blob: 5f526dd0aaa1e1b2b8450109e9962ea6ead776da [file] [log] [blame]
/*
* Adaptec AIC79xx device driver for Linux.
*
* $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#171 $
*
* --------------------------------------------------------------------------
* Copyright (c) 1994-2000 Justin T. Gibbs.
* Copyright (c) 1997-1999 Doug Ledford
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#include <scsi/scsicam.h>
/*
* Include aiclib.c as part of our
* "module dependencies are hard" work around.
*/
#include "aiclib.c"
#include <linux/init.h> /* __setup */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
#include "sd.h" /* For geometry detection */
#endif
#include <linux/mm.h> /* For fetching system memory size */
#include <linux/delay.h> /* For ssleep/msleep */
/*
* Lock protecting manipulation of the ahd softc list.
*/
spinlock_t ahd_list_spinlock;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/* For dynamic sglist size calculation. */
u_int ahd_linux_nseg;
#endif
/*
* Bucket size for counting good commands in between bad ones.
*/
#define AHD_LINUX_ERR_THRESH 1000
/*
* Set this to the delay in seconds after SCSI bus reset.
* Note, we honor this only for the initial bus reset.
* The scsi error recovery code performs its own bus settle
* delay handling for error recovery actions.
*/
#ifdef CONFIG_AIC79XX_RESET_DELAY_MS
#define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS
#else
#define AIC79XX_RESET_DELAY 5000
#endif
/*
* To change the default number of tagged transactions allowed per-device,
* add a line to the lilo.conf file like:
* append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
* which will result in the first four devices on the first two
* controllers being set to a tagged queue depth of 32.
*
* The tag_commands is an array of 16 to allow for wide and twin adapters.
* Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
* for channel 1.
*/
typedef struct {
uint16_t tag_commands[16]; /* Allow for wide/twin adapters. */
} adapter_tag_info_t;
/*
* Modify this as you see fit for your system.
*
* 0 tagged queuing disabled
* 1 <= n <= 253 n == max tags ever dispatched.
*
* The driver will throttle the number of commands dispatched to a
* device if it returns queue full. For devices with a fixed maximum
* queue depth, the driver will eventually determine this depth and
* lock it in (a console message is printed to indicate that a lock
* has occurred). On some devices, queue full is returned for a temporary
* resource shortage. These devices will return queue full at varying
* depths. The driver will throttle back when the queue fulls occur and
* attempt to slowly increase the depth over time as the device recovers
* from the resource shortage.
*
* In this example, the first line will disable tagged queueing for all
* the devices on the first probed aic79xx adapter.
*
* The second line enables tagged queueing with 4 commands/LUN for IDs
* (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
* driver to attempt to use up to 64 tags for ID 1.
*
* The third line is the same as the first line.
*
* The fourth line disables tagged queueing for devices 0 and 3. It
* enables tagged queueing for the other IDs, with 16 commands/LUN
* for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
* IDs 2, 5-7, and 9-15.
*/
/*
* NOTE: The below structure is for reference only, the actual structure
* to modify in order to change things is just below this comment block.
adapter_tag_info_t aic79xx_tag_info[] =
{
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
};
*/
#ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE
#define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE
#else
#define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE
#endif
#define AIC79XX_CONFIGED_TAG_COMMANDS { \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \
AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE \
}
/*
* By default, use the number of commands specified by
* the users kernel configuration.
*/
static adapter_tag_info_t aic79xx_tag_info[] =
{
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS},
{AIC79XX_CONFIGED_TAG_COMMANDS}
};
/*
* By default, read streaming is disabled. In theory,
* read streaming should enhance performance, but early
* U320 drive firmware actually performs slower with
* read streaming enabled.
*/
#ifdef CONFIG_AIC79XX_ENABLE_RD_STRM
#define AIC79XX_CONFIGED_RD_STRM 0xFFFF
#else
#define AIC79XX_CONFIGED_RD_STRM 0
#endif
static uint16_t aic79xx_rd_strm_info[] =
{
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM,
AIC79XX_CONFIGED_RD_STRM
};
/*
* DV option:
*
* positive value = DV Enabled
* zero = DV Disabled
* negative value = DV Default for adapter type/seeprom
*/
#ifdef CONFIG_AIC79XX_DV_SETTING
#define AIC79XX_CONFIGED_DV CONFIG_AIC79XX_DV_SETTING
#else
#define AIC79XX_CONFIGED_DV -1
#endif
static int8_t aic79xx_dv_settings[] =
{
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV,
AIC79XX_CONFIGED_DV
};
/*
* The I/O cell on the chip is very configurable in respect to its analog
* characteristics. Set the defaults here; they can be overriden with
* the proper insmod parameters.
*/
struct ahd_linux_iocell_opts
{
uint8_t precomp;
uint8_t slewrate;
uint8_t amplitude;
};
#define AIC79XX_DEFAULT_PRECOMP 0xFF
#define AIC79XX_DEFAULT_SLEWRATE 0xFF
#define AIC79XX_DEFAULT_AMPLITUDE 0xFF
#define AIC79XX_DEFAULT_IOOPTS \
{ \
AIC79XX_DEFAULT_PRECOMP, \
AIC79XX_DEFAULT_SLEWRATE, \
AIC79XX_DEFAULT_AMPLITUDE \
}
#define AIC79XX_PRECOMP_INDEX 0
#define AIC79XX_SLEWRATE_INDEX 1
#define AIC79XX_AMPLITUDE_INDEX 2
static struct ahd_linux_iocell_opts aic79xx_iocell_info[] =
{
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS,
AIC79XX_DEFAULT_IOOPTS
};
/*
* There should be a specific return value for this in scsi.h, but
* it seems that most drivers ignore it.
*/
#define DID_UNDERFLOW DID_ERROR
void
ahd_print_path(struct ahd_softc *ahd, struct scb *scb)
{
printk("(scsi%d:%c:%d:%d): ",
ahd->platform_data->host->host_no,
scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X',
scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1,
scb != NULL ? SCB_GET_LUN(scb) : -1);
}
/*
* XXX - these options apply unilaterally to _all_ adapters
* cards in the system. This should be fixed. Exceptions to this
* rule are noted in the comments.
*/
/*
* Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
* has no effect on any later resets that might occur due to things like
* SCSI bus timeouts.
*/
static uint32_t aic79xx_no_reset;
/*
* Certain PCI motherboards will scan PCI devices from highest to lowest,
* others scan from lowest to highest, and they tend to do all kinds of
* strange things when they come into contact with PCI bridge chips. The
* net result of all this is that the PCI card that is actually used to boot
* the machine is very hard to detect. Most motherboards go from lowest
* PCI slot number to highest, and the first SCSI controller found is the
* one you boot from. The only exceptions to this are when a controller
* has its BIOS disabled. So, we by default sort all of our SCSI controllers
* from lowest PCI slot number to highest PCI slot number. We also force
* all controllers with their BIOS disabled to the end of the list. This
* works on *almost* all computers. Where it doesn't work, we have this
* option. Setting this option to non-0 will reverse the order of the sort
* to highest first, then lowest, but will still leave cards with their BIOS
* disabled at the very end. That should fix everyone up unless there are
* really strange cirumstances.
*/
static uint32_t aic79xx_reverse_scan;
/*
* Should we force EXTENDED translation on a controller.
* 0 == Use whatever is in the SEEPROM or default to off
* 1 == Use whatever is in the SEEPROM or default to on
*/
static uint32_t aic79xx_extended;
/*
* PCI bus parity checking of the Adaptec controllers. This is somewhat
* dubious at best. To my knowledge, this option has never actually
* solved a PCI parity problem, but on certain machines with broken PCI
* chipset configurations, it can generate tons of false error messages.
* It's included in the driver for completeness.
* 0 = Shut off PCI parity check
* non-0 = Enable PCI parity check
*
* NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
* variable to -1 you would actually want to simply pass the variable
* name without a number. That will invert the 0 which will result in
* -1.
*/
static uint32_t aic79xx_pci_parity = ~0;
/*
* There are lots of broken chipsets in the world. Some of them will
* violate the PCI spec when we issue byte sized memory writes to our
* controller. I/O mapped register access, if allowed by the given
* platform, will work in almost all cases.
*/
uint32_t aic79xx_allow_memio = ~0;
/*
* aic79xx_detect() has been run, so register all device arrivals
* immediately with the system rather than deferring to the sorted
* attachment performed by aic79xx_detect().
*/
int aic79xx_detect_complete;
/*
* So that we can set how long each device is given as a selection timeout.
* The table of values goes like this:
* 0 - 256ms
* 1 - 128ms
* 2 - 64ms
* 3 - 32ms
* We default to 256ms because some older devices need a longer time
* to respond to initial selection.
*/
static uint32_t aic79xx_seltime;
/*
* Certain devices do not perform any aging on commands. Should the
* device be saturated by commands in one portion of the disk, it is
* possible for transactions on far away sectors to never be serviced.
* To handle these devices, we can periodically send an ordered tag to
* force all outstanding transactions to be serviced prior to a new
* transaction.
*/
uint32_t aic79xx_periodic_otag;
/*
* Module information and settable options.
*/
static char *aic79xx = NULL;
MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
MODULE_DESCRIPTION("Adaptec Aic790X U320 SCSI Host Bus Adapter driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC79XX_DRIVER_VERSION);
module_param(aic79xx, charp, 0);
MODULE_PARM_DESC(aic79xx,
"period delimited, options string.\n"
" verbose Enable verbose/diagnostic logging\n"
" allow_memio Allow device registers to be memory mapped\n"
" debug Bitmask of debug values to enable\n"
" no_reset Supress initial bus resets\n"
" extended Enable extended geometry on all controllers\n"
" periodic_otag Send an ordered tagged transaction\n"
" periodically to prevent tag starvation.\n"
" This may be required by some older disk\n"
" or drives/RAID arrays.\n"
" reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
" tag_info:<tag_str> Set per-target tag depth\n"
" global_tag_depth:<int> Global tag depth for all targets on all buses\n"
" rd_strm:<rd_strm_masks> Set per-target read streaming setting.\n"
" dv:<dv_settings> Set per-controller Domain Validation Setting.\n"
" slewrate:<slewrate_list>Set the signal slew rate (0-15).\n"
" precomp:<pcomp_list> Set the signal precompensation (0-7).\n"
" amplitude:<int> Set the signal amplitude (0-7).\n"
" seltime:<int> Selection Timeout:\n"
" (0/256ms,1/128ms,2/64ms,3/32ms)\n"
"\n"
" Sample /etc/modprobe.conf line:\n"
" Enable verbose logging\n"
" Set tag depth on Controller 2/Target 2 to 10 tags\n"
" Shorten the selection timeout to 128ms\n"
"\n"
" options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n"
"\n"
" Sample /etc/modprobe.conf line:\n"
" Change Read Streaming for Controller's 2 and 3\n"
"\n"
" options aic79xx 'aic79xx=rd_strm:{..0xFFF0.0xC0F0}'");
static void ahd_linux_handle_scsi_status(struct ahd_softc *,
struct ahd_linux_device *,
struct scb *);
static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd,
Scsi_Cmnd *cmd);
static void ahd_linux_filter_inquiry(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_linux_dev_timed_unfreeze(u_long arg);
static void ahd_linux_sem_timeout(u_long arg);
static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd);
static void ahd_linux_size_nseg(void);
static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd);
static void ahd_linux_start_dv(struct ahd_softc *ahd);
static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd);
static int ahd_linux_dv_thread(void *data);
static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd);
static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target);
static void ahd_linux_dv_transition(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ);
static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo);
static void ahd_linux_dv_inq(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ,
u_int request_length);
static void ahd_linux_dv_tur(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo);
static void ahd_linux_dv_rebd(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ);
static void ahd_linux_dv_web(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ);
static void ahd_linux_dv_reb(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ);
static void ahd_linux_dv_su(struct ahd_softc *ahd,
struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ);
static int ahd_linux_fallback(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_linux_dv_complete(Scsi_Cmnd *cmd);
static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ);
static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd);
static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd);
static void ahd_linux_device_queue_depth(struct ahd_softc *ahd,
struct ahd_linux_device *dev);
static struct ahd_linux_target* ahd_linux_alloc_target(struct ahd_softc*,
u_int, u_int);
static void ahd_linux_free_target(struct ahd_softc*,
struct ahd_linux_target*);
static struct ahd_linux_device* ahd_linux_alloc_device(struct ahd_softc*,
struct ahd_linux_target*,
u_int);
static void ahd_linux_free_device(struct ahd_softc*,
struct ahd_linux_device*);
static void ahd_linux_run_device_queue(struct ahd_softc*,
struct ahd_linux_device*);
static void ahd_linux_setup_tag_info_global(char *p);
static aic_option_callback_t ahd_linux_setup_tag_info;
static aic_option_callback_t ahd_linux_setup_rd_strm_info;
static aic_option_callback_t ahd_linux_setup_dv;
static aic_option_callback_t ahd_linux_setup_iocell_info;
static int ahd_linux_next_unit(void);
static void ahd_runq_tasklet(unsigned long data);
static int aic79xx_setup(char *c);
/****************************** Inlines ***************************************/
static __inline void ahd_schedule_completeq(struct ahd_softc *ahd);
static __inline void ahd_schedule_runq(struct ahd_softc *ahd);
static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd);
static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd);
static __inline struct ahd_linux_device*
ahd_linux_get_device(struct ahd_softc *ahd, u_int channel,
u_int target, u_int lun, int alloc);
static struct ahd_cmd *ahd_linux_run_complete_queue(struct ahd_softc *ahd);
static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd,
struct ahd_linux_device *dev);
static __inline struct ahd_linux_device *
ahd_linux_next_device_to_run(struct ahd_softc *ahd);
static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd);
static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
static __inline void
ahd_schedule_completeq(struct ahd_softc *ahd)
{
if ((ahd->platform_data->flags & AHD_RUN_CMPLT_Q_TIMER) == 0) {
ahd->platform_data->flags |= AHD_RUN_CMPLT_Q_TIMER;
ahd->platform_data->completeq_timer.expires = jiffies;
add_timer(&ahd->platform_data->completeq_timer);
}
}
/*
* Must be called with our lock held.
*/
static __inline void
ahd_schedule_runq(struct ahd_softc *ahd)
{
tasklet_schedule(&ahd->platform_data->runq_tasklet);
}
static __inline
void ahd_setup_runq_tasklet(struct ahd_softc *ahd)
{
tasklet_init(&ahd->platform_data->runq_tasklet, ahd_runq_tasklet,
(unsigned long)ahd);
}
static __inline void
ahd_teardown_runq_tasklet(struct ahd_softc *ahd)
{
tasklet_kill(&ahd->platform_data->runq_tasklet);
}
static __inline struct ahd_linux_device*
ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target,
u_int lun, int alloc)
{
struct ahd_linux_target *targ;
struct ahd_linux_device *dev;
u_int target_offset;
target_offset = target;
if (channel != 0)
target_offset += 8;
targ = ahd->platform_data->targets[target_offset];
if (targ == NULL) {
if (alloc != 0) {
targ = ahd_linux_alloc_target(ahd, channel, target);
if (targ == NULL)
return (NULL);
} else
return (NULL);
}
dev = targ->devices[lun];
if (dev == NULL && alloc != 0)
dev = ahd_linux_alloc_device(ahd, targ, lun);
return (dev);
}
#define AHD_LINUX_MAX_RETURNED_ERRORS 4
static struct ahd_cmd *
ahd_linux_run_complete_queue(struct ahd_softc *ahd)
{
struct ahd_cmd *acmd;
u_long done_flags;
int with_errors;
with_errors = 0;
ahd_done_lock(ahd, &done_flags);
while ((acmd = TAILQ_FIRST(&ahd->platform_data->completeq)) != NULL) {
Scsi_Cmnd *cmd;
if (with_errors > AHD_LINUX_MAX_RETURNED_ERRORS) {
/*
* Linux uses stack recursion to requeue
* commands that need to be retried. Avoid
* blowing out the stack by "spoon feeding"
* commands that completed with error back
* the operating system in case they are going
* to be retried. "ick"
*/
ahd_schedule_completeq(ahd);
break;
}
TAILQ_REMOVE(&ahd->platform_data->completeq,
acmd, acmd_links.tqe);
cmd = &acmd_scsi_cmd(acmd);
cmd->host_scribble = NULL;
if (ahd_cmd_get_transaction_status(cmd) != DID_OK
|| (cmd->result & 0xFF) != SCSI_STATUS_OK)
with_errors++;
cmd->scsi_done(cmd);
}
ahd_done_unlock(ahd, &done_flags);
return (acmd);
}
static __inline void
ahd_linux_check_device_queue(struct ahd_softc *ahd,
struct ahd_linux_device *dev)
{
if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) != 0
&& dev->active == 0) {
dev->flags &= ~AHD_DEV_FREEZE_TIL_EMPTY;
dev->qfrozen--;
}
if (TAILQ_FIRST(&dev->busyq) == NULL
|| dev->openings == 0 || dev->qfrozen != 0)
return;
ahd_linux_run_device_queue(ahd, dev);
}
static __inline struct ahd_linux_device *
ahd_linux_next_device_to_run(struct ahd_softc *ahd)
{
if ((ahd->flags & AHD_RESOURCE_SHORTAGE) != 0
|| (ahd->platform_data->qfrozen != 0
&& AHD_DV_SIMQ_FROZEN(ahd) == 0))
return (NULL);
return (TAILQ_FIRST(&ahd->platform_data->device_runq));
}
static __inline void
ahd_linux_run_device_queues(struct ahd_softc *ahd)
{
struct ahd_linux_device *dev;
while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
dev->flags &= ~AHD_DEV_ON_RUN_LIST;
ahd_linux_check_device_queue(ahd, dev);
}
}
static __inline void
ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb)
{
Scsi_Cmnd *cmd;
int direction;
cmd = scb->io_ctx;
direction = cmd->sc_data_direction;
ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE);
if (cmd->use_sg != 0) {
struct scatterlist *sg;
sg = (struct scatterlist *)cmd->request_buffer;
pci_unmap_sg(ahd->dev_softc, sg, cmd->use_sg, direction);
} else if (cmd->request_bufflen != 0) {
pci_unmap_single(ahd->dev_softc,
scb->platform_data->buf_busaddr,
cmd->request_bufflen, direction);
}
}
/******************************** Macros **************************************/
#define BUILD_SCSIID(ahd, cmd) \
((((cmd)->device->id << TID_SHIFT) & TID) | (ahd)->our_id)
/************************ Host template entry points *************************/
static int ahd_linux_detect(Scsi_Host_Template *);
static const char *ahd_linux_info(struct Scsi_Host *);
static int ahd_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
static int ahd_linux_slave_alloc(Scsi_Device *);
static int ahd_linux_slave_configure(Scsi_Device *);
static void ahd_linux_slave_destroy(Scsi_Device *);
#if defined(__i386__)
static int ahd_linux_biosparam(struct scsi_device*,
struct block_device*, sector_t, int[]);
#endif
#else
static int ahd_linux_release(struct Scsi_Host *);
static void ahd_linux_select_queue_depth(struct Scsi_Host *host,
Scsi_Device *scsi_devs);
#if defined(__i386__)
static int ahd_linux_biosparam(Disk *, kdev_t, int[]);
#endif
#endif
static int ahd_linux_bus_reset(Scsi_Cmnd *);
static int ahd_linux_dev_reset(Scsi_Cmnd *);
static int ahd_linux_abort(Scsi_Cmnd *);
/*
* Calculate a safe value for AHD_NSEG (as expressed through ahd_linux_nseg).
*
* In pre-2.5.X...
* The midlayer allocates an S/G array dynamically when a command is issued
* using SCSI malloc. This array, which is in an OS dependent format that
* must later be copied to our private S/G list, is sized to house just the
* number of segments needed for the current transfer. Since the code that
* sizes the SCSI malloc pool does not take into consideration fragmentation
* of the pool, executing transactions numbering just a fraction of our
* concurrent transaction limit with SG list lengths aproaching AHC_NSEG will
* quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
* mid-layer does not properly handle this scsi malloc failures for the S/G
* array and the result can be a lockup of the I/O subsystem. We try to size
* our S/G list so that it satisfies our drivers allocation requirements in
* addition to avoiding fragmentation of the SCSI malloc pool.
*/
static void
ahd_linux_size_nseg(void)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
u_int cur_size;
u_int best_size;
/*
* The SCSI allocator rounds to the nearest 512 bytes
* an cannot allocate across a page boundary. Our algorithm
* is to start at 1K of scsi malloc space per-command and
* loop through all factors of the PAGE_SIZE and pick the best.
*/
best_size = 0;
for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
u_int nseg;
nseg = cur_size / sizeof(struct scatterlist);
if (nseg < AHD_LINUX_MIN_NSEG)
continue;
if (best_size == 0) {
best_size = cur_size;
ahd_linux_nseg = nseg;
} else {
u_int best_rem;
u_int cur_rem;
/*
* Compare the traits of the current "best_size"
* with the current size to determine if the
* current size is a better size.
*/
best_rem = best_size % sizeof(struct scatterlist);
cur_rem = cur_size % sizeof(struct scatterlist);
if (cur_rem < best_rem) {
best_size = cur_size;
ahd_linux_nseg = nseg;
}
}
}
#endif
}
/*
* Try to detect an Adaptec 79XX controller.
*/
static int
ahd_linux_detect(Scsi_Host_Template *template)
{
struct ahd_softc *ahd;
int found;
int error = 0;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* It is a bug that the upper layer takes
* this lock just prior to calling us.
*/
spin_unlock_irq(&io_request_lock);
#endif
/*
* Sanity checking of Linux SCSI data structures so
* that some of our hacks^H^H^H^H^Hassumptions aren't
* violated.
*/
if (offsetof(struct ahd_cmd_internal, end)
> offsetof(struct scsi_cmnd, host_scribble)) {
printf("ahd_linux_detect: SCSI data structures changed.\n");
printf("ahd_linux_detect: Unable to attach\n");
return (0);
}
/*
* Determine an appropriate size for our Scatter Gatther lists.
*/
ahd_linux_size_nseg();
#ifdef MODULE
/*
* If we've been passed any parameters, process them now.
*/
if (aic79xx)
aic79xx_setup(aic79xx);
#endif
template->proc_name = "aic79xx";
/*
* Initialize our softc list lock prior to
* probing for any adapters.
*/
ahd_list_lockinit();
#ifdef CONFIG_PCI
error = ahd_linux_pci_init();
if (error)
return error;
#endif
/*
* Register with the SCSI layer all
* controllers we've found.
*/
found = 0;
TAILQ_FOREACH(ahd, &ahd_tailq, links) {
if (ahd_linux_register_host(ahd, template) == 0)
found++;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
spin_lock_irq(&io_request_lock);
#endif
aic79xx_detect_complete++;
return 0;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* Free the passed in Scsi_Host memory structures prior to unloading the
* module.
*/
static int
ahd_linux_release(struct Scsi_Host * host)
{
struct ahd_softc *ahd;
u_long l;
ahd_list_lock(&l);
if (host != NULL) {
/*
* We should be able to just perform
* the free directly, but check our
* list for extra sanity.
*/
ahd = ahd_find_softc(*(struct ahd_softc **)host->hostdata);
if (ahd != NULL) {
u_long s;
ahd_lock(ahd, &s);
ahd_intr_enable(ahd, FALSE);
ahd_unlock(ahd, &s);
ahd_free(ahd);
}
}
ahd_list_unlock(&l);
return (0);
}
#endif
/*
* Return a string describing the driver.
*/
static const char *
ahd_linux_info(struct Scsi_Host *host)
{
static char buffer[512];
char ahd_info[256];
char *bp;
struct ahd_softc *ahd;
bp = &buffer[0];
ahd = *(struct ahd_softc **)host->hostdata;
memset(bp, 0, sizeof(buffer));
strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev ");
strcat(bp, AIC79XX_DRIVER_VERSION);
strcat(bp, "\n");
strcat(bp, " <");
strcat(bp, ahd->description);
strcat(bp, ">\n");
strcat(bp, " ");
ahd_controller_info(ahd, ahd_info);
strcat(bp, ahd_info);
strcat(bp, "\n");
return (bp);
}
/*
* Queue an SCB to the controller.
*/
static int
ahd_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
{
struct ahd_softc *ahd;
struct ahd_linux_device *dev;
u_long flags;
ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
/*
* Save the callback on completion function.
*/
cmd->scsi_done = scsi_done;
ahd_midlayer_entrypoint_lock(ahd, &flags);
/*
* Close the race of a command that was in the process of
* being queued to us just as our simq was frozen. Let
* DV commands through so long as we are only frozen to
* perform DV.
*/
if (ahd->platform_data->qfrozen != 0
&& AHD_DV_CMD(cmd) == 0) {
ahd_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
ahd_linux_queue_cmd_complete(ahd, cmd);
ahd_schedule_completeq(ahd);
ahd_midlayer_entrypoint_unlock(ahd, &flags);
return (0);
}
dev = ahd_linux_get_device(ahd, cmd->device->channel,
cmd->device->id, cmd->device->lun,
/*alloc*/TRUE);
if (dev == NULL) {
ahd_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
ahd_linux_queue_cmd_complete(ahd, cmd);
ahd_schedule_completeq(ahd);
ahd_midlayer_entrypoint_unlock(ahd, &flags);
printf("%s: aic79xx_linux_queue - Unable to allocate device!\n",
ahd_name(ahd));
return (0);
}
if (cmd->cmd_len > MAX_CDB_LEN)
return (-EINVAL);
cmd->result = CAM_REQ_INPROG << 16;
TAILQ_INSERT_TAIL(&dev->busyq, (struct ahd_cmd *)cmd, acmd_links.tqe);
if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
dev->flags |= AHD_DEV_ON_RUN_LIST;
ahd_linux_run_device_queues(ahd);
}
ahd_midlayer_entrypoint_unlock(ahd, &flags);
return (0);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
static int
ahd_linux_slave_alloc(Scsi_Device *device)
{
struct ahd_softc *ahd;
ahd = *((struct ahd_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Alloc %d\n", ahd_name(ahd), device->id);
return (0);
}
static int
ahd_linux_slave_configure(Scsi_Device *device)
{
struct ahd_softc *ahd;
struct ahd_linux_device *dev;
u_long flags;
ahd = *((struct ahd_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Configure %d\n", ahd_name(ahd), device->id);
ahd_midlayer_entrypoint_lock(ahd, &flags);
/*
* Since Linux has attached to the device, configure
* it so we don't free and allocate the device
* structure on every command.
*/
dev = ahd_linux_get_device(ahd, device->channel,
device->id, device->lun,
/*alloc*/TRUE);
if (dev != NULL) {
dev->flags &= ~AHD_DEV_UNCONFIGURED;
dev->flags |= AHD_DEV_SLAVE_CONFIGURED;
dev->scsi_device = device;
ahd_linux_device_queue_depth(ahd, dev);
}
ahd_midlayer_entrypoint_unlock(ahd, &flags);
return (0);
}
static void
ahd_linux_slave_destroy(Scsi_Device *device)
{
struct ahd_softc *ahd;
struct ahd_linux_device *dev;
u_long flags;
ahd = *((struct ahd_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Destroy %d\n", ahd_name(ahd), device->id);
ahd_midlayer_entrypoint_lock(ahd, &flags);
dev = ahd_linux_get_device(ahd, device->channel,
device->id, device->lun,
/*alloc*/FALSE);
/*
* Filter out "silly" deletions of real devices by only
* deleting devices that have had slave_configure()
* called on them. All other devices that have not
* been configured will automatically be deleted by
* the refcounting process.
*/
if (dev != NULL
&& (dev->flags & AHD_DEV_SLAVE_CONFIGURED) != 0) {
dev->flags |= AHD_DEV_UNCONFIGURED;
if (TAILQ_EMPTY(&dev->busyq)
&& dev->active == 0
&& (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
ahd_linux_free_device(ahd, dev);
}
ahd_midlayer_entrypoint_unlock(ahd, &flags);
}
#else
/*
* Sets the queue depth for each SCSI device hanging
* off the input host adapter.
*/
static void
ahd_linux_select_queue_depth(struct Scsi_Host * host,
Scsi_Device * scsi_devs)
{
Scsi_Device *device;
Scsi_Device *ldev;
struct ahd_softc *ahd;
u_long flags;
ahd = *((struct ahd_softc **)host->hostdata);
ahd_lock(ahd, &flags);
for (device = scsi_devs; device != NULL; device = device->next) {
/*
* Watch out for duplicate devices. This works around
* some quirks in how the SCSI scanning code does its
* device management.
*/
for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
if (ldev->host == device->host
&& ldev->channel == device->channel
&& ldev->id == device->id
&& ldev->lun == device->lun)
break;
}
/* Skip duplicate. */
if (ldev != device)
continue;
if (device->host == host) {
struct ahd_linux_device *dev;
/*
* Since Linux has attached to the device, configure
* it so we don't free and allocate the device
* structure on every command.
*/
dev = ahd_linux_get_device(ahd, device->channel,
device->id, device->lun,
/*alloc*/TRUE);
if (dev != NULL) {
dev->flags &= ~AHD_DEV_UNCONFIGURED;
dev->scsi_device = device;
ahd_linux_device_queue_depth(ahd, dev);
device->queue_depth = dev->openings
+ dev->active;
if ((dev->flags & (AHD_DEV_Q_BASIC
| AHD_DEV_Q_TAGGED)) == 0) {
/*
* We allow the OS to queue 2 untagged
* transactions to us at any time even
* though we can only execute them
* serially on the controller/device.
* This should remove some latency.
*/
device->queue_depth = 2;
}
}
}
}
ahd_unlock(ahd, &flags);
}
#endif
#if defined(__i386__)
/*
* Return the disk geometry for the given SCSI device.
*/
static int
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
uint8_t *bh;
#else
ahd_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
{
struct scsi_device *sdev = disk->device;
u_long capacity = disk->capacity;
struct buffer_head *bh;
#endif
int heads;
int sectors;
int cylinders;
int ret;
int extended;
struct ahd_softc *ahd;
ahd = *((struct ahd_softc **)sdev->host->hostdata);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
bh = scsi_bios_ptable(bdev);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
#else
bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
#endif
if (bh) {
ret = scsi_partsize(bh, capacity,
&geom[2], &geom[0], &geom[1]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
kfree(bh);
#else
brelse(bh);
#endif
if (ret != -1)
return (ret);
}
heads = 64;
sectors = 32;
cylinders = aic_sector_div(capacity, heads, sectors);
if (aic79xx_extended != 0)
extended = 1;
else
extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0;
if (extended && cylinders >= 1024) {
heads = 255;
sectors = 63;
cylinders = aic_sector_div(capacity, heads, sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return (0);
}
#endif
/*
* Abort the current SCSI command(s).
*/
static int
ahd_linux_abort(Scsi_Cmnd *cmd)
{
struct ahd_softc *ahd;
struct ahd_cmd *acmd;
struct ahd_cmd *list_acmd;
struct ahd_linux_device *dev;
struct scb *pending_scb;
u_long s;
u_int saved_scbptr;
u_int active_scbptr;
u_int last_phase;
u_int cdb_byte;
int retval;
int was_paused;
int paused;
int wait;
int disconnected;
ahd_mode_state saved_modes;
pending_scb = NULL;
paused = FALSE;
wait = FALSE;
ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
acmd = (struct ahd_cmd *)cmd;
printf("%s:%d:%d:%d: Attempting to abort cmd %p:",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun, cmd);
for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
printf(" 0x%x", cmd->cmnd[cdb_byte]);
printf("\n");
/*
* In all versions of Linux, we have to work around
* a major flaw in how the mid-layer is locked down
* if we are to sleep successfully in our error handler
* while allowing our interrupt handler to run. Since
* the midlayer acquires either the io_request_lock or
* our lock prior to calling us, we must use the
* spin_unlock_irq() method for unlocking our lock.
* This will force interrupts to be enabled on the
* current CPU. Since the EH thread should not have
* been running with CPU interrupts disabled other than
* by acquiring either the io_request_lock or our own
* lock, this *should* be safe.
*/
ahd_midlayer_entrypoint_lock(ahd, &s);
/*
* First determine if we currently own this command.
* Start by searching the device queue. If not found
* there, check the pending_scb list. If not found
* at all, and the system wanted us to just abort the
* command, return success.
*/
dev = ahd_linux_get_device(ahd, cmd->device->channel,
cmd->device->id, cmd->device->lun,
/*alloc*/FALSE);
if (dev == NULL) {
/*
* No target device for this command exists,
* so we must not still own the command.
*/
printf("%s:%d:%d:%d: Is not an active device\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun);
retval = SUCCESS;
goto no_cmd;
}
TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
if (list_acmd == acmd)
break;
}
if (list_acmd != NULL) {
printf("%s:%d:%d:%d: Command found on device queue\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun);
TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
cmd->result = DID_ABORT << 16;
ahd_linux_queue_cmd_complete(ahd, cmd);
retval = SUCCESS;
goto done;
}
/*
* See if we can find a matching cmd in the pending list.
*/
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
if (pending_scb->io_ctx == cmd)
break;
}
if (pending_scb == NULL) {
printf("%s:%d:%d:%d: Command not found\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun);
goto no_cmd;
}
if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
/*
* We can't queue two recovery actions using the same SCB
*/
retval = FAILED;
goto done;
}
/*
* Ensure that the card doesn't do anything
* behind our back. Also make sure that we
* didn't "just" miss an interrupt that would
* affect this cmd.
*/
was_paused = ahd_is_paused(ahd);
ahd_pause_and_flushwork(ahd);
paused = TRUE;
if ((pending_scb->flags & SCB_ACTIVE) == 0) {
printf("%s:%d:%d:%d: Command already completed\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun);
goto no_cmd;
}
printf("%s: At time of recovery, card was %spaused\n",
ahd_name(ahd), was_paused ? "" : "not ");
ahd_dump_card_state(ahd);
disconnected = TRUE;
if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A',
cmd->device->lun, SCB_GET_TAG(pending_scb),
ROLE_INITIATOR, CAM_REQ_ABORTED,
SEARCH_COMPLETE) > 0) {
printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun);
retval = SUCCESS;
goto done;
}
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
last_phase = ahd_inb(ahd, LASTPHASE);
saved_scbptr = ahd_get_scbptr(ahd);
active_scbptr = saved_scbptr;
if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
struct scb *bus_scb;
bus_scb = ahd_lookup_scb(ahd, active_scbptr);
if (bus_scb == pending_scb)
disconnected = FALSE;
}
/*
* At this point, pending_scb is the scb associated with the
* passed in command. That command is currently active on the
* bus or is in the disconnected state.
*/
if (last_phase != P_BUSFREE
&& SCB_GET_TAG(pending_scb) == active_scbptr) {
/*
* We're active on the bus, so assert ATN
* and hope that the target responds.
*/
pending_scb = ahd_lookup_scb(ahd, active_scbptr);
pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
ahd_name(ahd), cmd->device->channel,
cmd->device->id, cmd->device->lun);
wait = TRUE;
} else if (disconnected) {
/*
* Actually re-queue this SCB in an attempt
* to select the device before it reconnects.
*/
pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb));
pending_scb->hscb->cdb_len = 0;
pending_scb->hscb->task_attribute = 0;
pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
if ((pending_scb->flags & SCB_PACKETIZED) != 0) {
/*
* Mark the SCB has having an outstanding
* task management function. Should the command
* complete normally before the task management
* function can be sent, the host will be notified
* to abort our requeued SCB.
*/
ahd_outb(ahd, SCB_TASK_MANAGEMENT,
pending_scb->hscb->task_management);
} else {
/*
* If non-packetized, set the MK_MESSAGE control
* bit indicating that we desire to send a message.
* We also set the disconnected flag since there is
* no guarantee that our SCB control byte matches
* the version on the card. We don't want the
* sequencer to abort the command thinking an
* unsolicited reselection occurred.
*/
pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
/*
* The sequencer will never re-reference the
* in-core SCB. To make sure we are notified
* during reslection, set the MK_MESSAGE flag in
* the card's copy of the SCB.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
}
/*
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahd_search_qinfifo(ahd, cmd->device->id,
cmd->device->channel + 'A', cmd->device->lun,
SCB_LIST_NULL, ROLE_INITIATOR,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahd_qinfifo_requeue_tail(ahd, pending_scb);
ahd_set_scbptr(ahd, saved_scbptr);
ahd_print_path(ahd, pending_scb);
printf("Device is disconnected, re-queuing SCB\n");
wait = TRUE;
} else {
printf("%s:%d:%d:%d: Unable to deliver message\n",
ahd_name(ahd), cmd->device->channel,
cmd->device->id, cmd->device->lun);
retval = FAILED;
goto done;
}
no_cmd:
/*
* Our assumption is that if we don't have the command, no
* recovery action was required, so we return success. Again,
* the semantics of the mid-layer recovery engine are not
* well defined, so this may change in time.
*/
retval = SUCCESS;
done:
if (paused)
ahd_unpause(ahd);
if (wait) {
struct timer_list timer;
int ret;
pending_scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
spin_unlock_irq(&ahd->platform_data->spin_lock);
init_timer(&timer);
timer.data = (u_long)pending_scb;
timer.expires = jiffies + (5 * HZ);
timer.function = ahd_linux_sem_timeout;
add_timer(&timer);
printf("Recovery code sleeping\n");
down(&ahd->platform_data->eh_sem);
printf("Recovery code awake\n");
ret = del_timer_sync(&timer);
if (ret == 0) {
printf("Timer Expired\n");
retval = FAILED;
}
spin_lock_irq(&ahd->platform_data->spin_lock);
}
ahd_schedule_runq(ahd);
ahd_linux_run_complete_queue(ahd);
ahd_midlayer_entrypoint_unlock(ahd, &s);
return (retval);
}
static void
ahd_linux_dev_reset_complete(Scsi_Cmnd *cmd)
{
free(cmd, M_DEVBUF);
}
/*
* Attempt to send a target reset message to the device that timed out.
*/
static int
ahd_linux_dev_reset(Scsi_Cmnd *cmd)
{
struct ahd_softc *ahd;
struct scsi_cmnd *recovery_cmd;
struct ahd_linux_device *dev;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
struct scb *scb;
struct hardware_scb *hscb;
u_long s;
struct timer_list timer;
int retval;
ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
recovery_cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
if (!recovery_cmd)
return (FAILED);
memset(recovery_cmd, 0, sizeof(struct scsi_cmnd));
recovery_cmd->device = cmd->device;
recovery_cmd->scsi_done = ahd_linux_dev_reset_complete;
#if AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s:%d:%d:%d: Device reset called for cmd %p\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->device->lun, cmd);
#endif
ahd_lock(ahd, &s);
dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id,
cmd->device->lun, /*alloc*/FALSE);
if (dev == NULL) {
ahd_unlock(ahd, &s);
kfree(recovery_cmd);
return (FAILED);
}
if ((scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX)) == NULL) {
ahd_unlock(ahd, &s);
kfree(recovery_cmd);
return (FAILED);
}
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
cmd->device->id, &tstate);
recovery_cmd->result = CAM_REQ_INPROG << 16;
recovery_cmd->host_scribble = (char *)scb;
scb->io_ctx = recovery_cmd;
scb->platform_data->dev = dev;
scb->sg_count = 0;
ahd_set_residual(scb, 0);
ahd_set_sense_residual(scb, 0);
hscb = scb->hscb;
hscb->control = 0;
hscb->scsiid = BUILD_SCSIID(ahd, cmd);
hscb->lun = cmd->device->lun;
hscb->cdb_len = 0;
hscb->task_management = SIU_TASKMGMT_LUN_RESET;
scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE;
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
scb->flags |= SCB_PACKETIZED;
} else {
hscb->control |= MK_MESSAGE;
}
dev->openings--;
dev->active++;
dev->commands_issued++;
LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
ahd_queue_scb(ahd, scb);
scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
spin_unlock_irq(&ahd->platform_data->spin_lock);
init_timer(&timer);
timer.data = (u_long)scb;
timer.expires = jiffies + (5 * HZ);
timer.function = ahd_linux_sem_timeout;
add_timer(&timer);
printf("Recovery code sleeping\n");
down(&ahd->platform_data->eh_sem);
printf("Recovery code awake\n");
retval = SUCCESS;
if (del_timer_sync(&timer) == 0) {
printf("Timer Expired\n");
retval = FAILED;
}
spin_lock_irq(&ahd->platform_data->spin_lock);
ahd_schedule_runq(ahd);
ahd_linux_run_complete_queue(ahd);
ahd_unlock(ahd, &s);
printf("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval);
return (retval);
}
/*
* Reset the SCSI bus.
*/
static int
ahd_linux_bus_reset(Scsi_Cmnd *cmd)
{
struct ahd_softc *ahd;
u_long s;
int found;
ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s: Bus reset called for cmd %p\n",
ahd_name(ahd), cmd);
#endif
ahd_lock(ahd, &s);
found = ahd_reset_channel(ahd, cmd->device->channel + 'A',
/*initiate reset*/TRUE);
ahd_linux_run_complete_queue(ahd);
ahd_unlock(ahd, &s);
if (bootverbose)
printf("%s: SCSI bus reset delivered. "
"%d SCBs aborted.\n", ahd_name(ahd), found);
return (SUCCESS);
}
Scsi_Host_Template aic79xx_driver_template = {
.module = THIS_MODULE,
.name = "aic79xx",
.proc_info = ahd_linux_proc_info,
.info = ahd_linux_info,
.queuecommand = ahd_linux_queue,
.eh_abort_handler = ahd_linux_abort,
.eh_device_reset_handler = ahd_linux_dev_reset,
.eh_bus_reset_handler = ahd_linux_bus_reset,
#if defined(__i386__)
.bios_param = ahd_linux_biosparam,
#endif
.can_queue = AHD_MAX_QUEUE,
.this_id = -1,
.cmd_per_lun = 2,
.use_clustering = ENABLE_CLUSTERING,
.slave_alloc = ahd_linux_slave_alloc,
.slave_configure = ahd_linux_slave_configure,
.slave_destroy = ahd_linux_slave_destroy,
};
/**************************** Tasklet Handler *********************************/
/*
* In 2.4.X and above, this routine is called from a tasklet,
* so we must re-acquire our lock prior to executing this code.
* In all prior kernels, ahd_schedule_runq() calls this routine
* directly and ahd_schedule_runq() is called with our lock held.
*/
static void
ahd_runq_tasklet(unsigned long data)
{
struct ahd_softc* ahd;
struct ahd_linux_device *dev;
u_long flags;
ahd = (struct ahd_softc *)data;
ahd_lock(ahd, &flags);
while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
dev->flags &= ~AHD_DEV_ON_RUN_LIST;
ahd_linux_check_device_queue(ahd, dev);
/* Yeild to our interrupt handler */
ahd_unlock(ahd, &flags);
ahd_lock(ahd, &flags);
}
ahd_unlock(ahd, &flags);
}
/******************************** Bus DMA *************************************/
int
ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent,
bus_size_t alignment, bus_size_t boundary,
dma_addr_t lowaddr, dma_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg,
bus_size_t maxsize, int nsegments,
bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
{
bus_dma_tag_t dmat;
dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
if (dmat == NULL)
return (ENOMEM);
/*
* Linux is very simplistic about DMA memory. For now don't
* maintain all specification information. Once Linux supplies
* better facilities for doing these operations, or the
* needs of this particular driver change, we might need to do
* more here.
*/
dmat->alignment = alignment;
dmat->boundary = boundary;
dmat->maxsize = maxsize;
*ret_tag = dmat;
return (0);
}
void
ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat)
{
free(dmat, M_DEVBUF);
}
int
ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr,
int flags, bus_dmamap_t *mapp)
{
bus_dmamap_t map;
map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
if (map == NULL)
return (ENOMEM);
/*
* Although we can dma data above 4GB, our
* "consistent" memory is below 4GB for
* space efficiency reasons (only need a 4byte
* address). For this reason, we have to reset
* our dma mask when doing allocations.
*/
if (ahd->dev_softc != NULL)
if (pci_set_dma_mask(ahd->dev_softc, 0xFFFFFFFF)) {
printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
kfree(map);
return (ENODEV);
}
*vaddr = pci_alloc_consistent(ahd->dev_softc,
dmat->maxsize, &map->bus_addr);
if (ahd->dev_softc != NULL)
if (pci_set_dma_mask(ahd->dev_softc,
ahd->platform_data->hw_dma_mask)) {
printk(KERN_WARNING "aic79xx: No suitable DMA available.\n");
kfree(map);
return (ENODEV);
}
if (*vaddr == NULL)
return (ENOMEM);
*mapp = map;
return(0);
}
void
ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat,
void* vaddr, bus_dmamap_t map)
{
pci_free_consistent(ahd->dev_softc, dmat->maxsize,
vaddr, map->bus_addr);
}
int
ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map,
void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
void *cb_arg, int flags)
{
/*
* Assume for now that this will only be used during
* initialization and not for per-transaction buffer mapping.
*/
bus_dma_segment_t stack_sg;
stack_sg.ds_addr = map->bus_addr;
stack_sg.ds_len = dmat->maxsize;
cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
return (0);
}
void
ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
{
/*
* The map may is NULL in our < 2.3.X implementation.
*/
if (map != NULL)
free(map, M_DEVBUF);
}
int
ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
{
/* Nothing to do */
return (0);
}
/********************* Platform Dependent Functions ***************************/
/*
* Compare "left hand" softc with "right hand" softc, returning:
* < 0 - lahd has a lower priority than rahd
* 0 - Softcs are equal
* > 0 - lahd has a higher priority than rahd
*/
int
ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd)
{
int value;
/*
* Under Linux, cards are ordered as follows:
* 1) PCI devices that are marked as the boot controller.
* 2) PCI devices with BIOS enabled sorted by bus/slot/func.
* 3) All remaining PCI devices sorted by bus/slot/func.
*/
#if 0
value = (lahd->flags & AHD_BOOT_CHANNEL)
- (rahd->flags & AHD_BOOT_CHANNEL);
if (value != 0)
/* Controllers set for boot have a *higher* priority */
return (value);
#endif
value = (lahd->flags & AHD_BIOS_ENABLED)
- (rahd->flags & AHD_BIOS_ENABLED);
if (value != 0)
/* Controllers with BIOS enabled have a *higher* priority */
return (value);
/* Still equal. Sort by bus/slot/func. */
if (aic79xx_reverse_scan != 0)
value = ahd_get_pci_bus(lahd->dev_softc)
- ahd_get_pci_bus(rahd->dev_softc);
else
value = ahd_get_pci_bus(rahd->dev_softc)
- ahd_get_pci_bus(lahd->dev_softc);
if (value != 0)
return (value);
if (aic79xx_reverse_scan != 0)
value = ahd_get_pci_slot(lahd->dev_softc)
- ahd_get_pci_slot(rahd->dev_softc);
else
value = ahd_get_pci_slot(rahd->dev_softc)
- ahd_get_pci_slot(lahd->dev_softc);
if (value != 0)
return (value);
value = rahd->channel - lahd->channel;
return (value);
}
static void
ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
{
if ((instance >= 0) && (targ >= 0)
&& (instance < NUM_ELEMENTS(aic79xx_tag_info))
&& (targ < AHD_NUM_TARGETS)) {
aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF;
if (bootverbose)
printf("tag_info[%d:%d] = %d\n", instance, targ, value);
}
}
static void
ahd_linux_setup_rd_strm_info(u_long arg, int instance, int targ, int32_t value)
{
if ((instance >= 0)
&& (instance < NUM_ELEMENTS(aic79xx_rd_strm_info))) {
aic79xx_rd_strm_info[instance] = value & 0xFFFF;
if (bootverbose)
printf("rd_strm[%d] = 0x%x\n", instance, value);
}
}
static void
ahd_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
{
if ((instance >= 0)
&& (instance < NUM_ELEMENTS(aic79xx_dv_settings))) {
aic79xx_dv_settings[instance] = value;
if (bootverbose)
printf("dv[%d] = %d\n", instance, value);
}
}
static void
ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value)
{
if ((instance >= 0)
&& (instance < NUM_ELEMENTS(aic79xx_iocell_info))) {
uint8_t *iocell_info;
iocell_info = (uint8_t*)&aic79xx_iocell_info[instance];
iocell_info[index] = value & 0xFFFF;
if (bootverbose)
printf("iocell[%d:%ld] = %d\n", instance, index, value);
}
}
static void
ahd_linux_setup_tag_info_global(char *p)
{
int tags, i, j;
tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
printf("Setting Global Tags= %d\n", tags);
for (i = 0; i < NUM_ELEMENTS(aic79xx_tag_info); i++) {
for (j = 0; j < AHD_NUM_TARGETS; j++) {
aic79xx_tag_info[i].tag_commands[j] = tags;
}
}
}
/*
* Handle Linux boot parameters. This routine allows for assigning a value
* to a parameter with a ':' between the parameter and the value.
* ie. aic79xx=stpwlev:1,extended
*/
static int
aic79xx_setup(char *s)
{
int i, n;
char *p;
char *end;
static struct {
const char *name;
uint32_t *flag;
} options[] = {
{ "extended", &aic79xx_extended },
{ "no_reset", &aic79xx_no_reset },
{ "verbose", &aic79xx_verbose },
{ "allow_memio", &aic79xx_allow_memio},
#ifdef AHD_DEBUG
{ "debug", &ahd_debug },
#endif
{ "reverse_scan", &aic79xx_reverse_scan },
{ "periodic_otag", &aic79xx_periodic_otag },
{ "pci_parity", &aic79xx_pci_parity },
{ "seltime", &aic79xx_seltime },
{ "tag_info", NULL },
{ "global_tag_depth", NULL},
{ "rd_strm", NULL },
{ "dv", NULL },
{ "slewrate", NULL },
{ "precomp", NULL },
{ "amplitude", NULL },
};
end = strchr(s, '\0');
/*
* XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
* will never be 0 in this case.
*/
n = 0;
while ((p = strsep(&s, ",.")) != NULL) {
if (*p == '\0')
continue;
for (i = 0; i < NUM_ELEMENTS(options); i++) {
n = strlen(options[i].name);
if (strncmp(options[i].name, p, n) == 0)
break;
}
if (i == NUM_ELEMENTS(options))
continue;
if (strncmp(p, "global_tag_depth", n) == 0) {
ahd_linux_setup_tag_info_global(p + n);
} else if (strncmp(p, "tag_info", n) == 0) {
s = aic_parse_brace_option("tag_info", p + n, end,
2, ahd_linux_setup_tag_info, 0);
} else if (strncmp(p, "rd_strm", n) == 0) {
s = aic_parse_brace_option("rd_strm", p + n, end,
1, ahd_linux_setup_rd_strm_info, 0);
} else if (strncmp(p, "dv", n) == 0) {
s = aic_parse_brace_option("dv", p + n, end, 1,
ahd_linux_setup_dv, 0);
} else if (strncmp(p, "slewrate", n) == 0) {
s = aic_parse_brace_option("slewrate",
p + n, end, 1, ahd_linux_setup_iocell_info,
AIC79XX_SLEWRATE_INDEX);
} else if (strncmp(p, "precomp", n) == 0) {
s = aic_parse_brace_option("precomp",
p + n, end, 1, ahd_linux_setup_iocell_info,
AIC79XX_PRECOMP_INDEX);
} else if (strncmp(p, "amplitude", n) == 0) {
s = aic_parse_brace_option("amplitude",
p + n, end, 1, ahd_linux_setup_iocell_info,
AIC79XX_AMPLITUDE_INDEX);
} else if (p[n] == ':') {
*(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
} else if (!strncmp(p, "verbose", n)) {
*(options[i].flag) = 1;
} else {
*(options[i].flag) ^= 0xFFFFFFFF;
}
}
return 1;
}
__setup("aic79xx=", aic79xx_setup);
uint32_t aic79xx_verbose;
int
ahd_linux_register_host(struct ahd_softc *ahd, Scsi_Host_Template *template)
{
char buf[80];
struct Scsi_Host *host;
char *new_name;
u_long s;
u_long target;
template->name = ahd->description;
host = scsi_host_alloc(template, sizeof(struct ahd_softc *));
if (host == NULL)
return (ENOMEM);
*((struct ahd_softc **)host->hostdata) = ahd;
ahd_lock(ahd, &s);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_assign_lock(host, &ahd->platform_data->spin_lock);
#elif AHD_SCSI_HAS_HOST_LOCK != 0
host->lock = &ahd->platform_data->spin_lock;
#endif
ahd->platform_data->host = host;
host->can_queue = AHD_MAX_QUEUE;
host->cmd_per_lun = 2;
host->sg_tablesize = AHD_NSEG;
host->this_id = ahd->our_id;
host->irq = ahd->platform_data->irq;
host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
host->max_lun = AHD_NUM_LUNS;
host->max_channel = 0;
host->sg_tablesize = AHD_NSEG;
ahd_set_unit(ahd, ahd_linux_next_unit());
sprintf(buf, "scsi%d", host->host_no);
new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
if (new_name != NULL) {
strcpy(new_name, buf);
ahd_set_name(ahd, new_name);
}
host->unique_id = ahd->unit;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
scsi_set_pci_device(host, ahd->dev_softc);
#endif
ahd_linux_setup_user_rd_strm_settings(ahd);
ahd_linux_initialize_scsi_bus(ahd);
ahd_unlock(ahd, &s);
ahd->platform_data->dv_pid = kernel_thread(ahd_linux_dv_thread, ahd, 0);
ahd_lock(ahd, &s);
if (ahd->platform_data->dv_pid < 0) {
printf("%s: Failed to create DV thread, error= %d\n",
ahd_name(ahd), ahd->platform_data->dv_pid);
return (-ahd->platform_data->dv_pid);
}
/*
* Initially allocate *all* of our linux target objects
* so that the DV thread will scan them all in parallel
* just after driver initialization. Any device that
* does not exist will have its target object destroyed
* by the selection timeout handler. In the case of a
* device that appears after the initial DV scan, async
* negotiation will occur for the first command, and DV
* will comence should that first command be successful.
*/
for (target = 0; target < host->max_id; target++) {
/*
* Skip our own ID. Some Compaq/HP storage devices
* have enclosure management devices that respond to
* single bit selection (i.e. selecting ourselves).
* It is expected that either an external application
* or a modified kernel will be used to probe this
* ID if it is appropriate. To accommodate these
* installations, ahc_linux_alloc_target() will allocate
* for our ID if asked to do so.
*/
if (target == ahd->our_id)
continue;
ahd_linux_alloc_target(ahd, 0, target);
}
ahd_intr_enable(ahd, TRUE);
ahd_linux_start_dv(ahd);
ahd_unlock(ahd, &s);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_add_host(host, &ahd->dev_softc->dev); /* XXX handle failure */
scsi_scan_host(host);
#endif
return (0);
}
uint64_t
ahd_linux_get_memsize(void)
{
struct sysinfo si;
si_meminfo(&si);
return ((uint64_t)si.totalram << PAGE_SHIFT);
}
/*
* Find the smallest available unit number to use
* for a new device. We don't just use a static
* count to handle the "repeated hot-(un)plug"
* scenario.
*/
static int
ahd_linux_next_unit(void)
{
struct ahd_softc *ahd;
int unit;
unit = 0;
retry:
TAILQ_FOREACH(ahd, &ahd_tailq, links) {
if (ahd->unit == unit) {
unit++;
goto retry;
}
}
return (unit);
}
/*
* Place the SCSI bus into a known state by either resetting it,
* or forcing transfer negotiations on the next command to any
* target.
*/
static void
ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd)
{
u_int target_id;
u_int numtarg;
target_id = 0;
numtarg = 0;
if (aic79xx_no_reset != 0)
ahd->flags &= ~AHD_RESET_BUS_A;
if ((ahd->flags & AHD_RESET_BUS_A) != 0)
ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE);
else
numtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
/*
* Force negotiation to async for all targets that
* will not see an initial bus reset.
*/
for (; target_id < numtarg; target_id++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
target_id, &tstate);
ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
ahd_update_neg_request(ahd, &devinfo, tstate,
tinfo, AHD_NEG_ALWAYS);
}
/* Give the bus some time to recover */
if ((ahd->flags & AHD_RESET_BUS_A) != 0) {
ahd_freeze_simq(ahd);
init_timer(&ahd->platform_data->reset_timer);
ahd->platform_data->reset_timer.data = (u_long)ahd;
ahd->platform_data->reset_timer.expires =
jiffies + (AIC79XX_RESET_DELAY * HZ)/1000;
ahd->platform_data->reset_timer.function =
(ahd_linux_callback_t *)ahd_release_simq;
add_timer(&ahd->platform_data->reset_timer);
}
}
int
ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg)
{
ahd->platform_data =
malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT);
if (ahd->platform_data == NULL)
return (ENOMEM);
memset(ahd->platform_data, 0, sizeof(struct ahd_platform_data));
TAILQ_INIT(&ahd->platform_data->completeq);
TAILQ_INIT(&ahd->platform_data->device_runq);
ahd->platform_data->irq = AHD_LINUX_NOIRQ;
ahd->platform_data->hw_dma_mask = 0xFFFFFFFF;
ahd_lockinit(ahd);
ahd_done_lockinit(ahd);
init_timer(&ahd->platform_data->completeq_timer);
ahd->platform_data->completeq_timer.data = (u_long)ahd;
ahd->platform_data->completeq_timer.function =
(ahd_linux_callback_t *)ahd_linux_thread_run_complete_queue;
init_MUTEX_LOCKED(&ahd->platform_data->eh_sem);
init_MUTEX_LOCKED(&ahd->platform_data->dv_sem);
init_MUTEX_LOCKED(&ahd->platform_data->dv_cmd_sem);
ahd_setup_runq_tasklet(ahd);
ahd->seltime = (aic79xx_seltime & 0x3) << 4;
return (0);
}
void
ahd_platform_free(struct ahd_softc *ahd)
{
struct ahd_linux_target *targ;
struct ahd_linux_device *dev;
int i, j;
if (ahd->platform_data != NULL) {
del_timer_sync(&ahd->platform_data->completeq_timer);
ahd_linux_kill_dv_thread(ahd);
ahd_teardown_runq_tasklet(ahd);
if (ahd->platform_data->host != NULL) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_remove_host(ahd->platform_data->host);
#endif
scsi_host_put(ahd->platform_data->host);
}
/* destroy all of the device and target objects */
for (i = 0; i < AHD_NUM_TARGETS; i++) {
targ = ahd->platform_data->targets[i];
if (targ != NULL) {
/* Keep target around through the loop. */
targ->refcount++;
for (j = 0; j < AHD_NUM_LUNS; j++) {
if (targ->devices[j] == NULL)
continue;
dev = targ->devices[j];
ahd_linux_free_device(ahd, dev);
}
/*
* Forcibly free the target now that
* all devices are gone.
*/
ahd_linux_free_target(ahd, targ);
}
}
if (ahd->platform_data->irq != AHD_LINUX_NOIRQ)
free_irq(ahd->platform_data->irq, ahd);
if (ahd->tags[0] == BUS_SPACE_PIO
&& ahd->bshs[0].ioport != 0)
release_region(ahd->bshs[0].ioport, 256);
if (ahd->tags[1] == BUS_SPACE_PIO
&& ahd->bshs[1].ioport != 0)
release_region(ahd->bshs[1].ioport, 256);
if (ahd->tags[0] == BUS_SPACE_MEMIO
&& ahd->bshs[0].maddr != NULL) {
iounmap(ahd->bshs[0].maddr);
release_mem_region(ahd->platform_data->mem_busaddr,
0x1000);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* In 2.4 we detach from the scsi midlayer before the PCI
* layer invokes our remove callback. No per-instance
* detach is provided, so we must reach inside the PCI
* subsystem's internals and detach our driver manually.
*/
if (ahd->dev_softc != NULL)
ahd->dev_softc->driver = NULL;
#endif
free(ahd->platform_data, M_DEVBUF);
}
}
void
ahd_platform_init(struct ahd_softc *ahd)
{
/*
* Lookup and commit any modified IO Cell options.
*/
if (ahd->unit < NUM_ELEMENTS(aic79xx_iocell_info)) {
struct ahd_linux_iocell_opts *iocell_opts;
iocell_opts = &aic79xx_iocell_info[ahd->unit];
if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP)
AHD_SET_PRECOMP(ahd, iocell_opts->precomp);
if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE)
AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate);
if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE)
AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude);
}
}
void
ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
{
ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_LIST_NULL,
ROLE_UNKNOWN, CAM_REQUEUE_REQ);
}
void
ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
ahd_queue_alg alg)
{
struct ahd_linux_device *dev;
int was_queuing;
int now_queuing;
dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
devinfo->target,
devinfo->lun, /*alloc*/FALSE);
if (dev == NULL)
return;
was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED);
switch (alg) {
default:
case AHD_QUEUE_NONE:
now_queuing = 0;
break;
case AHD_QUEUE_BASIC:
now_queuing = AHD_DEV_Q_BASIC;
break;
case AHD_QUEUE_TAGGED:
now_queuing = AHD_DEV_Q_TAGGED;
break;
}
if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0
&& (was_queuing != now_queuing)
&& (dev->active != 0)) {
dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY;
dev->qfrozen++;
}
dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG);
if (now_queuing) {
u_int usertags;
usertags = ahd_linux_user_tagdepth(ahd, devinfo);
if (!was_queuing) {
/*
* Start out agressively and allow our
* dynamic queue depth algorithm to take
* care of the rest.
*/
dev->maxtags = usertags;
dev->openings = dev->maxtags - dev->active;
}
if (dev->maxtags == 0) {
/*
* Queueing is disabled by the user.
*/
dev->openings = 1;
} else if (alg == AHD_QUEUE_TAGGED) {
dev->flags |= AHD_DEV_Q_TAGGED;
if (aic79xx_periodic_otag != 0)
dev->flags |= AHD_DEV_PERIODIC_OTAG;
} else
dev->flags |= AHD_DEV_Q_BASIC;
} else {
/* We can only have one opening. */
dev->maxtags = 0;
dev->openings = 1 - dev->active;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
if (dev->scsi_device != NULL) {
switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) {
case AHD_DEV_Q_BASIC:
scsi_adjust_queue_depth(dev->scsi_device,
MSG_SIMPLE_TASK,
dev->openings + dev->active);
break;
case AHD_DEV_Q_TAGGED:
scsi_adjust_queue_depth(dev->scsi_device,
MSG_ORDERED_TASK,
dev->openings + dev->active);
break;
default:
/*
* We allow the OS to queue 2 untagged transactions to
* us at any time even though we can only execute them
* serially on the controller/device. This should
* remove some latency.
*/
scsi_adjust_queue_depth(dev->scsi_device,
/*NON-TAGGED*/0,
/*queue depth*/2);
break;
}
}
#endif
}
int
ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status)
{
int targ;
int maxtarg;
int maxlun;
int clun;
int count;
if (tag != SCB_LIST_NULL)
return (0);
targ = 0;
if (target != CAM_TARGET_WILDCARD) {
targ = target;
maxtarg = targ + 1;
} else {
maxtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
}
clun = 0;
if (lun != CAM_LUN_WILDCARD) {
clun = lun;
maxlun = clun + 1;
} else {
maxlun = AHD_NUM_LUNS;
}
count = 0;
for (; targ < maxtarg; targ++) {
for (; clun < maxlun; clun++) {
struct ahd_linux_device *dev;
struct ahd_busyq *busyq;
struct ahd_cmd *acmd;
dev = ahd_linux_get_device(ahd, /*chan*/0, targ,
clun, /*alloc*/FALSE);
if (dev == NULL)
continue;
busyq = &dev->busyq;
while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
Scsi_Cmnd *cmd;
cmd = &acmd_scsi_cmd(acmd);
TAILQ_REMOVE(busyq, acmd,
acmd_links.tqe);
count++;
cmd->result = status << 16;
ahd_linux_queue_cmd_complete(ahd, cmd);
}
}
}
return (count);
}
static void
ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd)
{
u_long flags;
ahd_lock(ahd, &flags);
del_timer(&ahd->platform_data->completeq_timer);
ahd->platform_data->flags &= ~AHD_RUN_CMPLT_Q_TIMER;
ahd_linux_run_complete_queue(ahd);
ahd_unlock(ahd, &flags);
}
static void
ahd_linux_start_dv(struct ahd_softc *ahd)
{
/*
* Freeze the simq and signal ahd_linux_queue to not let any
* more commands through
*/
if ((ahd->platform_data->flags & AHD_DV_ACTIVE) == 0) {
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV)
printf("%s: Starting DV\n", ahd_name(ahd));
#endif
ahd->platform_data->flags |= AHD_DV_ACTIVE;
ahd_freeze_simq(ahd);
/* Wake up the DV kthread */
up(&ahd->platform_data->dv_sem);
}
}
static int
ahd_linux_dv_thread(void *data)
{
struct ahd_softc *ahd;
int target;
u_long s;
ahd = (struct ahd_softc *)data;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV)
printf("In DV Thread\n");
#endif
/*
* Complete thread creation.
*/
lock_kernel();
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,60)
/*
* Don't care about any signals.
*/
siginitsetinv(&current->blocked, 0);
daemonize();
sprintf(current->comm, "ahd_dv_%d", ahd->unit);
#else
daemonize("ahd_dv_%d", ahd->unit);
current->flags |= PF_NOFREEZE;
#endif
unlock_kernel();
while (1) {
/*
* Use down_interruptible() rather than down() to
* avoid inclusion in the load average.
*/
down_interruptible(&ahd->platform_data->dv_sem);
/* Check to see if we've been signaled to exit */
ahd_lock(ahd, &s);
if ((ahd->platform_data->flags & AHD_DV_SHUTDOWN) != 0) {
ahd_unlock(ahd, &s);
break;
}
ahd_unlock(ahd, &s);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV)
printf("%s: Beginning Domain Validation\n",
ahd_name(ahd));
#endif
/*
* Wait for any pending commands to drain before proceeding.
*/
ahd_lock(ahd, &s);
while (LIST_FIRST(&ahd->pending_scbs) != NULL) {
ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_EMPTY;
ahd_unlock(ahd, &s);
down_interruptible(&ahd->platform_data->dv_sem);
ahd_lock(ahd, &s);
}
/*
* Wait for the SIMQ to be released so that DV is the
* only reason the queue is frozen.
*/
while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
ahd_unlock(ahd, &s);
down_interruptible(&ahd->platform_data->dv_sem);
ahd_lock(ahd, &s);
}
ahd_unlock(ahd, &s);
for (target = 0; target < AHD_NUM_TARGETS; target++)
ahd_linux_dv_target(ahd, target);
ahd_lock(ahd, &s);
ahd->platform_data->flags &= ~AHD_DV_ACTIVE;
ahd_unlock(ahd, &s);
/*
* Release the SIMQ so that normal commands are
* allowed to continue on the bus.
*/
ahd_release_simq(ahd);
}
up(&ahd->platform_data->eh_sem);
return (0);
}
static void
ahd_linux_kill_dv_thread(struct ahd_softc *ahd)
{
u_long s;
ahd_lock(ahd, &s);
if (ahd->platform_data->dv_pid != 0) {
ahd->platform_data->flags |= AHD_DV_SHUTDOWN;
ahd_unlock(ahd, &s);
up(&ahd->platform_data->dv_sem);
/*
* Use the eh_sem as an indicator that the
* dv thread is exiting. Note that the dv
* thread must still return after performing
* the up on our semaphore before it has
* completely exited this module. Unfortunately,
* there seems to be no easy way to wait for the
* exit of a thread for which you are not the
* parent (dv threads are parented by init).
* Cross your fingers...
*/
down(&ahd->platform_data->eh_sem);
/*
* Mark the dv thread as already dead. This
* avoids attempting to kill it a second time.
* This is necessary because we must kill the
* DV thread before calling ahd_free() in the
* module shutdown case to avoid bogus locking
* in the SCSI mid-layer, but we ahd_free() is
* called without killing the DV thread in the
* instance detach case, so ahd_platform_free()
* calls us again to verify that the DV thread
* is dead.
*/
ahd->platform_data->dv_pid = 0;
} else {
ahd_unlock(ahd, &s);
}
}
#define AHD_LINUX_DV_INQ_SHORT_LEN 36
#define AHD_LINUX_DV_INQ_LEN 256
#define AHD_LINUX_DV_TIMEOUT (HZ / 4)
#define AHD_SET_DV_STATE(ahd, targ, newstate) \
ahd_set_dv_state(ahd, targ, newstate, __LINE__)
static __inline void
ahd_set_dv_state(struct ahd_softc *ahd, struct ahd_linux_target *targ,
ahd_dv_state newstate, u_int line)
{
ahd_dv_state oldstate;
oldstate = targ->dv_state;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV)
printf("%s:%d: Going from state %d to state %d\n",
ahd_name(ahd), line, oldstate, newstate);
#endif
if (oldstate == newstate)
targ->dv_state_retry++;
else
targ->dv_state_retry = 0;
targ->dv_state = newstate;
}
static void
ahd_linux_dv_target(struct ahd_softc *ahd, u_int target_offset)
{
struct ahd_devinfo devinfo;
struct ahd_linux_target *targ;
struct scsi_cmnd *cmd;
struct scsi_device *scsi_dev;
struct scsi_sense_data *sense;
uint8_t *buffer;
u_long s;
u_int timeout;
int echo_size;
sense = NULL;
buffer = NULL;
echo_size = 0;
ahd_lock(ahd, &s);
targ = ahd->platform_data->targets[target_offset];
if (targ == NULL || (targ->flags & AHD_DV_REQUIRED) == 0) {
ahd_unlock(ahd, &s);
return;
}
ahd_compile_devinfo(&devinfo, ahd->our_id, targ->target, /*lun*/0,
targ->channel + 'A', ROLE_INITIATOR);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, &devinfo);
printf("Performing DV\n");
}
#endif
ahd_unlock(ahd, &s);
cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
scsi_dev->host = ahd->platform_data->host;
scsi_dev->id = devinfo.target;
scsi_dev->lun = devinfo.lun;
scsi_dev->channel = devinfo.channel - 'A';
ahd->platform_data->dv_scsi_dev = scsi_dev;
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC);
while (targ->dv_state != AHD_DV_STATE_EXIT) {
timeout = AHD_LINUX_DV_TIMEOUT;
switch (targ->dv_state) {
case AHD_DV_STATE_INQ_SHORT_ASYNC:
case AHD_DV_STATE_INQ_ASYNC:
case AHD_DV_STATE_INQ_ASYNC_VERIFY:
/*
* Set things to async narrow to reduce the
* chance that the INQ will fail.
*/
ahd_lock(ahd, &s);
ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
AHD_TRANS_GOAL, /*paused*/FALSE);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_GOAL, /*paused*/FALSE);
ahd_unlock(ahd, &s);
timeout = 10 * HZ;
targ->flags &= ~AHD_INQ_VALID;
/* FALLTHROUGH */
case AHD_DV_STATE_INQ_VERIFY:
{
u_int inq_len;
if (targ->dv_state == AHD_DV_STATE_INQ_SHORT_ASYNC)
inq_len = AHD_LINUX_DV_INQ_SHORT_LEN;
else
inq_len = targ->inq_data->additional_length + 5;
ahd_linux_dv_inq(ahd, cmd, &devinfo, targ, inq_len);
break;
}
case AHD_DV_STATE_TUR:
case AHD_DV_STATE_BUSY:
timeout = 5 * HZ;
ahd_linux_dv_tur(ahd, cmd, &devinfo);
break;
case AHD_DV_STATE_REBD:
ahd_linux_dv_rebd(ahd, cmd, &devinfo, targ);
break;
case AHD_DV_STATE_WEB:
ahd_linux_dv_web(ahd, cmd, &devinfo, targ);
break;
case AHD_DV_STATE_REB:
ahd_linux_dv_reb(ahd, cmd, &devinfo, targ);
break;
case AHD_DV_STATE_SU:
ahd_linux_dv_su(ahd, cmd, &devinfo, targ);
timeout = 50 * HZ;
break;
default:
ahd_print_devinfo(ahd, &devinfo);
printf("Unknown DV state %d\n", targ->dv_state);
goto out;
}
/* Queue the command and wait for it to complete */
/* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
init_timer(&cmd->eh_timeout);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
/*
* All of the printfs during negotiation
* really slow down the negotiation.
* Add a bit of time just to be safe.
*/
timeout += HZ;
#endif
scsi_add_timer(cmd, timeout, ahd_linux_dv_timeout);
/*
* In 2.5.X, it is assumed that all calls from the
* "midlayer" (which we are emulating) will have the
* ahd host lock held. For other kernels, the
* io_request_lock must be held.
*/
#if AHD_SCSI_HAS_HOST_LOCK != 0
ahd_lock(ahd, &s);
#else
spin_lock_irqsave(&io_request_lock, s);
#endif
ahd_linux_queue(cmd, ahd_linux_dv_complete);
#if AHD_SCSI_HAS_HOST_LOCK != 0
ahd_unlock(ahd, &s);
#else
spin_unlock_irqrestore(&io_request_lock, s);
#endif
down_interruptible(&ahd->platform_data->dv_cmd_sem);
/*
* Wait for the SIMQ to be released so that DV is the
* only reason the queue is frozen.
*/
ahd_lock(ahd, &s);
while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
ahd_unlock(ahd, &s);
down_interruptible(&ahd->platform_data->dv_sem);
ahd_lock(ahd, &s);
}
ahd_unlock(ahd, &s);
ahd_linux_dv_transition(ahd, cmd, &devinfo, targ);
}
out:
if ((targ->flags & AHD_INQ_VALID) != 0
&& ahd_linux_get_device(ahd, devinfo.channel - 'A',
devinfo.target, devinfo.lun,
/*alloc*/FALSE) == NULL) {
/*
* The DV state machine failed to configure this device.
* This is normal if DV is disabled. Since we have inquiry
* data, filter it and use the "optimistic" negotiation
* parameters found in the inquiry string.
*/
ahd_linux_filter_inquiry(ahd, &devinfo);
if ((targ->flags & (AHD_BASIC_DV|AHD_ENHANCED_DV)) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("DV failed to configure device. "
"Please file a bug report against "
"this driver.\n");
}
}
if (cmd != NULL)
free(cmd, M_DEVBUF);
if (ahd->platform_data->dv_scsi_dev != NULL) {
free(ahd->platform_data->dv_scsi_dev, M_DEVBUF);
ahd->platform_data->dv_scsi_dev = NULL;
}
ahd_lock(ahd, &s);
if (targ->dv_buffer != NULL) {
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = NULL;
}
if (targ->dv_buffer1 != NULL) {
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = NULL;
}
targ->flags &= ~AHD_DV_REQUIRED;
if (targ->refcount == 0)
ahd_linux_free_target(ahd, targ);
ahd_unlock(ahd, &s);
}
static __inline int
ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
u_long s;
int retval;
ahd_lock(ahd, &s);
retval = ahd_linux_fallback(ahd, devinfo);
ahd_unlock(ahd, &s);
return (retval);
}
static void
ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ)
{
u_int32_t status;
status = aic_error_action(cmd, targ->inq_data,
ahd_cmd_get_transaction_status(cmd),
ahd_cmd_get_scsi_status(cmd));
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Entering ahd_linux_dv_transition, state= %d, "
"status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
status, cmd->result);
}
#endif
switch (targ->dv_state) {
case AHD_DV_STATE_INQ_SHORT_ASYNC:
case AHD_DV_STATE_INQ_ASYNC:
switch (status & SS_MASK) {
case SS_NOP:
{
AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
break;
}
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if ((status & SS_ERRMASK) == EBUSY)
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHD_DV_STATE_INQ_ASYNC_VERIFY:
switch (status & SS_MASK) {
case SS_NOP:
{
u_int xportflags;
u_int spi3data;
if (memcmp(targ->inq_data, targ->dv_buffer,
AHD_LINUX_DV_INQ_LEN) != 0) {
/*
* Inquiry data must have changed.
* Try from the top again.
*/
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
}
AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
targ->flags |= AHD_INQ_VALID;
if (ahd_linux_user_dv_setting(ahd) == 0)
break;
xportflags = targ->inq_data->flags;
if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
break;
spi3data = targ->inq_data->spi3data;
switch (spi3data & SID_SPI_CLOCK_DT_ST) {
default:
case SID_SPI_CLOCK_ST:
/* Assume only basic DV is supported. */
targ->flags |= AHD_BASIC_DV;
break;
case SID_SPI_CLOCK_DT:
case SID_SPI_CLOCK_DT_ST:
targ->flags |= AHD_ENHANCED_DV;
break;
}
break;
}
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if ((status & SS_ERRMASK) == EBUSY)
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHD_DV_STATE_INQ_VERIFY:
switch (status & SS_MASK) {
case SS_NOP:
{
if (memcmp(targ->inq_data, targ->dv_buffer,
AHD_LINUX_DV_INQ_LEN) == 0) {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
int i;
ahd_print_devinfo(ahd, devinfo);
printf("Inquiry buffer mismatch:");
for (i = 0; i < AHD_LINUX_DV_INQ_LEN; i++) {
if ((i & 0xF) == 0)
printf("\n ");
printf("0x%x:0x0%x ",
((uint8_t *)targ->inq_data)[i],
targ->dv_buffer[i]);
}
printf("\n");
}
#endif
if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
break;
}
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
} else if ((status & SS_ERRMASK) == EBUSY)
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHD_DV_STATE_TUR:
switch (status & SS_MASK) {
case SS_NOP:
if ((targ->flags & AHD_BASIC_DV) != 0) {
ahd_linux_filter_inquiry(ahd, devinfo);
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_VERIFY);
} else if ((targ->flags & AHD_ENHANCED_DV) != 0) {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REBD);
} else {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
}
break;
case SS_RETRY:
case SS_TUR:
if ((status & SS_ERRMASK) == EBUSY) {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
break;
}
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
}
if (targ->dv_state_retry >= 10) {
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("DV TUR reties exhausted\n");
}
#endif
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
if (status & SSQ_DELAY)
ssleep(1);
break;
case SS_START:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_SU);
break;
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
break;
case AHD_DV_STATE_REBD:
switch (status & SS_MASK) {
case SS_NOP:
{
uint32_t echo_size;
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
echo_size = scsi_3btoul(&targ->dv_buffer[1]);
echo_size &= 0x1FFF;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Echo buffer size= %d\n", echo_size);
}
#endif
if (echo_size == 0) {
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
/* Generate the buffer pattern */
targ->dv_echo_size = echo_size;
ahd_linux_generate_dv_pattern(targ);
/*
* Setup initial negotiation values.
*/
ahd_linux_filter_inquiry(ahd, devinfo);
break;
}
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if (targ->dv_state_retry <= 10)
break;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("DV REBD reties exhausted\n");
}
#endif
/* FALLTHROUGH */
case SS_FATAL:
default:
/*
* Setup initial negotiation values
* and try level 1 DV.
*/
ahd_linux_filter_inquiry(ahd, devinfo);
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY);
targ->dv_echo_size = 0;
break;
}
break;
case AHD_DV_STATE_WEB:
switch (status & SS_MASK) {
case SS_NOP:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REB);
break;
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
}
if (targ->dv_state_retry <= 10)
break;
/* FALLTHROUGH */
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("DV WEB reties exhausted\n");
}
#endif
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
break;
case AHD_DV_STATE_REB:
switch (status & SS_MASK) {
case SS_NOP:
if (memcmp(targ->dv_buffer, targ->dv_buffer1,
targ->dv_echo_size) != 0) {
if (ahd_linux_dv_fallback(ahd, devinfo) != 0)
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_EXIT);
else
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_WEB);
break;
}
if (targ->dv_buffer != NULL) {
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = NULL;
}
if (targ->dv_buffer1 != NULL) {
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = NULL;
}
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_EXIT);
break;
}
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
}
if (targ->dv_state_retry <= 10) {
if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
msleep(ahd->our_id*1000/10);
break;
}
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("DV REB reties exhausted\n");
}
#endif
/* FALLTHROUGH */
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
break;
case AHD_DV_STATE_SU:
switch (status & SS_MASK) {
case SS_NOP:
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
break;
case AHD_DV_STATE_BUSY:
switch (status & SS_MASK) {
case SS_NOP:
case SS_INQ_REFRESH:
AHD_SET_DV_STATE(ahd, targ,
AHD_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
if (ahd_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if (targ->dv_state_retry < 60) {
if ((status & SSQ_DELAY) != 0)
ssleep(1);
} else {
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("DV BUSY reties exhausted\n");
}
#endif
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
}
break;
default:
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
break;
default:
printf("%s: Invalid DV completion state %d\n", ahd_name(ahd),
targ->dv_state);
AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
break;
}
}
static void
ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo)
{
memset(cmd, 0, sizeof(struct scsi_cmnd));
cmd->device = ahd->platform_data->dv_scsi_dev;
cmd->scsi_done = ahd_linux_dv_complete;
}
/*
* Synthesize an inquiry command. On the return trip, it'll be
* sniffed and the device transfer settings set for us.
*/
static void
ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo, struct ahd_linux_target *targ,
u_int request_length)
{
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending INQ\n");
}
#endif
if (targ->inq_data == NULL)
targ->inq_data = malloc(AHD_LINUX_DV_INQ_LEN,
M_DEVBUF, M_WAITOK);
if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) {
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(AHD_LINUX_DV_INQ_LEN,
M_DEVBUF, M_WAITOK);
}
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_FROM_DEVICE;
cmd->cmd_len = 6;
cmd->cmnd[0] = INQUIRY;
cmd->cmnd[4] = request_length;
cmd->request_bufflen = request_length;
if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC)
cmd->request_buffer = targ->dv_buffer;
else
cmd->request_buffer = targ->inq_data;
memset(cmd->request_buffer, 0, AHD_LINUX_DV_INQ_LEN);
}
static void
ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo)
{
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending TUR\n");
}
#endif
/* Do a TUR to clear out any non-fatal transitional state */
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_NONE;
cmd->cmd_len = 6;
cmd->cmnd[0] = TEST_UNIT_READY;
}
#define AHD_REBD_LEN 4
static void
ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
{
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending REBD\n");
}
#endif
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(AHD_REBD_LEN, M_DEVBUF, M_WAITOK);
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_FROM_DEVICE;
cmd->cmd_len = 10;
cmd->cmnd[0] = READ_BUFFER;
cmd->cmnd[1] = 0x0b;
scsi_ulto3b(AHD_REBD_LEN, &cmd->cmnd[6]);
cmd->request_bufflen = AHD_REBD_LEN;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer;
}
static void
ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
{
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending WEB\n");
}
#endif
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_TO_DEVICE;
cmd->cmd_len = 10;
cmd->cmnd[0] = WRITE_BUFFER;
cmd->cmnd[1] = 0x0a;
scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
cmd->request_bufflen = targ->dv_echo_size;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer;
}
static void
ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
{
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending REB\n");
}
#endif
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_FROM_DEVICE;
cmd->cmd_len = 10;
cmd->cmnd[0] = READ_BUFFER;
cmd->cmnd[1] = 0x0a;
scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
cmd->request_bufflen = targ->dv_echo_size;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer1;
}
static void
ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
struct ahd_devinfo *devinfo,
struct ahd_linux_target *targ)
{
u_int le;
le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Sending SU\n");
}
#endif
ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
cmd->sc_data_direction = DMA_NONE;
cmd->cmd_len = 6;
cmd->cmnd[0] = START_STOP_UNIT;
cmd->cmnd[4] = le | SSS_START;
}
static int
ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct ahd_linux_target *targ;
struct ahd_initiator_tinfo *tinfo;
struct ahd_transinfo *goal;
struct ahd_tmode_tstate *tstate;
u_int width;
u_int period;
u_int offset;
u_int ppr_options;
u_int cur_speed;
u_int wide_speed;
u_int narrow_speed;
u_int fallback_speed;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
ahd_print_devinfo(ahd, devinfo);
printf("Trying to fallback\n");
}
#endif
targ = ahd->platform_data->targets[devinfo->target_offset];
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
goal = &tinfo->goal;
width = goal->width;
period = goal->period;
offset = goal->offset;
ppr_options = goal->ppr_options;
if (offset == 0)
period = AHD_ASYNC_XFER_PERIOD;
if (targ->dv_next_narrow_period == 0)
targ->dv_next_narrow_period = MAX(period, AHD_SYNCRATE_ULTRA2);
if (targ->dv_next_wide_period == 0)
targ->dv_next_wide_period = period;
if (targ->dv_max_width == 0)
targ->dv_max_width = width;
if (targ->dv_max_ppr_options == 0)
targ->dv_max_ppr_options = ppr_options;
if (targ->dv_last_ppr_options == 0)
targ->dv_last_ppr_options = ppr_options;
cur_speed = aic_calc_speed(width, period, offset, AHD_SYNCRATE_MIN);
wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
targ->dv_next_wide_period,
MAX_OFFSET, AHD_SYNCRATE_MIN);
narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
targ->dv_next_narrow_period,
MAX_OFFSET, AHD_SYNCRATE_MIN);
fallback_speed = aic_calc_speed(width, period+1, offset,
AHD_SYNCRATE_MIN);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
"fallback_speed= %d\n", cur_speed, wide_speed,
narrow_speed, fallback_speed);
}
#endif
if (cur_speed > 160000) {
/*
* Paced/DT/IU_REQ only transfer speeds. All we
* can do is fallback in terms of syncrate.
*/
period++;
} else if (cur_speed > 80000) {
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
/*
* Try without IU_REQ as it may be confusing
* an expander.
*/
ppr_options &= ~MSG_EXT_PPR_IU_REQ;
} else {
/*
* Paced/DT only transfer speeds. All we
* can do is fallback in terms of syncrate.
*/
period++;
ppr_options = targ->dv_max_ppr_options;
}
} else if (cur_speed > 3300) {
/*
* In this range we the following
* options ordered from highest to
* lowest desireability:
*
* o Wide/DT
* o Wide/non-DT
* o Narrow at a potentally higher sync rate.
*
* All modes are tested with and without IU_REQ
* set since using IUs may confuse an expander.
*/
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
ppr_options &= ~MSG_EXT_PPR_IU_REQ;
} else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
/*
* Try going non-DT.
*/
ppr_options = targ->dv_max_ppr_options;
ppr_options &= ~MSG_EXT_PPR_DT_REQ;
} else if (targ->dv_last_ppr_options != 0) {
/*
* Try without QAS or any other PPR options.
* We may need a non-PPR message to work with
* an expander. We look at the "last PPR options"
* so we will perform this fallback even if the
* target responded to our PPR negotiation with
* no option bits set.
*/
ppr_options = 0;
} else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
/*
* If the next narrow speed is greater than
* the next wide speed, fallback to narrow.
* Otherwise fallback to the next DT/Wide setting.
* The narrow async speed will always be smaller
* than the wide async speed, so handle this case
* specifically.
*/
ppr_options = targ->dv_max_ppr_options;
if (narrow_speed > fallback_speed
|| period >= AHD_ASYNC_XFER_PERIOD) {
targ->dv_next_wide_period = period+1;
width = MSG_EXT_WDTR_BUS_8_BIT;
period = targ->dv_next_narrow_period;
} else {
period++;
}
} else if ((ahd->features & AHD_WIDE) != 0
&& targ->dv_max_width != 0
&& wide_speed >= fallback_speed
&& (targ->dv_next_wide_period <= AHD_ASYNC_XFER_PERIOD
|| period >= AHD_ASYNC_XFER_PERIOD)) {
/*
* We are narrow. Try falling back
* to the next wide speed with
* all supported ppr options set.
*/
targ->dv_next_narrow_period = period+1;
width = MSG_EXT_WDTR_BUS_16_BIT;
period = targ->dv_next_wide_period;
ppr_options = targ->dv_max_ppr_options;
} else {
/* Only narrow fallback is allowed. */
period++;
ppr_options = targ->dv_max_ppr_options;
}
} else {
return (-1);
}
offset = MAX_OFFSET;
ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_PACED);
ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, FALSE);
if (period == 0) {
period = 0;
offset = 0;
ppr_options = 0;
if (width == MSG_EXT_WDTR_BUS_8_BIT)
targ->dv_next_narrow_period = AHD_ASYNC_XFER_PERIOD;
else
targ->dv_next_wide_period = AHD_ASYNC_XFER_PERIOD;
}
ahd_set_syncrate(ahd, devinfo, period, offset,
ppr_options, AHD_TRANS_GOAL, FALSE);
targ->dv_last_ppr_options = ppr_options;
return (0);
}
static void
ahd_linux_dv_timeout(struct scsi_cmnd *cmd)
{
struct ahd_softc *ahd;
struct scb *scb;
u_long flags;
ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
ahd_lock(ahd, &flags);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV) {
printf("%s: Timeout while doing DV command %x.\n",
ahd_name(ahd), cmd->cmnd[0]);
ahd_dump_card_state(ahd);
}
#endif
/*
* Guard against "done race". No action is
* required if we just completed.
*/
if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
ahd_unlock(ahd, &flags);
return;
}
/*
* Command has not completed. Mark this
* SCB as having failing status prior to
* resetting the bus, so we get the correct
* error code.
*/
if ((scb->flags & SCB_SENSE) != 0)
ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
else
ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate*/TRUE);
/*
* Add a minimal bus settle delay for devices that are slow to
* respond after bus resets.
*/
ahd_freeze_simq(ahd);
init_timer(&ahd->platform_data->reset_timer);
ahd->platform_data->reset_timer.data = (u_long)ahd;
ahd->platform_data->reset_timer.expires = jiffies + HZ / 2;
ahd->platform_data->reset_timer.function =
(ahd_linux_callback_t *)ahd_release_simq;
add_timer(&ahd->platform_data->reset_timer);
if (ahd_linux_next_device_to_run(ahd) != NULL)
ahd_schedule_runq(ahd);
ahd_linux_run_complete_queue(ahd);
ahd_unlock(ahd, &flags);
}
static void
ahd_linux_dv_complete(struct scsi_cmnd *cmd)
{
struct ahd_softc *ahd;
ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
/* Delete the DV timer before it goes off! */
scsi_delete_timer(cmd);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_DV)
printf("%s:%c:%d: Command completed, status= 0x%x\n",
ahd_name(ahd), cmd->device->channel, cmd->device->id,
cmd->result);
#endif
/* Wake up the state machine */
up(&ahd->platform_data->dv_cmd_sem);
}
static void
ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ)
{
uint16_t b;
u_int i;
u_int j;
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
if (targ->dv_buffer1 != NULL)
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
i = 0;
b = 0x0001;
for (j = 0 ; i < targ->dv_echo_size; j++) {
if (j < 32) {
/*
* 32bytes of sequential numbers.
*/
targ->dv_buffer[i++] = j & 0xff;
} else if (j < 48) {
/*
* 32bytes of repeating 0x0000, 0xffff.
*/
targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
} else if (j < 64) {
/*
* 32bytes of repeating 0x5555, 0xaaaa.
*/
targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
} else {
/*
* Remaining buffer is filled with a repeating
* patter of:
*
* 0xffff
* ~0x0001 << shifted once in each loop.
*/
if (j & 0x02) {
if (j & 0x01) {
targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
b <<= 1;
if (b == 0x0000)
b = 0x0001;
} else {
targ->dv_buffer[i++] = (~b & 0xff);
}
} else {
targ->dv_buffer[i++] = 0xff;
}
}
}
}
static u_int
ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
static int warned_user;
u_int tags;
tags = 0;
if ((ahd->user_discenable & devinfo->target_mask) != 0) {
if (ahd->unit >= NUM_ELEMENTS(aic79xx_tag_info)) {
if (warned_user == 0) {
printf(KERN_WARNING
"aic79xx: WARNING: Insufficient tag_info instances\n"
"aic79xx: for installed controllers. Using defaults\n"
"aic79xx: Please update the aic79xx_tag_info array in\n"
"aic79xx: the aic79xx_osm.c source file.\n");
warned_user++;
}
tags = AHD_MAX_QUEUE;
} else {
adapter_tag_info_t *tag_info;
tag_info = &aic79xx_tag_info[ahd->unit];
tags = tag_info->tag_commands[devinfo->target_offset];
if (tags > AHD_MAX_QUEUE)
tags = AHD_MAX_QUEUE;
}
}
return (tags);
}
static u_int
ahd_linux_user_dv_setting(struct ahd_softc *ahd)
{
static int warned_user;
int dv;
if (ahd->unit >= NUM_ELEMENTS(aic79xx_dv_settings)) {
if (warned_user == 0) {
printf(KERN_WARNING
"aic79xx: WARNING: Insufficient dv settings instances\n"
"aic79xx: for installed controllers. Using defaults\n"
"aic79xx: Please update the aic79xx_dv_settings array in"
"aic79xx: the aic79xx_osm.c source file.\n");
warned_user++;
}
dv = -1;
} else {
dv = aic79xx_dv_settings[ahd->unit];
}
if (dv < 0) {
/*
* Apply the default.
*/
dv = 1;
if (ahd->seep_config != 0)
dv = (ahd->seep_config->bios_control & CFENABLEDV);
}
return (dv);
}
static void
ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd)
{
static int warned_user;
u_int rd_strm_mask;
u_int target_id;
/*
* If we have specific read streaming info for this controller,
* apply it. Otherwise use the defaults.
*/
if (ahd->unit >= NUM_ELEMENTS(aic79xx_rd_strm_info)) {
if (warned_user == 0) {
printf(KERN_WARNING
"aic79xx: WARNING: Insufficient rd_strm instances\n"
"aic79xx: for installed controllers. Using defaults\n"
"aic79xx: Please update the aic79xx_rd_strm_info array\n"
"aic79xx: in the aic79xx_osm.c source file.\n");
warned_user++;
}
rd_strm_mask = AIC79XX_CONFIGED_RD_STRM;
} else {
rd_strm_mask = aic79xx_rd_strm_info[ahd->unit];
}
for (target_id = 0; target_id < 16; target_id++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
target_id, &tstate);
ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
tinfo->user.ppr_options &= ~MSG_EXT_PPR_RD_STRM;
if ((rd_strm_mask & devinfo.target_mask) != 0)
tinfo->user.ppr_options |= MSG_EXT_PPR_RD_STRM;
}
}
/*
* Determines the queue depth for a given device.
*/
static void
ahd_linux_device_queue_depth(struct ahd_softc *ahd,
struct ahd_linux_device *dev)
{
struct ahd_devinfo devinfo;
u_int tags;
ahd_compile_devinfo(&devinfo,
ahd->our_id,
dev->target->target, dev->lun,
dev->target->channel == 0 ? 'A' : 'B',
ROLE_INITIATOR);
tags = ahd_linux_user_tagdepth(ahd, &devinfo);
if (tags != 0
&& dev->scsi_device != NULL
&& dev->scsi_device->tagged_supported != 0) {
ahd_set_tags(ahd, &devinfo, AHD_QUEUE_TAGGED);
ahd_print_devinfo(ahd, &devinfo);
printf("Tagged Queuing enabled. Depth %d\n", tags);
} else {
ahd_set_tags(ahd, &devinfo, AHD_QUEUE_NONE);
}
}
static void
ahd_linux_run_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev)
{
struct ahd_cmd *acmd;
struct scsi_cmnd *cmd;
struct scb *scb;
struct hardware_scb *hscb;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int col_idx;
uint16_t mask;
if ((dev->flags & AHD_DEV_ON_RUN_LIST) != 0)
panic("running device on run list");
while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
&& dev->openings > 0 && dev->qfrozen == 0) {
/*
* Schedule us to run later. The only reason we are not
* running is because the whole controller Q is frozen.
*/
if (ahd->platform_data->qfrozen != 0
&& AHD_DV_SIMQ_FROZEN(ahd) == 0) {
TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
dev, links);
dev->flags |= AHD_DEV_ON_RUN_LIST;
return;
}
cmd = &acmd_scsi_cmd(acmd);
/*
* Get an scb to use.
*/
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
cmd->device->id, &tstate);
if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0
|| (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
col_idx = AHD_NEVER_COL_IDX;
} else {
col_idx = AHD_BUILD_COL_IDX(cmd->device->id,
cmd->device->lun);
}
if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) {
TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
dev, links);
dev->flags |= AHD_DEV_ON_RUN_LIST;
ahd->flags |= AHD_RESOURCE_SHORTAGE;
return;
}
TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
scb->io_ctx = cmd;
scb->platform_data->dev = dev;
hscb = scb->hscb;
cmd->host_scribble = (char *)scb;
/*
* Fill out basics of the HSCB.
*/
hscb->control = 0;
hscb->scsiid = BUILD_SCSIID(ahd, cmd);
hscb->lun = cmd->device->lun;
scb->hscb->task_management = 0;
mask = SCB_GET_TARGET_MASK(ahd, scb);
if ((ahd->user_discenable & mask) != 0)
hscb->control |= DISCENB;
if (AHD_DV_CMD(cmd) != 0)
scb->flags |= SCB_SILENT;
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0)
scb->flags |= SCB_PACKETIZED;
if ((tstate->auto_negotiate & mask) != 0) {
scb->flags |= SCB_AUTO_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
}
if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
int msg_bytes;
uint8_t tag_msgs[2];
msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
hscb->control |= tag_msgs[0];
if (tag_msgs[0] == MSG_ORDERED_TASK)
dev->commands_since_idle_or_otag = 0;
} else
#endif
if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH
&& (dev->flags & AHD_DEV_Q_TAGGED) != 0) {
hscb->control |= MSG_ORDERED_TASK;
dev->commands_since_idle_or_otag = 0;
} else {
hscb->control |= MSG_SIMPLE_TASK;
}
}
hscb->cdb_len = cmd->cmd_len;
memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len);
scb->sg_count = 0;
ahd_set_residual(scb, 0);
ahd_set_sense_residual(scb, 0);
if (cmd->use_sg != 0) {
void *sg;
struct scatterlist *cur_seg;
u_int nseg;
int dir;
cur_seg = (struct scatterlist *)cmd->request_buffer;
dir = cmd->sc_data_direction;
nseg = pci_map_sg(ahd->dev_softc, cur_seg,
cmd->use_sg, dir);
scb->platform_data->xfer_len = 0;
for (sg = scb->sg_list; nseg > 0; nseg--, cur_seg++) {
dma_addr_t addr;
bus_size_t len;
addr = sg_dma_address(cur_seg);
len = sg_dma_len(cur_seg);
scb->platform_data->xfer_len += len;
sg = ahd_sg_setup(ahd, scb, sg, addr, len,
/*last*/nseg == 1);
}
} else if (cmd->request_bufflen != 0) {
void *sg;
dma_addr_t addr;
int dir;
sg = scb->sg_list;
dir = cmd->sc_data_direction;
addr = pci_map_single(ahd->dev_softc,
cmd->request_buffer,
cmd->request_bufflen, dir);
scb->platform_data->xfer_len = cmd->request_bufflen;
scb->platform_data->buf_busaddr = addr;
sg = ahd_sg_setup(ahd, scb, sg, addr,
cmd->request_bufflen, /*last*/TRUE);
}
LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
dev->openings--;
dev->active++;
dev->commands_issued++;
/* Update the error counting bucket and dump if needed */
if (dev->target->cmds_since_error) {
dev->target->cmds_since_error++;
if (dev->target->cmds_since_error >
AHD_LINUX_ERR_THRESH)
dev->target->cmds_since_error = 0;
}
if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0)
dev->commands_since_idle_or_otag++;
scb->flags |= SCB_ACTIVE;
ahd_queue_scb(ahd, scb);
}
}
/*
* SCSI controller interrupt handler.
*/
irqreturn_t
ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
{
struct ahd_softc *ahd;
u_long flags;
int ours;
ahd = (struct ahd_softc *) dev_id;
ahd_lock(ahd, &flags);
ours = ahd_intr(ahd);
if (ahd_linux_next_device_to_run(ahd) != NULL)
ahd_schedule_runq(ahd);
ahd_linux_run_complete_queue(ahd);
ahd_unlock(ahd, &flags);
return IRQ_RETVAL(ours);
}
void
ahd_platform_flushwork(struct ahd_softc *ahd)
{
while (ahd_linux_run_complete_queue(ahd) != NULL)
;
}
static struct ahd_linux_target*
ahd_linux_alloc_target(struct ahd_softc *ahd, u_int channel, u_int target)
{
struct ahd_linux_target *targ;
targ = malloc(sizeof(*targ), M_DEVBUF, M_NOWAIT);
if (targ == NULL)
return (NULL);
memset(targ, 0, sizeof(*targ));
targ->channel = channel;
targ->target = target;
targ->ahd = ahd;
targ->flags = AHD_DV_REQUIRED;
ahd->platform_data->targets[target] = targ;
return (targ);
}
static void
ahd_linux_free_target(struct ahd_softc *ahd, struct ahd_linux_target *targ)
{
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int our_id;
u_int target_offset;
char channel;
/*
* Force a negotiation to async/narrow on any
* future command to this device unless a bus
* reset occurs between now and that command.
*/
channel = 'A' + targ->channel;
our_id = ahd->our_id;
target_offset = targ->target;
tinfo = ahd_fetch_transinfo(ahd, channel, our_id,
targ->target, &tstate);
ahd_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
channel, ROLE_INITIATOR);
ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
AHD_TRANS_GOAL, /*paused*/FALSE);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_GOAL, /*paused*/FALSE);
ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS);
ahd->platform_data->targets[target_offset] = NULL;
if (targ->inq_data != NULL)
free(targ->inq_data, M_DEVBUF);
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
if (targ->dv_buffer1 != NULL)
free(targ->dv_buffer1, M_DEVBUF);
free(targ, M_DEVBUF);
}
static struct ahd_linux_device*
ahd_linux_alloc_device(struct ahd_softc *ahd,
struct ahd_linux_target *targ, u_int lun)
{
struct ahd_linux_device *dev;
dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
if (dev == NULL)
return (NULL);
memset(dev, 0, sizeof(*dev));
init_timer(&dev->timer);
TAILQ_INIT(&dev->busyq);
dev->flags = AHD_DEV_UNCONFIGURED;
dev->lun = lun;
dev->target = targ;
/*
* We start out life using untagged
* transactions of which we allow one.
*/
dev->openings = 1;
/*
* Set maxtags to 0. This will be changed if we
* later determine that we are dealing with
* a tagged queuing capable device.
*/
dev->maxtags = 0;
targ->refcount++;
targ->devices[lun] = dev;
return (dev);
}
static void
ahd_linux_free_device(struct ahd_softc *ahd, struct ahd_linux_device *dev)
{
struct ahd_linux_target *targ;
del_timer(&dev->timer);
targ = dev->target;
targ->devices[dev->lun] = NULL;
free(dev, M_DEVBUF);
targ->refcount--;
if (targ->refcount == 0
&& (targ->flags & AHD_DV_REQUIRED) == 0)
ahd_linux_free_target(ahd, targ);
}
void
ahd_send_async(struct ahd_softc *ahd, char channel,
u_int target, u_int lun, ac_code code, void *arg)
{
switch (code) {
case AC_TRANSFER_NEG:
{
char buf[80];
struct ahd_linux_target *targ;
struct info_str info;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
info.buffer = buf;
info.length = sizeof(buf);
info.offset = 0;
info.pos = 0;
tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id,
target, &tstate);
/*
* Don't bother reporting results while
* negotiations are still pending.
*/
if (tinfo->curr.period != tinfo->goal.period
|| tinfo->curr.width != tinfo->goal.width
|| tinfo->curr.offset != tinfo->goal.offset
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options)
if (bootverbose == 0)
break;
/*
* Don't bother reporting results that
* are identical to those last reported.
*/
targ = ahd->platform_data->targets[target];
if (targ == NULL)
break;
if (tinfo->curr.period == targ->last_tinfo.period
&& tinfo->curr.width == targ->last_tinfo.width
&& tinfo->curr.offset == targ->last_tinfo.offset
&& tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
if (bootverbose == 0)
break;
targ->last_tinfo.period = tinfo->curr.period;
targ->last_tinfo.width = tinfo->curr.width;
targ->last_tinfo.offset = tinfo->curr.offset;
targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
printf("(%s:%c:", ahd_name(ahd), channel);
if (target == CAM_TARGET_WILDCARD)
printf("*): ");
else
printf("%d): ", target);
ahd_format_transinfo(&info, &tinfo->curr);
if (info.pos < info.length)
*info.buffer = '\0';
else
buf[info.length - 1] = '\0';
printf("%s", buf);
break;
}
case AC_SENT_BDR:
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
WARN_ON(lun != CAM_LUN_WILDCARD);
scsi_report_device_reset(ahd->platform_data->host,
channel - 'A', target);
#else
Scsi_Device *scsi_dev;
/*
* Find the SCSI device associated with this
* request and indicate that a UA is expected.
*/
for (scsi_dev = ahd->platform_data->host->host_queue;
scsi_dev != NULL; scsi_dev = scsi_dev->next) {
if (channel - 'A' == scsi_dev->channel
&& target == scsi_dev->id
&& (lun == CAM_LUN_WILDCARD
|| lun == scsi_dev->lun)) {
scsi_dev->was_reset = 1;
scsi_dev->expecting_cc_ua = 1;
}
}
#endif
break;
}
case AC_BUS_RESET:
if (ahd->platform_data->host != NULL) {
scsi_report_bus_reset(ahd->platform_data->host,
channel - 'A');
}
break;
default:
panic("ahd_send_async: Unexpected async event");
}
}
/*
* Calls the higher level scsi done function and frees the scb.
*/
void
ahd_done(struct ahd_softc *ahd, struct scb *scb)
{
Scsi_Cmnd *cmd;
struct ahd_linux_device *dev;
if ((scb->flags & SCB_ACTIVE) == 0) {
printf("SCB %d done'd twice\n", SCB_GET_TAG(scb));
ahd_dump_card_state(ahd);
panic("Stopping for safety");
}
LIST_REMOVE(scb, pending_links);
cmd = scb->io_ctx;
dev = scb->platform_data->dev;
dev->active--;
dev->openings++;
if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
cmd->result &= ~(CAM_DEV_QFRZN << 16);
dev->qfrozen--;
}
ahd_linux_unmap_scb(ahd, scb);
/*
* Guard against stale sense data.
* The Linux mid-layer assumes that sense
* was retrieved anytime the first byte of
* the sense buffer looks "sane".
*/
cmd->sense_buffer[0] = 0;
if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) {
uint32_t amount_xferred;
amount_xferred =
ahd_get_transfer_length(scb) - ahd_get_residual(scb);
if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0) {
ahd_print_path(ahd, scb);
printf("Set CAM_UNCOR_PARITY\n");
}
#endif
ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
#ifdef AHD_REPORT_UNDERFLOWS
/*
* This code is disabled by default as some
* clients of the SCSI system do not properly
* initialize the underflow parameter. This
* results in spurious termination of commands
* that complete as expected (e.g. underflow is
* allowed as command can return variable amounts
* of data.
*/
} else if (amount_xferred < scb->io_ctx->underflow) {
u_int i;
ahd_print_path(ahd, scb);
printf("CDB:");
for (i = 0; i < scb->io_ctx->cmd_len; i++)
printf(" 0x%x", scb->io_ctx->cmnd[i]);
printf("\n");
ahd_print_path(ahd, scb);
printf("Saw underflow (%ld of %ld bytes). "
"Treated as error\n",
ahd_get_residual(scb),
ahd_get_transfer_length(scb));
ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
#endif
} else {
ahd_set_transaction_status(scb, CAM_REQ_CMP);
}
} else if (ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
ahd_linux_handle_scsi_status(ahd, dev, scb);
} else if (ahd_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
dev->flags |= AHD_DEV_UNCONFIGURED;
if (AHD_DV_CMD(cmd) == FALSE)
dev->target->flags &= ~AHD_DV_REQUIRED;
}
/*
* Start DV for devices that require it assuming the first command
* sent does not result in a selection timeout.
*/
if (ahd_get_transaction_status(scb) != CAM_SEL_TIMEOUT
&& (dev->target->flags & AHD_DV_REQUIRED) != 0)
ahd_linux_start_dv(ahd);
if (dev->openings == 1
&& ahd_get_transaction_status(scb) == CAM_REQ_CMP
&& ahd_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
dev->tag_success_count++;
/*
* Some devices deal with temporary internal resource
* shortages by returning queue full. When the queue
* full occurrs, we throttle back. Slowly try to get
* back to our previous queue depth.
*/
if ((dev->openings + dev->active) < dev->maxtags
&& dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) {
dev->tag_success_count = 0;
dev->openings++;
}
if (dev->active == 0)
dev->commands_since_idle_or_otag = 0;
if (TAILQ_EMPTY(&dev->busyq)) {
if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
&& dev->active == 0
&& (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
ahd_linux_free_device(ahd, dev);
} else if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
dev->flags |= AHD_DEV_ON_RUN_LIST;
}
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
printf("Recovery SCB completes\n");
if (ahd_get_transaction_status(scb) == CAM_BDR_SENT
|| ahd_get_transaction_status(scb) == CAM_REQ_ABORTED)
ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
up(&ahd->platform_data->eh_sem);
}
}
ahd_free_scb(ahd, scb);
ahd_linux_queue_cmd_complete(ahd, cmd);
if ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_EMPTY) != 0
&& LIST_FIRST(&ahd->pending_scbs) == NULL) {
ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_EMPTY;
up(&ahd->platform_data->dv_sem);
}
}
static void
ahd_linux_handle_scsi_status(struct ahd_softc *ahd,
struct ahd_linux_device *dev, struct scb *scb)
{
struct ahd_devinfo devinfo;
ahd_compile_devinfo(&devinfo,
ahd->our_id,
dev->target->target, dev->lun,
dev->target->channel == 0 ? 'A' : 'B',
ROLE_INITIATOR);
/*
* We don't currently trust the mid-layer to
* properly deal with queue full or busy. So,
* when one occurs, we tell the mid-layer to
* unconditionally requeue the command to us
* so that we can retry it ourselves. We also
* implement our own throttling mechanism so
* we don't clobber the device with too many
* commands.
*/
switch (ahd_get_scsi_status(scb)) {
default:
break;
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
{
Scsi_Cmnd *cmd;
/*
* Copy sense information to the OS's cmd
* structure if it is available.
*/
cmd = scb->io_ctx;
if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) {
struct scsi_status_iu_header *siu;
u_int sense_size;
u_int sense_offset;
if (scb->flags & SCB_SENSE) {
sense_size = MIN(sizeof(struct scsi_sense_data)
- ahd_get_sense_residual(scb),
sizeof(cmd->sense_buffer));
sense_offset = 0;
} else {
/*
* Copy only the sense data into the provided
* buffer.
*/
siu = (struct scsi_status_iu_header *)
scb->sense_data;
sense_size = MIN(scsi_4btoul(siu->sense_length),
sizeof(cmd->sense_buffer));
sense_offset = SIU_SENSE_OFFSET(siu);
}
memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
memcpy(cmd->sense_buffer,
ahd_get_sense_buf(ahd, scb)
+ sense_offset, sense_size);
cmd->result |= (DRIVER_SENSE << 24);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_SENSE) {
int i;
printf("Copied %d bytes of sense data at %d:",
sense_size, sense_offset);
for (i = 0; i < sense_size; i++) {
if ((i & 0xF) == 0)
printf("\n");
printf("0x%x ", cmd->sense_buffer[i]);
}
printf("\n");
}
#endif
}
break;
}
case SCSI_STATUS_QUEUE_FULL:
{
/*
* By the time the core driver has returned this
* command, all other commands that were queued
* to us but not the device have been returned.
* This ensures that dev->active is equal to
* the number of commands actually queued to
* the device.
*/
dev->tag_success_count = 0;
if (dev->active != 0) {
/*
* Drop our opening count to the number
* of commands currently outstanding.
*/
dev->openings = 0;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_QFULL) != 0) {
ahd_print_path(ahd, scb);
printf("Dropping tag count to %d\n",
dev->active);
}
#endif
if (dev->active == dev->tags_on_last_queuefull) {
dev->last_queuefull_same_count++;
/*
* If we repeatedly see a queue full
* at the same queue depth, this
* device has a fixed number of tag
* slots. Lock in this tag depth
* so we stop seeing queue fulls from
* this device.
*/
if (dev->last_queuefull_same_count
== AHD_LOCK_TAGS_COUNT) {
dev->maxtags = dev->active;
ahd_print_path(ahd, scb);
printf("Locking max tag count at %d\n",
dev->active);
}
} else {
dev->tags_on_last_queuefull = dev->active;
dev->last_queuefull_same_count = 0;
}
ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
ahd_set_scsi_status(scb, SCSI_STATUS_OK);
ahd_platform_set_tags(ahd, &devinfo,
(dev->flags & AHD_DEV_Q_BASIC)
? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
break;
}
/*
* Drop down to a single opening, and treat this
* as if the target returned BUSY SCSI status.
*/
dev->openings = 1;
ahd_platform_set_tags(ahd, &devinfo,
(dev->flags & AHD_DEV_Q_BASIC)
? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
ahd_set_scsi_status(scb, SCSI_STATUS_BUSY);
/* FALLTHROUGH */
}
case SCSI_STATUS_BUSY:
/*
* Set a short timer to defer sending commands for
* a bit since Linux will not delay in this case.
*/
if ((dev->flags & AHD_DEV_TIMER_ACTIVE) != 0) {
printf("%s:%c:%d: Device Timer still active during "
"busy processing\n", ahd_name(ahd),
dev->target->channel, dev->target->target);
break;
}
dev->flags |= AHD_DEV_TIMER_ACTIVE;
dev->qfrozen++;
init_timer(&dev->timer);
dev->timer.data = (u_long)dev;
dev->timer.expires = jiffies + (HZ/2);
dev->timer.function = ahd_linux_dev_timed_unfreeze;
add_timer(&dev->timer);
break;
}
}
static void
ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd)
{
/*
* Typically, the complete queue has very few entries
* queued to it before the queue is emptied by
* ahd_linux_run_complete_queue, so sorting the entries
* by generation number should be inexpensive.
* We perform the sort so that commands that complete
* with an error are retuned in the order origionally
* queued to the controller so that any subsequent retries
* are performed in order. The underlying ahd routines do
* not guarantee the order that aborted commands will be
* returned to us.
*/
struct ahd_completeq *completeq;
struct ahd_cmd *list_cmd;
struct ahd_cmd *acmd;
/*
* Map CAM error codes into Linux Error codes. We
* avoid the conversion so that the DV code has the
* full error information available when making
* state change decisions.
*/
if (AHD_DV_CMD(cmd) == FALSE) {
uint32_t status;
u_int new_status;
status = ahd_cmd_get_transaction_status(cmd);
if (status != CAM_REQ_CMP) {
struct ahd_linux_device *dev;
struct ahd_devinfo devinfo;
cam_status cam_status;
uint32_t action;
u_int scsi_status;
dev = ahd_linux_get_device(ahd, cmd->device->channel,
cmd->device->id,
cmd->device->lun,
/*alloc*/FALSE);
if (dev == NULL)
goto no_fallback;
ahd_compile_devinfo(&devinfo,
ahd->our_id,
dev->target->target, dev->lun,
dev->target->channel == 0 ? 'A':'B',
ROLE_INITIATOR);
scsi_status = ahd_cmd_get_scsi_status(cmd);
cam_status = ahd_cmd_get_transaction_status(cmd);
action = aic_error_action(cmd, dev->target->inq_data,
cam_status, scsi_status);
if ((action & SSQ_FALLBACK) != 0) {
/* Update stats */
dev->target->errors_detected++;
if (dev->target->cmds_since_error == 0)
dev->target->cmds_since_error++;
else {
dev->target->cmds_since_error = 0;
ahd_linux_fallback(ahd, &devinfo);
}
}
}
no_fallback:
switch (status) {
case CAM_REQ_INPROG:
case CAM_REQ_CMP:
case CAM_SCSI_STATUS_ERROR:
new_status = DID_OK;
break;
case CAM_REQ_ABORTED:
new_status = DID_ABORT;
break;
case CAM_BUSY:
new_status = DID_BUS_BUSY;
break;
case CAM_REQ_INVALID:
case CAM_PATH_INVALID:
new_status = DID_BAD_TARGET;
break;
case CAM_SEL_TIMEOUT:
new_status = DID_NO_CONNECT;
break;
case CAM_SCSI_BUS_RESET:
case CAM_BDR_SENT:
new_status = DID_RESET;
break;
case CAM_UNCOR_PARITY:
new_status = DID_PARITY;
break;
case CAM_CMD_TIMEOUT:
new_status = DID_TIME_OUT;
break;
case CAM_UA_ABORT:
case CAM_REQ_CMP_ERR:
case CAM_AUTOSENSE_FAIL:
case CAM_NO_HBA:
case CAM_DATA_RUN_ERR:
case CAM_UNEXP_BUSFREE:
case CAM_SEQUENCE_FAIL:
case CAM_CCB_LEN_ERR:
case CAM_PROVIDE_FAIL:
case CAM_REQ_TERMIO:
case CAM_UNREC_HBA_ERROR:
case CAM_REQ_TOO_BIG:
new_status = DID_ERROR;
break;
case CAM_REQUEUE_REQ:
/*
* If we want the request requeued, make sure there
* are sufficent retries. In the old scsi error code,
* we used to be able to specify a result code that
* bypassed the retry count. Now we must use this
* hack. We also "fake" a check condition with
* a sense code of ABORTED COMMAND. This seems to
* evoke a retry even if this command is being sent
* via the eh thread. Ick! Ick! Ick!
*/
if (cmd->retries > 0)
cmd->retries--;
new_status = DID_OK;
ahd_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
cmd->result |= (DRIVER_SENSE << 24);
memset(cmd->sense_buffer, 0,
sizeof(cmd->sense_buffer));
cmd->sense_buffer[0] = SSD_ERRCODE_VALID
| SSD_CURRENT_ERROR;
cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
break;
default:
/* We should never get here */
new_status = DID_ERROR;
break;
}
ahd_cmd_set_transaction_status(cmd, new_status);
}
completeq = &ahd->platform_data->completeq;
list_cmd = TAILQ_FIRST(completeq);
acmd = (struct ahd_cmd *)cmd;
while (list_cmd != NULL
&& acmd_scsi_cmd(list_cmd).serial_number
< acmd_scsi_cmd(acmd).serial_number)
list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
if (list_cmd != NULL)
TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
else
TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
}
static void
ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct scsi_inquiry_data *sid;
struct ahd_initiator_tinfo *tinfo;
struct ahd_transinfo *user;
struct ahd_transinfo *goal;
struct ahd_transinfo *curr;
struct ahd_tmode_tstate *tstate;
struct ahd_linux_device *dev;
u_int width;
u_int period;
u_int offset;
u_int ppr_options;
u_int trans_version;
u_int prot_version;
/*
* Determine if this lun actually exists. If so,
* hold on to its corresponding device structure.
* If not, make sure we release the device and
* don't bother processing the rest of this inquiry
* command.
*/
dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
devinfo->target, devinfo->lun,
/*alloc*/TRUE);
sid = (struct scsi_inquiry_data *)dev->target->inq_data;
if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
dev->flags &= ~AHD_DEV_UNCONFIGURED;
} else {
dev->flags |= AHD_DEV_UNCONFIGURED;
return;
}
/*
* Update our notion of this device's transfer
* negotiation capabilities.
*/
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
user = &tinfo->user;
goal = &tinfo->goal;
curr = &tinfo->curr;
width = user->width;
period = user->period;
offset = user->offset;
ppr_options = user->ppr_options;
trans_version = user->transport_version;
prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
/*
* Only attempt SPI3/4 once we've verified that
* the device claims to support SPI3/4 features.
*/
if (prot_version < SCSI_REV_2)
trans_version = SID_ANSI_REV(sid);
else
trans_version = SCSI_REV_2;
if ((sid->flags & SID_WBus16) == 0)
width = MSG_EXT_WDTR_BUS_8_BIT;
if ((sid->flags & SID_Sync) == 0) {
period = 0;
offset = 0;
ppr_options = 0;
}
if ((sid->spi3data & SID_SPI_QAS) == 0)
ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
ppr_options &= MSG_EXT_PPR_QAS_REQ;
if ((sid->spi3data & SID_SPI_IUS) == 0)
ppr_options &= (MSG_EXT_PPR_DT_REQ
| MSG_EXT_PPR_QAS_REQ);
if (prot_version > SCSI_REV_2
&& ppr_options != 0)
trans_version = user->transport_version;
ahd_validate_width(ahd, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_MAX);
ahd_validate_offset(ahd, /*tinfo limit*/NULL, period,
&offset, width, ROLE_UNKNOWN);
if (offset == 0 || period == 0) {
period = 0;
offset = 0;
ppr_options = 0;
}
/* Apply our filtered user settings. */
curr->transport_version = trans_version;
curr->protocol_version = prot_version;
ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, /*paused*/FALSE);
ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options,
AHD_TRANS_GOAL, /*paused*/FALSE);
}
void
ahd_freeze_simq(struct ahd_softc *ahd)
{
ahd->platform_data->qfrozen++;
if (ahd->platform_data->qfrozen == 1) {
scsi_block_requests(ahd->platform_data->host);
ahd_platform_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ);
}
}
void
ahd_release_simq(struct ahd_softc *ahd)
{
u_long s;
int unblock_reqs;
unblock_reqs = 0;
ahd_lock(ahd, &s);
if (ahd->platform_data->qfrozen > 0)
ahd->platform_data->qfrozen--;
if (ahd->platform_data->qfrozen == 0) {
unblock_reqs = 1;
}
if (AHD_DV_SIMQ_FROZEN(ahd)
&& ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_RELEASE) != 0)) {
ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_RELEASE;
up(&ahd->platform_data->dv_sem);
}
ahd_schedule_runq(ahd);
ahd_unlock(ahd, &s);
/*
* There is still a race here. The mid-layer
* should keep its own freeze count and use
* a bottom half handler to run the queues
* so we can unblock with our own lock held.
*/
if (unblock_reqs)
scsi_unblock_requests(ahd->platform_data->host);
}
static void
ahd_linux_sem_timeout(u_long arg)
{
struct scb *scb;
struct ahd_softc *ahd;
u_long s;
scb = (struct scb *)arg;
ahd = scb->ahd_softc;
ahd_lock(ahd, &s);
if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
up(&ahd->platform_data->eh_sem);
}
ahd_unlock(ahd, &s);
}
static void
ahd_linux_dev_timed_unfreeze(u_long arg)
{
struct ahd_linux_device *dev;
struct ahd_softc *ahd;
u_long s;
dev = (struct ahd_linux_device *)arg;
ahd = dev->target->ahd;
ahd_lock(ahd, &s);
dev->flags &= ~AHD_DEV_TIMER_ACTIVE;
if (dev->qfrozen > 0)
dev->qfrozen--;
if (dev->qfrozen == 0
&& (dev->flags & AHD_DEV_ON_RUN_LIST) == 0)
ahd_linux_run_device_queue(ahd, dev);
if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
&& dev->active == 0)
ahd_linux_free_device(ahd, dev);
ahd_unlock(ahd, &s);
}
void
ahd_platform_dump_card_state(struct ahd_softc *ahd)
{
struct ahd_linux_device *dev;
int target;
int maxtarget;
int lun;
int i;
maxtarget = (ahd->features & AHD_WIDE) ? 15 : 7;
for (target = 0; target <=maxtarget; target++) {
for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
struct ahd_cmd *acmd;
dev = ahd_linux_get_device(ahd, 0, target,
lun, /*alloc*/FALSE);
if (dev == NULL)
continue;
printf("DevQ(%d:%d:%d): ", 0, target, lun);
i = 0;
TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) {
if (i++ > AHD_SCB_MAX)
break;
}
printf("%d waiting\n", i);
}
}
}
static int __init
ahd_linux_init(void)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
return ahd_linux_detect(&aic79xx_driver_template);
#else
scsi_register_module(MODULE_SCSI_HA, &aic79xx_driver_template);
if (aic79xx_driver_template.present == 0) {
scsi_unregister_module(MODULE_SCSI_HA,
&aic79xx_driver_template);
return (-ENODEV);
}
return (0);
#endif
}
static void __exit
ahd_linux_exit(void)
{
struct ahd_softc *ahd;
/*
* Shutdown DV threads before going into the SCSI mid-layer.
* This avoids situations where the mid-layer locks the entire
* kernel so that waiting for our DV threads to exit leads
* to deadlock.
*/
TAILQ_FOREACH(ahd, &ahd_tailq, links) {
ahd_linux_kill_dv_thread(ahd);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* In 2.4 we have to unregister from the PCI core _after_
* unregistering from the scsi midlayer to avoid dangling
* references.
*/
scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template);
#endif
ahd_linux_pci_exit();
}
module_init(ahd_linux_init);
module_exit(ahd_linux_exit);