returns the address of the device statistics structure. |
| * The statistics are actually updated from the timer callback. |
| **/ |
| static struct net_device_stats *igb_get_stats(struct net_device *netdev) |
| { |
| /* only return the current stats */ |
| return &netdev->stats; |
| } |
| |
| /** |
| * igb_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int igb_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
| u32 rx_buffer_len, i; |
| |
| if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || |
| (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| dev_err(&pdev->dev, "Invalid MTU setting\n"); |
| return -EINVAL; |
| } |
| |
| if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
| dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| /* igb_down has a dependency on max_frame_size */ |
| adapter->max_frame_size = max_frame; |
| /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| * means we reserve 2 more, this pushes us to allocate from the next |
| * larger slab size. |
| * i.e. RXBUFFER_2048 --> size-4096 slab |
| */ |
| |
| if (max_frame <= IGB_RXBUFFER_1024) |
| rx_buffer_len = IGB_RXBUFFER_1024; |
| else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE) |
| rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
| else |
| rx_buffer_len = IGB_RXBUFFER_128; |
| |
| if (netif_running(netdev)) |
| igb_down(adapter); |
| |
| dev_info(&pdev->dev, "changing MTU from %d to %d\n", |
| netdev->mtu, new_mtu); |
| netdev->mtu = new_mtu; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| adapter->rx_ring[i].rx_buffer_len = rx_buffer_len; |
| |
| if (netif_running(netdev)) |
| igb_up(adapter); |
| else |
| igb_reset(adapter); |
| |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| |
| void igb_update_stats(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| u32 rnbc; |
| u16 phy_tmp; |
| int i; |
| u64 bytes, packets; |
| |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
| |
| /* |
| * Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pci_channel_offline(pdev)) |
| return; |
| |
| bytes = 0; |
| packets = 0; |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; |
| adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp; |
| netdev->stats.rx_fifo_errors += rqdpc_tmp; |
| bytes += adapter->rx_ring[i].rx_stats.bytes; |
| packets += adapter->rx_ring[i].rx_stats.packets; |
| } |
| |
| netdev->stats.rx_bytes = bytes; |
| netdev->stats.rx_packets = packets; |
| |
| bytes = 0; |
| packets = 0; |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| bytes += adapter->tx_ring[i].tx_stats.bytes; |
| packets += adapter->tx_ring[i].tx_stats.packets; |
| } |
| netdev->stats.tx_bytes = bytes; |
| netdev->stats.tx_packets = packets; |
| |
| /* read stats registers */ |
| adapter->stats.crcerrs += rd32(E1000_CRCERRS); |
| adapter->stats.gprc += rd32(E1000_GPRC); |
| adapter->stats.gorc += rd32(E1000_GORCL); |
| rd32(E1000_GORCH); /* clear GORCL */ |
| adapter->stats.bprc += rd32(E1000_BPRC); |
| adapter->stats.mprc += rd32(E1000_MPRC); |
| adapter->stats.roc += rd32(E1000_ROC); |
| |
| adapter->stats.prc64 += rd32(E1000_PRC64); |
| adapter->stats.prc127 += rd32(E1000_PRC127); |
| adapter->stats.prc255 += rd32(E1000_PRC255); |
| adapter->stats.prc511 += rd32(E1000_PRC511); |
| adapter->stats.prc1023 += rd32(E1000_PRC1023); |
| adapter->stats.prc1522 += rd32(E1000_PRC1522); |
| adapter->stats.symerrs += rd32(E1000_SYMERRS); |
| adapter->stats.sec += rd32(E1000_SEC); |
| |
| adapter->stats.mpc += rd32(E1000_MPC); |
| adapter->stats.scc += rd32(E1000_SCC); |
| adapter->stats.ecol += rd32(E1000_ECOL); |
| adapter->stats.mcc += rd32(E1000_MCC); |
| adapter->stats.latecol += rd32(E1000_LATECOL); |
| adapter->stats.dc += rd32(E1000_DC); |
| adapter->stats.rlec += rd32(E1000_RLEC); |
| adapter->stats.xonrxc += rd32(E1000_XONRXC); |
| adapter->stats.xontxc += rd32(E1000_XONTXC); |
| adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); |
| adapter->stats.xofftxc += rd32(E1000_XOFFTXC); |
| adapter->stats.fcruc += rd32(E1000_FCRUC); |
| adapter->stats.gptc += rd32(E1000_GPTC); |
| adapter->stats.gotc += rd32(E1000_GOTCL); |
| rd32(E1000_GOTCH); /* clear GOTCL */ |
| rnbc = rd32(E1000_RNBC); |
| adapter->stats.rnbc += rnbc; |
| netdev->stats.rx_fifo_errors += rnbc; |
| adapter->stats.ruc += rd32(E1000_RUC); |
| adapter->stats.rfc += rd32(E1000_RFC); |
| adapter->stats.rjc += rd32(E1000_RJC); |
| adapter->stats.tor += rd32(E1000_TORH); |
| adapter->stats.tot += rd32(E1000_TOTH); |
| adapter->stats.tpr += rd32(E1000_TPR); |
| |
| adapter->stats.ptc64 += rd32(E1000_PTC64); |
| adapter->stats.ptc127 += rd32(E1000_PTC127); |
| adapter->stats.ptc255 += rd32(E1000_PTC255); |
| adapter->stats.ptc511 += rd32(E1000_PTC511); |
| adapter->stats.ptc1023 += rd32(E1000_PTC1023); |
| adapter->stats.ptc1522 += rd32(E1000_PTC1522); |
| |
| adapter->stats.mptc += rd32(E1000_MPTC); |
| adapter->stats.bptc += rd32(E1000_BPTC); |
| |
| /* used for adaptive IFS */ |
| hw->mac.tx_packet_delta = rd32(E1000_TPT); |
| adapter->stats.tpt += hw->mac.tx_packet_delta; |
| hw->mac.collision_delta = rd32(E1000_COLC); |
| adapter->stats.colc += hw->mac.collision_delta; |
| |
| adapter->stats.algnerrc += rd32(E1000_ALGNERRC); |
| adapter->stats.rxerrc += rd32(E1000_RXERRC); |
| adapter->stats.tncrs += rd32(E1000_TNCRS); |
| adapter->stats.tsctc += rd32(E1000_TSCTC); |
| adapter->stats.tsctfc += rd32(E1000_TSCTFC); |
| |
| adapter->stats.iac += rd32(E1000_IAC); |
| adapter->stats.icrxoc += rd32(E1000_ICRXOC); |
| adapter->stats.icrxptc += rd32(E1000_ICRXPTC); |
| adapter->stats.icrxatc += rd32(E1000_ICRXATC); |
| adapter->stats.ictxptc += rd32(E1000_ICTXPTC); |
| adapter->stats.ictxatc += rd32(E1000_ICTXATC); |
| adapter->stats.ictxqec += rd32(E1000_ICTXQEC); |
| adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); |
| adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); |
| |
| /* Fill out the OS statistics structure */ |
| netdev->stats.multicast = adapter->stats.mprc; |
| netdev->stats.collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC */ |
| netdev->stats.rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + |
| adapter->stats.cexterr; |
| netdev->stats.rx_length_errors = adapter->stats.ruc + |
| adapter->stats.roc; |
| netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
| netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
| netdev->stats.rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| netdev->stats.tx_errors = adapter->stats.ecol + |
| adapter->stats.latecol; |
| netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
| netdev->stats.tx_window_errors = adapter->stats.latecol; |
| netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Phy Stats */ |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| if ((adapter->link_speed == SPEED_1000) && |
| (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
| phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
| adapter->phy_stats.idle_errors += phy_tmp; |
| } |
| } |
| |
| /* Management Stats */ |
| adapter->stats.mgptc += rd32(E1000_MGTPTC); |
| adapter->stats.mgprc += rd32(E1000_MGTPRC); |
| adapter->stats.mgpdc += rd32(E1000_MGTPDC); |
| } |
| |
| static irqreturn_t igb_msix_other(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = rd32(E1000_ICR); |
| /* reading ICR causes bit 31 of EICR to be cleared */ |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| } |
| |
| /* Check for a mailbox event */ |
| if (icr & E1000_ICR_VMMB) |
| igb_msg_task(adapter); |
| |
| if (icr & E1000_ICR_LSC) { |
| hw->mac.get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| if (adapter->vfs_allocated_count) |
| wr32(E1000_IMS, E1000_IMS_LSC | |
| E1000_IMS_VMMB | |
| E1000_IMS_DOUTSYNC); |
| else |
| wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC); |
| wr32(E1000_EIMS, adapter->eims_other); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void igb_write_itr(struct igb_q_vector *q_vector) |
| { |
| u32 itr_val = q_vector->itr_val & 0x7FFC; |
| |
| if (!q_vector->set_itr) |
| return; |
| |
| if (!itr_val) |
| itr_val = 0x4; |
| |
| if (q_vector->itr_shift) |
| itr_val |= itr_val << q_vector->itr_shift; |
| else |
| itr_val |= 0x8000000; |
| |
| writel(itr_val, q_vector->itr_register); |
| q_vector->set_itr = 0; |
| } |
| |
| static irqreturn_t igb_msix_ring(int irq, void *data) |
| { |
| struct igb_q_vector *q_vector = data; |
| |
| /* Write the ITR value calculated from the previous interrupt. */ |
| igb_write_itr(q_vector); |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_IGB_DCA |
| static void igb_update_dca(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| int cpu = get_cpu(); |
| |
| if (q_vector->cpu == cpu) |
| goto out_no_update; |
| |
| if (q_vector->tx_ring) { |
| int q = q_vector->tx_ring->reg_idx; |
| u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); |
| if (hw->mac.type == e1000_82575) { |
| dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; |
| dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); |
| } else { |
| dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; |
| dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << |
| E1000_DCA_TXCTRL_CPUID_SHIFT; |
| } |
| dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; |
| wr32(E1000_DCA_TXCTRL(q), dca_txctrl); |
| } |
| if (q_vector->rx_ring) { |
| int q = q_vector->rx_ring->reg_idx; |
| u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); |
| if (hw->mac.type == e1000_82575) { |
| dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; |
| dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); |
| } else { |
| dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; |
| dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << |
| E1000_DCA_RXCTRL_CPUID_SHIFT; |
| } |
| dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; |
| dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; |
| dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; |
| wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); |
| } |
| q_vector->cpu = cpu; |
| out_no_update: |
| put_cpu(); |
| } |
| |
| static void igb_setup_dca(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) |
| return; |
| |
| /* Always use CB2 mode, difference is masked in the CB driver. */ |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| q_vector->cpu = -1; |
| igb_update_dca(q_vector); |
| } |
| } |
| |
| static int __igb_notify_dca(struct device *dev, void *data) |
| { |
| struct net_device *netdev = dev_get_drvdata(dev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned long event = *(unsigned long *)data; |
| |
| switch (event) { |
| case DCA_PROVIDER_ADD: |
| /* if already enabled, don't do it again */ |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| break; |
| if (dca_add_requester(dev) == 0) { |
| adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| dev_info(&pdev->dev, "DCA enabled\n"); |
| igb_setup_dca(adapter); |
| break; |
| } |
| /* Fall Through since DCA is disabled. */ |
| case DCA_PROVIDER_REMOVE: |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| /* without this a class_device is left |
| * hanging around in the sysfs model */ |
| dca_remove_requester(dev); |
| dev_info(&pdev->dev, "DCA disabled\n"); |
| adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int igb_notify_dca(struct notifier_block *nb, unsigned long event, |
| void *p) |
| { |
| int ret_val; |
| |
| ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, |
| __igb_notify_dca); |
| |
| return ret_val ? NOTIFY_BAD : NOTIFY_DONE; |
| } |
| #endif /* CONFIG_IGB_DCA */ |
| |
| static void igb_ping_all_vfs(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ping; |
| int i; |
| |
| for (i = 0 ; i < adapter->vfs_allocated_count; i++) { |
| ping = E1000_PF_CONTROL_MSG; |
| if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) |
| ping |= E1000_VT_MSGTYPE_CTS; |
| igb_write_mbx(hw, &ping, 1, i); |
| } |
| } |
| |
| static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr = rd32(E1000_VMOLR(vf)); |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| |
| vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC | |
| IGB_VF_FLAG_MULTI_PROMISC); |
| vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); |
| |
| if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { |
| vmolr |= E1000_VMOLR_MPME; |
| *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; |
| } else { |
| /* |
| * if we have hashes and we are clearing a multicast promisc |
| * flag we need to write the hashes to the MTA as this step |
| * was previously skipped |
| */ |
| if (vf_data->num_vf_mc_hashes > 30) { |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (vf_data->num_vf_mc_hashes) { |
| int j; |
| vmolr |= E1000_VMOLR_ROMPE; |
| for (j = 0; j < vf_data->num_vf_mc_hashes; j++) |
| igb_mta_set(hw, vf_data->vf_mc_hashes[j]); |
| } |
| } |
| |
| wr32(E1000_VMOLR(vf), vmolr); |
| |
| /* there are flags left unprocessed, likely not supported */ |
| if (*msgbuf & E1000_VT_MSGINFO_MASK) |
| return -EINVAL; |
| |
| return 0; |
| |
| } |
| |
| static int igb_set_vf_multicasts(struct igb_adapter *adapter, |
| u32 *msgbuf, u32 vf) |
| { |
| int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; |
| u16 *hash_list = (u16 *)&msgbuf[1]; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| int i; |
| |
| /* salt away the number of multicast addresses assigned |
| * to this VF for later use to restore when the PF multi cast |
| * list changes |
| */ |
| vf_data->num_vf_mc_hashes = n; |
| |
| /* only up to 30 hash values supported */ |
| if (n > 30) |
| n = 30; |
| |
| /* store the hashes for later use */ |
| for (i = 0; i < n; i++) |
| vf_data->vf_mc_hashes[i] = hash_list[i]; |
| |
| /* Flush and reset the mta with the new values */ |
| igb_set_rx_mode(adapter->netdev); |
| |
| return 0; |
| } |
| |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data; |
| int i, j; |
| |
| for (i = 0; i < adapter->vfs_allocated_count; i++) { |
| u32 vmolr = rd32(E1000_VMOLR(i)); |
| vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); |
| |
| vf_data = &adapter->vf_data[i]; |
| |
| if ((vf_data->num_vf_mc_hashes > 30) || |
| (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (vf_data->num_vf_mc_hashes) { |
| vmolr |= E1000_VMOLR_ROMPE; |
| for (j = 0; j < vf_data->num_vf_mc_hashes; j++) |
| igb_mta_set(hw, vf_data->vf_mc_hashes[j]); |
| } |
| wr32(E1000_VMOLR(i), vmolr); |
| } |
| } |
| |
| static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 pool_mask, reg, vid; |
| int i; |
| |
| pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); |
| |
| /* Find the vlan filter for this id */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| |
| /* remove the vf from the pool */ |
| reg &= ~pool_mask; |
| |
| /* if pool is empty then remove entry from vfta */ |
| if (!(reg & E1000_VLVF_POOLSEL_MASK) && |
| (reg & E1000_VLVF_VLANID_ENABLE)) { |
| reg = 0; |
| vid = reg & E1000_VLVF_VLANID_MASK; |
| igb_vfta_set(hw, vid, false); |
| } |
| |
| wr32(E1000_VLVF(i), reg); |
| } |
| |
| adapter->vf_data[vf].vlans_enabled = 0; |
| } |
| |
| static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 reg, i; |
| |
| /* The vlvf table only exists on 82576 hardware and newer */ |
| if (hw->mac.type < e1000_82576) |
| return -1; |
| |
| /* we only need to do this if VMDq is enabled */ |
| if (!adapter->vfs_allocated_count) |
| return -1; |
| |
| /* Find the vlan filter for this id */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| if ((reg & E1000_VLVF_VLANID_ENABLE) && |
| vid == (reg & E1000_VLVF_VLANID_MASK)) |
| break; |
| } |
| |
| if (add) { |
| if (i == E1000_VLVF_ARRAY_SIZE) { |
| /* Did not find a matching VLAN ID entry that was |
| * enabled. Search for a free filter entry, i.e. |
| * one without the enable bit set |
| */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| if (!(reg & E1000_VLVF_VLANID_ENABLE)) |
| break; |
| } |
| } |
| if (i < E1000_VLVF_ARRAY_SIZE) { |
| /* Found an enabled/available entry */ |
| reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); |
| |
| /* if !enabled we need to set this up in vfta */ |
| if (!(reg & E1000_VLVF_VLANID_ENABLE)) { |
| /* add VID to filter table */ |
| igb_vfta_set(hw, vid, true); |
| reg |= E1000_VLVF_VLANID_ENABLE; |
| } |
| reg &= ~E1000_VLVF_VLANID_MASK; |
| reg |= vid; |
| wr32(E1000_VLVF(i), reg); |
| |
| /* do not modify RLPML for PF devices */ |
| if (vf >= adapter->vfs_allocated_count) |
| return 0; |
| |
| if (!adapter->vf_data[vf].vlans_enabled) { |
| u32 size; |
| reg = rd32(E1000_VMOLR(vf)); |
| size = reg & E1000_VMOLR_RLPML_MASK; |
| size += 4; |
| reg &= ~E1000_VMOLR_RLPML_MASK; |
| reg |= size; |
| wr32(E1000_VMOLR(vf), reg); |
| } |
| |
| adapter->vf_data[vf].vlans_enabled++; |
| return 0; |
| } |
| } else { |
| if (i < E1000_VLVF_ARRAY_SIZE) { |
| /* remove vf from the pool */ |
| reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); |
| /* if pool is empty then remove entry from vfta */ |
| if (!(reg & E1000_VLVF_POOLSEL_MASK)) { |
| reg = 0; |
| igb_vfta_set(hw, vid, false); |
| } |
| wr32(E1000_VLVF(i), reg); |
| |
| /* do not modify RLPML for PF devices */ |
| if (vf >= adapter->vfs_allocated_count) |
| return 0; |
| |
| adapter->vf_data[vf].vlans_enabled--; |
| if (!adapter->vf_data[vf].vlans_enabled) { |
| u32 size; |
| reg = rd32(E1000_VMOLR(vf)); |
| size = reg & E1000_VMOLR_RLPML_MASK; |
| size -= 4; |
| reg &= ~E1000_VMOLR_RLPML_MASK; |
| reg |= size; |
| wr32(E1000_VMOLR(vf), reg); |
| } |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) |
| { |
| int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; |
| int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); |
| |
| return igb_vlvf_set(adapter, vid, add, vf); |
| } |
| |
| static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) |
| { |
| /* clear all flags */ |
| adapter->vf_data[vf].flags = 0; |
| adapter->vf_data[vf].last_nack = jiffies; |
| |
| /* reset offloads to defaults */ |
| igb_set_vmolr(adapter, vf); |
| |
| /* reset vlans for device */ |
| igb_clear_vf_vfta(adapter, vf); |
| |
| /* reset multicast table array for vf */ |
| adapter->vf_data[vf].num_vf_mc_hashes = 0; |
| |
| /* Flush and reset the mta with the new values */ |
| igb_set_rx_mode(adapter->netdev); |
| } |
| |
| static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) |
| { |
| unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; |
| |
| /* generate a new mac address as we were hotplug removed/added */ |
| random_ether_addr(vf_mac); |
| |
| /* process remaining reset events */ |
| igb_vf_reset(adapter, vf); |
| } |
| |
| static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; |
| int rar_entry = hw->mac.rar_entry_count - (vf + 1); |
| u32 reg, msgbuf[3]; |
| u8 *addr = (u8 *)(&msgbuf[1]); |
| |
| /* process all the same items cleared in a function level reset */ |
| igb_vf_reset(adapter, vf); |
| |
| /* set vf mac address */ |
| igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); |
| |
| /* enable transmit and receive for vf */ |
| reg = rd32(E1000_VFTE); |
| wr32(E1000_VFTE, reg | (1 << vf)); |
| reg = rd32(E1000_VFRE); |
| wr32(E1000_VFRE, reg | (1 << vf)); |
| |
| adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS; |
| |
| /* reply to reset with ack and vf mac address */ |
| msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; |
| memcpy(addr, vf_mac, 6); |
| igb_write_mbx(hw, msgbuf, 3, vf); |
| } |
| |
| static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) |
| { |
| unsigned char *addr = (char *)&msg[1]; |
| int err = -1; |
| |
| if (is_valid_ether_addr(addr)) |
| err = igb_set_vf_mac(adapter, vf, addr); |
| |
| return err; |
| } |
| |
| static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| u32 msg = E1000_VT_MSGTYPE_NACK; |
| |
| /* if device isn't clear to send it shouldn't be reading either */ |
| if (!(vf_data->flags & IGB_VF_FLAG_CTS) && |
| time_after(jiffies, vf_data->last_nack + (2 * HZ))) { |
| igb_write_mbx(hw, &msg, 1, vf); |
| vf_data->last_nack = jiffies; |
| } |
| } |
| |
| static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| u32 msgbuf[E1000_VFMAILBOX_SIZE]; |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| s32 retval; |
| |
| retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); |
| |
| if (retval) |
| dev_err(&pdev->dev, "Error receiving message from VF\n"); |
| |
| /* this is a message we already processed, do nothing */ |
| if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) |
| return; |
| |
| /* |
| * until the vf completes a reset it should not be |
| * allowed to start any configuration. |
| */ |
| |
| if (msgbuf[0] == E1000_VF_RESET) { |
| igb_vf_reset_msg(adapter, vf); |
| return; |
| } |
| |
| if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { |
| msgbuf[0] = E1000_VT_MSGTYPE_NACK; |
| if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) { |
| igb_write_mbx(hw, msgbuf, 1, vf); |
| vf_data->last_nack = jiffies; |
| } |
| return; |
| } |
| |
| switch ((msgbuf[0] & 0xFFFF)) { |
| case E1000_VF_SET_MAC_ADDR: |
| retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); |
| break; |
| case E1000_VF_SET_PROMISC: |
| retval = igb_set_vf_promisc(adapter, msgbuf, vf); |
| break; |
| case E1000_VF_SET_MULTICAST: |
| retval = igb_set_vf_multicasts(adapter, msgbuf, vf); |
| break; |
| case E1000_VF_SET_LPE: |
| retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); |
| break; |
| case E1000_VF_SET_VLAN: |
| retval = igb_set_vf_vlan(adapter, msgbuf, vf); |
| break; |
| default: |
| dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); |
| retval = -1; |
| break; |
| } |
| |
| /* notify the VF of the results of what it sent us */ |
| if (retval) |
| msgbuf[0] |= E1000_VT_MSGTYPE_NACK; |
| else |
| msgbuf[0] |= E1000_VT_MSGTYPE_ACK; |
| |
| msgbuf[0] |= E1000_VT_MSGTYPE_CTS; |
| |
| igb_write_mbx(hw, msgbuf, 1, vf); |
| } |
| |
| static void igb_msg_task(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vf; |
| |
| for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { |
| /* process any reset requests */ |
| if (!igb_check_for_rst(hw, vf)) |
| igb_vf_reset_event(adapter, vf); |
| |
| /* process any messages pending */ |
| if (!igb_check_for_msg(hw, vf)) |
| igb_rcv_msg_from_vf(adapter, vf); |
| |
| /* process any acks */ |
| if (!igb_check_for_ack(hw, vf)) |
| igb_rcv_ack_from_vf(adapter, vf); |
| } |
| } |
| |
| /** |
| * igb_set_uta - Set unicast filter table address |
| * @adapter: board private structure |
| * |
| * The unicast table address is a register array of 32-bit registers. |
| * The table is meant to be used in a way similar to how the MTA is used |
| * however due to certain limitations in the hardware it is necessary to |
| * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous |
| * enable bit to allow vlan tag stripping when promiscous mode is enabled |
| **/ |
| static void igb_set_uta(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| /* The UTA table only exists on 82576 hardware and newer */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| /* we only need to do this if VMDq is enabled */ |
| if (!adapter->vfs_allocated_count) |
| return; |
| |
| for (i = 0; i < hw->mac.uta_reg_count; i++) |
| array_wr32(E1000_UTA, i, ~0); |
| } |
| |
| /** |
| * igb_intr_msi - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t igb_intr_msi(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| struct e1000_hw *hw = &adapter->hw; |
| /* read ICR disables interrupts using IAM */ |
| u32 icr = rd32(E1000_ICR); |
| |
| igb_write_itr(q_vector); |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| } |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * igb_intr - Legacy Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t igb_intr(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| struct e1000_hw *hw = &adapter->hw; |
| /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
| * need for the IMC write */ |
| u32 icr = rd32(E1000_ICR); |
| if (!icr) |
| return IRQ_NONE; /* Not our interrupt */ |
| |
| igb_write_itr(q_vector); |
| |
| /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| * not set, then the adapter didn't send an interrupt */ |
| if (!(icr & E1000_ICR_INT_ASSERTED)) |
| return IRQ_NONE; |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| } |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) || |
| (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) { |
| if (!adapter->msix_entries) |
| igb_set_itr(adapter); |
| else |
| igb_update_ring_itr(q_vector); |
| } |
| |
| if (!test_bit(__IGB_DOWN, &adapter->state)) { |
| if (adapter->msix_entries) |
| wr32(E1000_EIMS, q_vector->eims_value); |
| else |
| igb_irq_enable(adapter); |
| } |
| } |
| |
| /** |
| * igb_poll - NAPI Rx polling callback |
| * @napi: napi polling structure |
| * @budget: count of how many packets we should handle |
| **/ |
| static int igb_poll(struct napi_struct *napi, int budget) |
| { |
| struct igb_q_vector *q_vector = container_of(napi, |
| struct igb_q_vector, |
| napi); |
| int tx_clean_complete = 1, work_done = 0; |
| |
| #ifdef CONFIG_IGB_DCA |
| if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) |
| igb_update_dca(q_vector); |
| #endif |
| if (q_vector->tx_ring) |
| tx_clean_complete = igb_clean_tx_irq(q_vector); |
| |
| if (q_vector->rx_ring) |
| igb_clean_rx_irq_adv(q_vector, &work_done, budget); |
| |
| if (!tx_clean_complete) |
| work_done = budget; |
| |
| /* If not enough Rx work done, exit the polling mode */ |
| if (work_done < budget) { |
| napi_complete(napi); |
| igb_ring_irq_enable(q_vector); |
| } |
| |
| return work_done; |
| } |
| |
| /** |
| * igb_systim_to_hwtstamp - convert system time value to hw timestamp |
| * @adapter: board private structure |
| * @shhwtstamps: timestamp structure to update |
| * @regval: unsigned 64bit system time value. |
| * |
| * We need to convert the system time value stored in the RX/TXSTMP registers |
| * into a hwtstamp which can be used by the upper level timestamping functions |
| */ |
| static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, |
| struct skb_shared_hwtstamps *shhwtstamps, |
| u64 regval) |
| { |
| u64 ns; |
| |
| ns = timecounter_cyc2time(&adapter->clock, regval); |
| timecompare_update(&adapter->compare, ns); |
| memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); |
| shhwtstamps->hwtstamp = ns_to_ktime(ns); |
| shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); |
| } |
| |
| /** |
| * igb_tx_hwtstamp - utility function which checks for TX time stamp |
| * @q_vector: pointer to q_vector containing needed info |
| * @skb: packet that was just sent |
| * |
| * If we were asked to do hardware stamping and such a time stamp is |
| * available, then it must have been for this skb here because we only |
| * allow only one such packet into the queue. |
| */ |
| static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| union skb_shared_tx *shtx = skb_tx(skb); |
| struct e1000_hw *hw = &adapter->hw; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 regval; |
| |
| /* if skb does not support hw timestamp or TX stamp not valid exit */ |
| if (likely(!shtx->hardware) || |
| !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_TXSTMPL); |
| regval |= (u64)rd32(E1000_TXSTMPH) << 32; |
| |
| igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); |
| skb_tstamp_tx(skb, &shhwtstamps); |
| } |
| |
| /** |
| * igb_clean_tx_irq - Reclaim resources after transmit completes |
| * @q_vector: pointer to q_vector containing needed info |
| * returns true if ring is completely cleaned |
| **/ |
| static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct igb_ring *tx_ring = q_vector->tx_ring; |
| struct net_device *netdev = tx_ring->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_buffer *buffer_info; |
| struct sk_buff *skb; |
| union e1000_adv_tx_desc *tx_desc, *eop_desc; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int i, eop, count = 0; |
| bool cleaned = false; |
| |
| i = tx_ring->next_to_clean; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); |
| |
| while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && |
| (count < tx_ring->count)) { |
| for (cleaned = false; !cleaned; count++) { |
| tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| cleaned = (i == eop); |
| skb = buffer_info->skb; |
| |
| if (skb) { |
| unsigned int segs, bytecount; |
| /* gso_segs is currently only valid for tcp */ |
| segs = skb_shinfo(skb)->gso_segs ?: 1; |
| /* multiply data chunks by size of headers */ |
| bytecount = ((segs - 1) * skb_headlen(skb)) + |
| skb->len; |
| total_packets += segs; |
| total_bytes += bytecount; |
| |
| igb_tx_hwtstamp(q_vector, skb); |
| } |
| |
| igb_unmap_and_free_tx_resource(tx_ring, buffer_info); |
| tx_desc->wb.status = 0; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); |
| } |
| |
| tx_ring->next_to_clean = i; |
| |
| if (unlikely(count && |
| netif_carrier_ok(netdev) && |
| igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && |
| !(test_bit(__IGB_DOWN, &adapter->state))) { |
| netif_wake_subqueue(netdev, tx_ring->queue_index); |
| tx_ring->tx_stats.restart_queue++; |
| } |
| } |
| |
| if (tx_ring->detect_tx_hung) { |
| /* Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i */ |
| tx_ring->detect_tx_hung = false; |
| if (tx_ring->buffer_info[i].time_stamp && |
| time_after(jiffies, tx_ring->buffer_info[i].time_stamp + |
| (adapter->tx_timeout_factor * HZ)) |
| && !(rd32(E1000_STATUS) & |
| E1000_STATUS_TXOFF)) { |
| |
| /* detected Tx unit hang */ |
| dev_err(&tx_ring->pdev->dev, |
| "Detected Tx Unit Hang\n" |
| " Tx Queue <%d>\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%x>\n" |
| " jiffies <%lx>\n" |
| " desc.status <%x>\n", |
| tx_ring->queue_index, |
| readl(tx_ring->head), |
| readl(tx_ring->tail), |
| tx_ring->next_to_use, |
| tx_ring->next_to_clean, |
| tx_ring->buffer_info[eop].time_stamp, |
| eop, |
| jiffies, |
| eop_desc->wb.status); |
| netif_stop_subqueue(netdev, tx_ring->queue_index); |
| } |
| } |
| tx_ring->total_bytes += total_bytes; |
| tx_ring->total_packets += total_packets; |
| tx_ring->tx_stats.bytes += total_bytes; |
| tx_ring->tx_stats.packets += total_packets; |
| return (count < tx_ring->count); |
| } |
| |
| /** |
| * igb_receive_skb - helper function to handle rx indications |
| * @q_vector: structure containing interrupt and ring information |
| * @skb: packet to send up |
| * @vlan_tag: vlan tag for packet |
| **/ |
| static void igb_receive_skb(struct igb_q_vector *q_vector, |
| struct sk_buff *skb, |
| u16 vlan_tag) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| |
| if (vlan_tag) |
| vlan_gro_receive(&q_vector->napi, adapter->vlgrp, |
| vlan_tag, skb); |
| else |
| napi_gro_receive(&q_vector->napi, skb); |
| } |
| |
| static inline void igb_rx_checksum_adv(struct igb_ring *ring, |
| u32 status_err, struct sk_buff *skb) |
| { |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Ignore Checksum bit is set or checksum is disabled through ethtool */ |
| if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) || |
| (status_err & E1000_RXD_STAT_IXSM)) |
| return; |
| |
| /* TCP/UDP checksum error bit is set */ |
| if (status_err & |
| (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { |
| /* |
| * work around errata with sctp packets where the TCPE aka |
| * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) |
| * packets, (aka let the stack check the crc32c) |
| */ |
| if ((skb->len == 60) && |
| (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) |
| ring->rx_stats.csum_err++; |
| |
| /* let the stack verify checksum errors */ |
| return; |
| } |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err); |
| } |
| |
| static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr, |
| struct sk_buff *skb) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| u64 regval; |
| |
| /* |
| * If this bit is set, then the RX registers contain the time stamp. No |
| * other packet will be time stamped until we read these registers, so |
| * read the registers to make them available again. Because only one |
| * packet can be time stamped at a time, we know that the register |
| * values must belong to this one here and therefore we don't need to |
| * compare any of the additional attributes stored for it. |
| * |
| * If nothing went wrong, then it should have a skb_shared_tx that we |
| * can turn into a skb_shared_hwtstamps. |
| */ |
| if (likely(!(staterr & E1000_RXDADV_STAT_TS))) |
| return; |
| if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_RXSTMPL); |
| regval |= (u64)rd32(E1000_RXSTMPH) << 32; |
| |
| igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); |
| } |
| static inline u16 igb_get_hlen(struct igb_ring *rx_ring, |
| union e1000_adv_rx_desc *rx_desc) |
| { |
| /* HW will not DMA in data larger than the given buffer, even if it |
| * parses the (NFS, of course) header to be larger. In that case, it |
| * fills the header buffer and spills the rest into the page. |
| */ |
| u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & |
| E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; |
| if (hlen > rx_ring->rx_buffer_len) |
| hlen = rx_ring->rx_buffer_len; |
| return hlen; |
| } |
| |
| static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector, |
| int *work_done, int budget) |
| { |
| struct igb_ring *rx_ring = q_vector->rx_ring; |
| struct net_device *netdev = rx_ring->netdev; |
| struct pci_dev *pdev = rx_ring->pdev; |
| union e1000_adv_rx_desc *rx_desc , *next_rxd; |
| struct igb_buffer *buffer_info , *next_buffer; |
| struct sk_buff *skb; |
| bool cleaned = false; |
| int cleaned_count = 0; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int i; |
| u32 staterr; |
| u16 length; |
| u16 vlan_tag; |
| |
| i = rx_ring->next_to_clean; |
| buffer_info = &rx_ring->buffer_info[i]; |
| rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| if (*work_done >= budget) |
| break; |
| (*work_done)++; |
| |
| skb = buffer_info->skb; |
| prefetch(skb->data - NET_IP_ALIGN); |
| buffer_info->skb = NULL; |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| |
| next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); |
| prefetch(next_rxd); |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| length = le16_to_cpu(rx_desc->wb.upper.length); |
| cleaned = true; |
| cleaned_count++; |
| |
| if (buffer_info->dma) { |
| pci_unmap_single(pdev, buffer_info->dma, |
| rx_ring->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) { |
| skb_put(skb, length); |
| goto send_up; |
| } |
| skb_put(skb, igb_get_hlen(rx_ring, rx_desc)); |
| } |
| |
| if (length) { |
| pci_unmap_page(pdev, buffer_info->page_dma, |
| PAGE_SIZE / 2, PCI_DMA_FROMDEVICE); |
| buffer_info->page_dma = 0; |
| |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, |
| buffer_info->page, |
| buffer_info->page_offset, |
| length); |
| |
| if (page_count(buffer_info->page) != 1) |
| buffer_info->page = NULL; |
| else |
| get_page(buffer_info->page); |
| |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| } |
| |
| if (!(staterr & E1000_RXD_STAT_EOP)) { |
| buffer_info->skb = next_buffer->skb; |
| buffer_info->dma = next_buffer->dma; |
| next_buffer->skb = skb; |
| next_buffer->dma = 0; |
| goto next_desc; |
| } |
| send_up: |
| if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| igb_rx_hwtstamp(q_vector, staterr, skb); |
| total_bytes += skb->len; |
| total_packets++; |
| |
| igb_rx_checksum_adv(rx_ring, staterr, skb); |
| |
| skb->protocol = eth_type_trans(skb, netdev); |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| |
| vlan_tag = ((staterr & E1000_RXD_STAT_VP) ? |
| le16_to_cpu(rx_desc->wb.upper.vlan) : 0); |
| |
| igb_receive_skb(q_vector, skb, vlan_tag); |
| |
| next_desc: |
| rx_desc->wb.upper.status_error = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= IGB_RX_BUFFER_WRITE) { |
| igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| } |
| |
| rx_ring->next_to_clean = i; |
| cleaned_count = igb_desc_unused(rx_ring); |
| |
| if (cleaned_count) |
| igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); |
| |
| rx_ring->total_packets += total_packets; |
| rx_ring->total_bytes += total_bytes; |
| rx_ring->rx_stats.packets += total_packets; |
| rx_ring->rx_stats.bytes += total_bytes; |
| return cleaned; |
| } |
| |
| /** |
| * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split |
| * @adapter: address of board private structure |
| **/ |
| void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count) |
| { |
| struct net_device *netdev = rx_ring->netdev; |
| union e1000_adv_rx_desc *rx_desc; |
| struct igb_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| int bufsz; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| bufsz = rx_ring->rx_buffer_len; |
| |
| while (cleaned_count--) { |
| rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); |
| |
| if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) { |
| if (!buffer_info->page) { |
| buffer_info->page = netdev_alloc_page(netdev); |
| if (!buffer_info->page) { |
| rx_ring->rx_stats.alloc_failed++; |
| goto no_buffers; |
| } |
| buffer_info->page_offset = 0; |
| } else { |
| buffer_info->page_offset ^= PAGE_SIZE / 2; |
| } |
| buffer_info->page_dma = |
| pci_map_page(rx_ring->pdev, buffer_info->page, |
| buffer_info->page_offset, |
| PAGE_SIZE / 2, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(rx_ring->pdev, |
| buffer_info->page_dma)) { |
| buffer_info->page_dma = 0; |
| rx_ring->rx_stats.alloc_failed++; |
| goto no_buffers; |
| } |
| } |
| |
| skb = buffer_info->skb; |
| if (!skb) { |
| skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
| if (!skb) { |
| rx_ring->rx_stats.alloc_failed++; |
| goto no_buffers; |
| } |
| |
| buffer_info->skb = skb; |
| } |
| if (!buffer_info->dma) { |
| buffer_info->dma = pci_map_single(rx_ring->pdev, |
| skb->data, |
| bufsz, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(rx_ring->pdev, |
| buffer_info->dma)) { |
| buffer_info->dma = 0; |
| rx_ring->rx_stats.alloc_failed++; |
| goto no_buffers; |
| } |
| } |
| /* Refresh the desc even if buffer_addrs didn't change because |
| * each write-back erases this info. */ |
| if (bufsz < IGB_RXBUFFER_1024) { |
| rx_desc->read.pkt_addr = |
| cpu_to_le64(buffer_info->page_dma); |
| rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); |
| } else { |
| rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); |
| rx_desc->read.hdr_addr = 0; |
| } |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| no_buffers: |
| if (rx_ring->next_to_use != i) { |
| rx_ring->next_to_use = i; |
| if (i == 0) |
| i = (rx_ring->count - 1); |
| else |
| i--; |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| writel(i, rx_ring->tail); |
| } |
| } |
| |
| /** |
| * igb_mii_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = adapter->hw.phy.addr; |
| break; |
| case SIOCGMIIREG: |
| if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, |
| &data->val_out)) |
| return -EIO; |
| break; |
| case SIOCSMIIREG: |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| /** |
| * igb_hwtstamp_ioctl - control hardware time stamping |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't case any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware |
| * filters. Not all combinations are supported, in particular event |
| * type has to be specified. Matching the kind of event packet is |
| * not supported, with the exception of "all V2 events regardless of |
| * level 2 or 4". |
| * |
| **/ |
| static int igb_hwtstamp_ioctl(struct net_device *netdev, |
| struct ifreq *ifr, int cmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct hwtstamp_config config; |
| u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| u32 tsync_rx_cfg = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| /* reserved for future extensions */ |
| if (config.flags) |
| return -EINVAL; |
| |
| switch (config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_ALL: |
| /* |
| * register TSYNCRXCFG must be set, therefore it is not |
| * possible to time stamp both Sync and Delay_Req messages |
| * => fall back to time stamping all packets |
| */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config.rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| config.rx_filter = HWTSTAMP_FILTER_SOME; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| config.rx_filter = HWTSTAMP_FILTER_SOME; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| is_l2 = true; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| if (hw->mac.type == e1000_82575) { |
| if (tsync_rx_ctl | tsync_tx_ctl) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* enable/disable TX */ |
| regval = rd32(E1000_TSYNCTXCTL); |
| regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| wr32(E1000_TSYNCTXCTL, regval); |
| |
| /* enable/disable RX */ |
| regval = rd32(E1000_TSYNCRXCTL); |
| regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| wr32(E1000_TSYNCRXCTL, regval); |
| |
| /* define which PTP packets are time stamped */ |
| wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); |
| |
| /* define ethertype filter for timestamped packets */ |
| if (is_l2) |
| wr32(E1000_ETQF(3), |
| (E1000_ETQF_FILTER_ENABLE | /* enable filter */ |
| E1000_ETQF_1588 | /* enable timestamping */ |
| ETH_P_1588)); /* 1588 eth protocol type */ |
| else |
| wr32(E1000_ETQF(3), 0); |
| |
| #define PTP_PORT 319 |
| /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| if (is_l4) { |
| u32 ftqf = (IPPROTO_UDP /* UDP */ |
| | E1000_FTQF_VF_BP /* VF not compared */ |
| | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ |
| | E1000_FTQF_MASK); /* mask all inputs */ |
| ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ |
| |
| wr32(E1000_IMIR(3), htons(PTP_PORT)); |
| wr32(E1000_IMIREXT(3), |
| (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); |
| if (hw->mac.type == e1000_82576) { |
| /* enable source port check */ |
| wr32(E1000_SPQF(3), htons(PTP_PORT)); |
| ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; |
| } |
| wr32(E1000_FTQF(3), ftqf); |
| } else { |
| wr32(E1000_FTQF(3), E1000_FTQF_MASK); |
| } |
| wrfl(); |
| |
| adapter->hwtstamp_config = config; |
| |
| /* clear TX/RX time stamp registers, just to be sure */ |
| regval = rd32(E1000_TXSTMPH); |
| regval = rd32(E1000_RXSTMPH); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * igb_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return igb_mii_ioctl(netdev, ifr, cmd); |
| case SIOCSHWTSTAMP: |
| return igb_hwtstamp_ioctl(netdev, ifr, cmd); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| u16 cap_offset; |
| |
| cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| if (!cap_offset) |
| return -E1000_ERR_CONFIG; |
| |
| pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
| |
| return 0; |
| } |
| |
| s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| u16 cap_offset; |
| |
| cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| if (!cap_offset) |
| return -E1000_ERR_CONFIG; |
| |
| pci_write_config_word(adapter->pdev, cap_offset + reg, *value); |
| |
| return 0; |
| } |
| |
| static void igb_vlan_rx_register(struct net_device *netdev, |
| struct vlan_group *grp) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, rctl; |
| |
| igb_irq_disable(adapter); |
| adapter->vlgrp = grp; |
| |
| if (grp) { |
| /* enable VLAN tag insert/strip */ |
| ctrl = rd32(E1000_CTRL); |
| ctrl |= E1000_CTRL_VME; |
| wr32(E1000_CTRL, ctrl); |
| |
| /* Disable CFI check */ |
| rctl = rd32(E1000_RCTL); |
| rctl &= ~E1000_RCTL_CFIEN; |
| wr32(E1000_RCTL, rctl); |
| } else { |
| /* disable VLAN tag insert/strip */ |
| ctrl = rd32(E1000_CTRL); |
| ctrl &= ~E1000_CTRL_VME; |
| wr32(E1000_CTRL, ctrl); |
| } |
| |
| igb_rlpml_set(adapter); |
| |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| igb_irq_enable(adapter); |
| } |
| |
| static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int pf_id = adapter->vfs_allocated_count; |
| |
| /* attempt to add filter to vlvf array */ |
| igb_vlvf_set(adapter, vid, true, pf_id); |
| |
| /* add the filter since PF can receive vlans w/o entry in vlvf */ |
| igb_vfta_set(hw, vid, true); |
| } |
| |
| static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int pf_id = adapter->vfs_allocated_count; |
| s32 err; |
| |
| igb_irq_disable(adapter); |
| vlan_group_set_device(adapter->vlgrp, vid, NULL); |
| |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| igb_irq_enable(adapter); |
| |
| /* remove vlan from VLVF table array */ |
| err = igb_vlvf_set(adapter, vid, false, pf_id); |
| |
| /* if vid was not present in VLVF just remove it from table */ |
| if (err) |
| igb_vfta_set(hw, vid, false); |
| } |
| |
| static void igb_restore_vlan(struct igb_adapter *adapter) |
| { |
| igb_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
| |
| if (adapter->vlgrp) { |
| u16 vid; |
| for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
| if (!vlan_group_get_device(adapter->vlgrp, vid)) |
| continue; |
| igb_vlan_rx_add_vid(adapter->netdev, vid); |
| } |
| } |
| } |
| |
| int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| |
| mac->autoneg = 0; |
| |
| switch (spddplx) { |
| case SPEED_10 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_10_HALF; |
| break; |
| case SPEED_10 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_10_FULL; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_100_HALF; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_100_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_FULL: |
| mac->autoneg = 1; |
| adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| default: |
| dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, rctl, status; |
| u32 wufc = adapter->wol; |
| #ifdef CONFIG_PM |
| int retval = 0; |
| #endif |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) |
| igb_close(netdev); |
| |
| igb_clear_interrupt_scheme(adapter); |
| |
| #ifdef CONFIG_PM |
| retval = pci_save_state(pdev); |
| if (retval) |
| return retval; |
| #endif |
| |
| status = rd32(E1000_STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| igb_setup_rctl(adapter); |
| igb_set_rx_mode(netdev); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (wufc & E1000_WUFC_MC) { |
| rctl = rd32(E1000_RCTL); |
| rctl |= E1000_RCTL_MPE; |
| wr32(E1000_RCTL, rctl); |
| } |
| |
| ctrl = rd32(E1000_CTRL); |
| /* advertise wake from D3Cold */ |
| #define E1000_CTRL_ADVD3WUC 0x00100000 |
| /* phy power management enable */ |
| #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| ctrl |= E1000_CTRL_ADVD3WUC; |
| wr32(E1000_CTRL, ctrl); |
| |
| /* Allow time for pending master requests to run */ |
| igb_disable_pcie_master(hw); |
| |
| wr32(E1000_WUC, E1000_WUC_PME_EN); |
| wr32(E1000_WUFC, wufc); |
| } else { |
| wr32(E1000_WUC, 0); |
| wr32(E1000_WUFC, 0); |
| } |
| |
| *enable_wake = wufc || adapter->en_mng_pt; |
| if (!*enable_wake) |
| igb_shutdown_serdes_link_82575(hw); |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| igb_release_hw_control(adapter); |
| |
| pci_disable_device(pdev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int igb_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| int retval; |
| bool wake; |
| |
| retval = __igb_shutdown(pdev, &wake); |
| if (retval) |
| return retval; |
| |
| if (wake) { |
| pci_prepare_to_sleep(pdev); |
| } else { |
| pci_wake_from_d3(pdev, false); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| return 0; |
| } |
| |
| static int igb_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 err; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "igb: Cannot enable PCI device from suspend\n"); |
| return err; |
| } |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| if (igb_init_interrupt_scheme(adapter)) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| /* e1000_power_up_phy(adapter); */ |
| |
| igb_reset(adapter); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| |
| wr32(E1000_WUS, ~0); |
| |
| if (netif_running(netdev)) { |
| err = igb_open(netdev); |
| if (err) |
| return err; |
| } |
| |
| netif_device_attach(netdev); |
| |
| return 0; |
| } |
| #endif |
| |
| static void igb_shutdown(struct pci_dev *pdev) |
| { |
| bool wake; |
| |
| __igb_shutdown(pdev, &wake); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| pci_wake_from_d3(pdev, wake); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void igb_netpoll(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| if (!adapter->msix_entries) { |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| igb_irq_disable(adapter); |
| napi_schedule(&q_vector->napi); |
| return; |
| } |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| wr32(E1000_EIMC, q_vector->eims_value); |
| napi_schedule(&q_vector->napi); |
| } |
| } |
| #endif /* CONFIG_NET_POLL_CONTROLLER */ |
| |
| /** |
| * igb_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| if (netif_running(netdev)) |
| igb_down(adapter); |
| pci_disable_device(pdev); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * igb_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the igb_resume routine. |
| */ |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| pci_ers_result_t result; |
| int err; |
| |
| if (pci_enable_device_mem(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| result = PCI_ERS_RESULT_DISCONNECT; |
| } else { |
| pci_set_master(pdev); |
| pci_restore_state(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| igb_reset(adapter); |
| wr32(E1000_WUS, ~0); |
| result = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| err = pci_cleanup_aer_uncorrect_error_status(pdev); |
| if (err) { |
| dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " |
| "failed 0x%0x\n", err); |
| /* non-fatal, continue */ |
| } |
| |
| return result; |
| } |
| |
| /** |
| * igb_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the igb_resume routine. |
| */ |
| static void igb_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (netif_running(netdev)) { |
| if (igb_up(adapter)) { |
| dev_err(&pdev->dev, "igb_up failed after reset\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| } |
| |
| static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, |
| u8 qsel) |
| { |
| u32 rar_low, rar_high; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| /* Indicate to hardware the Address is Valid. */ |
| rar_high |= E1000_RAH_AV; |
| |
| if (hw->mac.type == e1000_82575) |
| rar_high |= E1000_RAH_POOL_1 * qsel; |
| else |
| rar_high |= E1000_RAH_POOL_1 << qsel; |
| |
| wr32(E1000_RAL(index), rar_low); |
| wrfl(); |
| wr32(E1000_RAH(index), rar_high); |
| wrfl(); |
| } |
| |
| static int igb_set_vf_mac(struct igb_adapter *adapter, |
| int vf, unsigned char *mac_addr) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| /* VF MAC addresses start at end of receive addresses and moves |
| * torwards the first, as a result a collision should not be possible */ |
| int rar_entry = hw->mac.rar_entry_count - (vf + 1); |
| |
| memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); |
| |
| igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); |
| |
| return 0; |
| } |
| |
| static void igb_vmm_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 reg; |
| |
| /* replication is not supported for 82575 */ |
| if (hw->mac.type == e1000_82575) |
| return; |
| |
| /* enable replication vlan tag stripping */ |
| reg = rd32(E1000_RPLOLR); |
| reg |= E1000_RPLOLR_STRVLAN; |
| wr32(E1000_RPLOLR, reg); |
| |
| /* notify HW that the MAC is adding vlan tags */ |
| reg = rd32(E1000_DTXCTL); |
| reg |= E1000_DTXCTL_VLAN_ADDED; |
| wr32(E1000_DTXCTL, reg); |
| |
| if (adapter->vfs_allocated_count) { |
| igb_vmdq_set_loopback_pf(hw, true); |
| igb_vmdq_set_replication_pf(hw, true); |
| } else { |
| igb_vmdq_set_loopback_pf(hw, false); |
| igb_vmdq_set_replication_pf(hw, false); |
| } |
| } |
| |
| /* igb_main.c */ |