| /* |
| * CPPC (Collaborative Processor Performance Control) driver for |
| * interfacing with the CPUfreq layer and governors. See |
| * cppc_acpi.c for CPPC specific methods. |
| * |
| * (C) Copyright 2014, 2015 Linaro Ltd. |
| * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #define pr_fmt(fmt) "CPPC Cpufreq:" fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/dmi.h> |
| #include <linux/time.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <acpi/cppc_acpi.h> |
| |
| /* Minimum struct length needed for the DMI processor entry we want */ |
| #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 |
| |
| /* Offest in the DMI processor structure for the max frequency */ |
| #define DMI_PROCESSOR_MAX_SPEED 0x14 |
| |
| /* |
| * These structs contain information parsed from per CPU |
| * ACPI _CPC structures. |
| * e.g. For each CPU the highest, lowest supported |
| * performance capabilities, desired performance level |
| * requested etc. |
| */ |
| static struct cppc_cpudata **all_cpu_data; |
| |
| struct cppc_workaround_oem_info { |
| char oem_id[ACPI_OEM_ID_SIZE +1]; |
| char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; |
| u32 oem_revision; |
| }; |
| |
| static bool apply_hisi_workaround; |
| |
| static struct cppc_workaround_oem_info wa_info[] = { |
| { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP07 ", |
| .oem_revision = 0, |
| }, { |
| .oem_id = "HISI ", |
| .oem_table_id = "HIP08 ", |
| .oem_revision = 0, |
| } |
| }; |
| |
| static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu, |
| unsigned int perf); |
| |
| /* |
| * HISI platform does not support delivered performance counter and |
| * reference performance counter. It can calculate the performance using the |
| * platform specific mechanism. We reuse the desired performance register to |
| * store the real performance calculated by the platform. |
| */ |
| static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum) |
| { |
| struct cppc_cpudata *cpudata = all_cpu_data[cpunum]; |
| u64 desired_perf; |
| int ret; |
| |
| ret = cppc_get_desired_perf(cpunum, &desired_perf); |
| if (ret < 0) |
| return -EIO; |
| |
| return cppc_cpufreq_perf_to_khz(cpudata, desired_perf); |
| } |
| |
| static void cppc_check_hisi_workaround(void) |
| { |
| struct acpi_table_header *tbl; |
| acpi_status status = AE_OK; |
| int i; |
| |
| status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); |
| if (ACPI_FAILURE(status) || !tbl) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(wa_info); i++) { |
| if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && |
| !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && |
| wa_info[i].oem_revision == tbl->oem_revision) |
| apply_hisi_workaround = true; |
| } |
| } |
| |
| /* Callback function used to retrieve the max frequency from DMI */ |
| static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) |
| { |
| const u8 *dmi_data = (const u8 *)dm; |
| u16 *mhz = (u16 *)private; |
| |
| if (dm->type == DMI_ENTRY_PROCESSOR && |
| dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { |
| u16 val = (u16)get_unaligned((const u16 *) |
| (dmi_data + DMI_PROCESSOR_MAX_SPEED)); |
| *mhz = val > *mhz ? val : *mhz; |
| } |
| } |
| |
| /* Look up the max frequency in DMI */ |
| static u64 cppc_get_dmi_max_khz(void) |
| { |
| u16 mhz = 0; |
| |
| dmi_walk(cppc_find_dmi_mhz, &mhz); |
| |
| /* |
| * Real stupid fallback value, just in case there is no |
| * actual value set. |
| */ |
| mhz = mhz ? mhz : 1; |
| |
| return (1000 * mhz); |
| } |
| |
| /* |
| * If CPPC lowest_freq and nominal_freq registers are exposed then we can |
| * use them to convert perf to freq and vice versa |
| * |
| * If the perf/freq point lies between Nominal and Lowest, we can treat |
| * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line |
| * and extrapolate the rest |
| * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion |
| */ |
| static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu, |
| unsigned int perf) |
| { |
| static u64 max_khz; |
| struct cppc_perf_caps *caps = &cpu->perf_caps; |
| u64 mul, div; |
| |
| if (caps->lowest_freq && caps->nominal_freq) { |
| if (perf >= caps->nominal_perf) { |
| mul = caps->nominal_freq; |
| div = caps->nominal_perf; |
| } else { |
| mul = caps->nominal_freq - caps->lowest_freq; |
| div = caps->nominal_perf - caps->lowest_perf; |
| } |
| } else { |
| if (!max_khz) |
| max_khz = cppc_get_dmi_max_khz(); |
| mul = max_khz; |
| div = cpu->perf_caps.highest_perf; |
| } |
| return (u64)perf * mul / div; |
| } |
| |
| static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu, |
| unsigned int freq) |
| { |
| static u64 max_khz; |
| struct cppc_perf_caps *caps = &cpu->perf_caps; |
| u64 mul, div; |
| |
| if (caps->lowest_freq && caps->nominal_freq) { |
| if (freq >= caps->nominal_freq) { |
| mul = caps->nominal_perf; |
| div = caps->nominal_freq; |
| } else { |
| mul = caps->lowest_perf; |
| div = caps->lowest_freq; |
| } |
| } else { |
| if (!max_khz) |
| max_khz = cppc_get_dmi_max_khz(); |
| mul = cpu->perf_caps.highest_perf; |
| div = max_khz; |
| } |
| |
| return (u64)freq * mul / div; |
| } |
| |
| static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| struct cppc_cpudata *cpu; |
| struct cpufreq_freqs freqs; |
| u32 desired_perf; |
| int ret = 0; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq); |
| /* Return if it is exactly the same perf */ |
| if (desired_perf == cpu->perf_ctrls.desired_perf) |
| return ret; |
| |
| cpu->perf_ctrls.desired_perf = desired_perf; |
| freqs.old = policy->cur; |
| freqs.new = target_freq; |
| |
| cpufreq_freq_transition_begin(policy, &freqs); |
| ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls); |
| cpufreq_freq_transition_end(policy, &freqs, ret != 0); |
| |
| if (ret) |
| pr_debug("Failed to set target on CPU:%d. ret:%d\n", |
| cpu->cpu, ret); |
| |
| return ret; |
| } |
| |
| static int cppc_verify_policy(struct cpufreq_policy *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| return 0; |
| } |
| |
| static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy) |
| { |
| int cpu_num = policy->cpu; |
| struct cppc_cpudata *cpu = all_cpu_data[cpu_num]; |
| int ret; |
| |
| cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf; |
| |
| ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls); |
| if (ret) |
| pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", |
| cpu->perf_caps.lowest_perf, cpu_num, ret); |
| } |
| |
| /* |
| * The PCC subspace describes the rate at which platform can accept commands |
| * on the shared PCC channel (including READs which do not count towards freq |
| * trasition requests), so ideally we need to use the PCC values as a fallback |
| * if we don't have a platform specific transition_delay_us |
| */ |
| #ifdef CONFIG_ARM64 |
| #include <asm/cputype.h> |
| |
| static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu) |
| { |
| unsigned long implementor = read_cpuid_implementor(); |
| unsigned long part_num = read_cpuid_part_number(); |
| unsigned int delay_us = 0; |
| |
| switch (implementor) { |
| case ARM_CPU_IMP_QCOM: |
| switch (part_num) { |
| case QCOM_CPU_PART_FALKOR_V1: |
| case QCOM_CPU_PART_FALKOR: |
| delay_us = 10000; |
| break; |
| default: |
| delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC; |
| break; |
| } |
| break; |
| default: |
| delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC; |
| break; |
| } |
| |
| return delay_us; |
| } |
| |
| #else |
| |
| static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu) |
| { |
| return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; |
| } |
| #endif |
| |
| static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| struct cppc_cpudata *cpu; |
| unsigned int cpu_num = policy->cpu; |
| int ret = 0; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| cpu->cpu = cpu_num; |
| ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps); |
| |
| if (ret) { |
| pr_debug("Err reading CPU%d perf capabilities. ret:%d\n", |
| cpu_num, ret); |
| return ret; |
| } |
| |
| /* Convert the lowest and nominal freq from MHz to KHz */ |
| cpu->perf_caps.lowest_freq *= 1000; |
| cpu->perf_caps.nominal_freq *= 1000; |
| |
| /* |
| * Set min to lowest nonlinear perf to avoid any efficiency penalty (see |
| * Section 8.4.7.1.1.5 of ACPI 6.1 spec) |
| */ |
| policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf); |
| policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf); |
| |
| /* |
| * Set cpuinfo.min_freq to Lowest to make the full range of performance |
| * available if userspace wants to use any perf between lowest & lowest |
| * nonlinear perf |
| */ |
| policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf); |
| policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf); |
| |
| policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num); |
| policy->shared_type = cpu->shared_type; |
| |
| if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { |
| int i; |
| |
| cpumask_copy(policy->cpus, cpu->shared_cpu_map); |
| |
| for_each_cpu(i, policy->cpus) { |
| if (unlikely(i == policy->cpu)) |
| continue; |
| |
| memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps, |
| sizeof(cpu->perf_caps)); |
| } |
| } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) { |
| /* Support only SW_ANY for now. */ |
| pr_debug("Unsupported CPU co-ord type\n"); |
| return -EFAULT; |
| } |
| |
| cpu->cur_policy = policy; |
| |
| /* Set policy->cur to max now. The governors will adjust later. */ |
| policy->cur = cppc_cpufreq_perf_to_khz(cpu, |
| cpu->perf_caps.highest_perf); |
| cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf; |
| |
| ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls); |
| if (ret) |
| pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", |
| cpu->perf_caps.highest_perf, cpu_num, ret); |
| |
| return ret; |
| } |
| |
| static inline u64 get_delta(u64 t1, u64 t0) |
| { |
| if (t1 > t0 || t0 > ~(u32)0) |
| return t1 - t0; |
| |
| return (u32)t1 - (u32)t0; |
| } |
| |
| static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu, |
| struct cppc_perf_fb_ctrs fb_ctrs_t0, |
| struct cppc_perf_fb_ctrs fb_ctrs_t1) |
| { |
| u64 delta_reference, delta_delivered; |
| u64 reference_perf, delivered_perf; |
| |
| reference_perf = fb_ctrs_t0.reference_perf; |
| |
| delta_reference = get_delta(fb_ctrs_t1.reference, |
| fb_ctrs_t0.reference); |
| delta_delivered = get_delta(fb_ctrs_t1.delivered, |
| fb_ctrs_t0.delivered); |
| |
| /* Check to avoid divide-by zero */ |
| if (delta_reference || delta_delivered) |
| delivered_perf = (reference_perf * delta_delivered) / |
| delta_reference; |
| else |
| delivered_perf = cpu->perf_ctrls.desired_perf; |
| |
| return cppc_cpufreq_perf_to_khz(cpu, delivered_perf); |
| } |
| |
| static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum) |
| { |
| struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; |
| struct cppc_cpudata *cpu = all_cpu_data[cpunum]; |
| int ret; |
| |
| if (apply_hisi_workaround) |
| return hisi_cppc_cpufreq_get_rate(cpunum); |
| |
| ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0); |
| if (ret) |
| return ret; |
| |
| udelay(2); /* 2usec delay between sampling */ |
| |
| ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1); |
| if (ret) |
| return ret; |
| |
| return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1); |
| } |
| |
| static struct cpufreq_driver cppc_cpufreq_driver = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = cppc_verify_policy, |
| .target = cppc_cpufreq_set_target, |
| .get = cppc_cpufreq_get_rate, |
| .init = cppc_cpufreq_cpu_init, |
| .stop_cpu = cppc_cpufreq_stop_cpu, |
| .name = "cppc_cpufreq", |
| }; |
| |
| static int __init cppc_cpufreq_init(void) |
| { |
| int i, ret = 0; |
| struct cppc_cpudata *cpu; |
| |
| if (acpi_disabled) |
| return -ENODEV; |
| |
| all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *), |
| GFP_KERNEL); |
| if (!all_cpu_data) |
| return -ENOMEM; |
| |
| for_each_possible_cpu(i) { |
| all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); |
| if (!all_cpu_data[i]) |
| goto out; |
| |
| cpu = all_cpu_data[i]; |
| if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL)) |
| goto out; |
| } |
| |
| ret = acpi_get_psd_map(all_cpu_data); |
| if (ret) { |
| pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n"); |
| goto out; |
| } |
| |
| cppc_check_hisi_workaround(); |
| |
| ret = cpufreq_register_driver(&cppc_cpufreq_driver); |
| if (ret) |
| goto out; |
| |
| return ret; |
| |
| out: |
| for_each_possible_cpu(i) { |
| cpu = all_cpu_data[i]; |
| if (!cpu) |
| break; |
| free_cpumask_var(cpu->shared_cpu_map); |
| kfree(cpu); |
| } |
| |
| kfree(all_cpu_data); |
| return -ENODEV; |
| } |
| |
| static void __exit cppc_cpufreq_exit(void) |
| { |
| struct cppc_cpudata *cpu; |
| int i; |
| |
| cpufreq_unregister_driver(&cppc_cpufreq_driver); |
| |
| for_each_possible_cpu(i) { |
| cpu = all_cpu_data[i]; |
| free_cpumask_var(cpu->shared_cpu_map); |
| kfree(cpu); |
| } |
| |
| kfree(all_cpu_data); |
| } |
| |
| module_exit(cppc_cpufreq_exit); |
| MODULE_AUTHOR("Ashwin Chaugule"); |
| MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); |
| MODULE_LICENSE("GPL"); |
| |
| late_initcall(cppc_cpufreq_init); |
| |
| static const struct acpi_device_id cppc_acpi_ids[] __used = { |
| {ACPI_PROCESSOR_DEVICE_HID, }, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); |