| /* |
| * A fairly generic DMA-API to IOMMU-API glue layer. |
| * |
| * Copyright (C) 2014-2015 ARM Ltd. |
| * |
| * based in part on arch/arm/mm/dma-mapping.c: |
| * Copyright (C) 2000-2004 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/dma-iommu.h> |
| #include <linux/gfp.h> |
| #include <linux/huge_mm.h> |
| #include <linux/iommu.h> |
| #include <linux/iova.h> |
| #include <linux/irq.h> |
| #include <linux/mm.h> |
| #include <linux/pci.h> |
| #include <linux/scatterlist.h> |
| #include <linux/vmalloc.h> |
| |
| struct iommu_dma_msi_page { |
| struct list_head list; |
| dma_addr_t iova; |
| phys_addr_t phys; |
| }; |
| |
| enum iommu_dma_cookie_type { |
| IOMMU_DMA_IOVA_COOKIE, |
| IOMMU_DMA_MSI_COOKIE, |
| }; |
| |
| struct iommu_dma_cookie { |
| enum iommu_dma_cookie_type type; |
| union { |
| /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ |
| struct iova_domain iovad; |
| /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ |
| dma_addr_t msi_iova; |
| }; |
| struct list_head msi_page_list; |
| spinlock_t msi_lock; |
| }; |
| |
| static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) |
| { |
| if (cookie->type == IOMMU_DMA_IOVA_COOKIE) |
| return cookie->iovad.granule; |
| return PAGE_SIZE; |
| } |
| |
| static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| |
| if (cookie->type == IOMMU_DMA_IOVA_COOKIE) |
| return &cookie->iovad; |
| return NULL; |
| } |
| |
| static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) |
| { |
| struct iommu_dma_cookie *cookie; |
| |
| cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
| if (cookie) { |
| spin_lock_init(&cookie->msi_lock); |
| INIT_LIST_HEAD(&cookie->msi_page_list); |
| cookie->type = type; |
| } |
| return cookie; |
| } |
| |
| int iommu_dma_init(void) |
| { |
| return iova_cache_get(); |
| } |
| |
| /** |
| * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| * @domain: IOMMU domain to prepare for DMA-API usage |
| * |
| * IOMMU drivers should normally call this from their domain_alloc |
| * callback when domain->type == IOMMU_DOMAIN_DMA. |
| */ |
| int iommu_get_dma_cookie(struct iommu_domain *domain) |
| { |
| if (domain->iova_cookie) |
| return -EEXIST; |
| |
| domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); |
| if (!domain->iova_cookie) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(iommu_get_dma_cookie); |
| |
| /** |
| * iommu_get_msi_cookie - Acquire just MSI remapping resources |
| * @domain: IOMMU domain to prepare |
| * @base: Start address of IOVA region for MSI mappings |
| * |
| * Users who manage their own IOVA allocation and do not want DMA API support, |
| * but would still like to take advantage of automatic MSI remapping, can use |
| * this to initialise their own domain appropriately. Users should reserve a |
| * contiguous IOVA region, starting at @base, large enough to accommodate the |
| * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address |
| * used by the devices attached to @domain. |
| */ |
| int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) |
| { |
| struct iommu_dma_cookie *cookie; |
| |
| if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| return -EINVAL; |
| |
| if (domain->iova_cookie) |
| return -EEXIST; |
| |
| cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); |
| if (!cookie) |
| return -ENOMEM; |
| |
| cookie->msi_iova = base; |
| domain->iova_cookie = cookie; |
| return 0; |
| } |
| EXPORT_SYMBOL(iommu_get_msi_cookie); |
| |
| /** |
| * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or |
| * iommu_get_msi_cookie() |
| * |
| * IOMMU drivers should normally call this from their domain_free callback. |
| */ |
| void iommu_put_dma_cookie(struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iommu_dma_msi_page *msi, *tmp; |
| |
| if (!cookie) |
| return; |
| |
| if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) |
| put_iova_domain(&cookie->iovad); |
| |
| list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { |
| list_del(&msi->list); |
| kfree(msi); |
| } |
| kfree(cookie); |
| domain->iova_cookie = NULL; |
| } |
| EXPORT_SYMBOL(iommu_put_dma_cookie); |
| |
| static void iova_reserve_pci_windows(struct pci_dev *dev, |
| struct iova_domain *iovad) |
| { |
| struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); |
| struct resource_entry *window; |
| unsigned long lo, hi; |
| |
| resource_list_for_each_entry(window, &bridge->windows) { |
| if (resource_type(window->res) != IORESOURCE_MEM && |
| resource_type(window->res) != IORESOURCE_IO) |
| continue; |
| |
| lo = iova_pfn(iovad, window->res->start - window->offset); |
| hi = iova_pfn(iovad, window->res->end - window->offset); |
| reserve_iova(iovad, lo, hi); |
| } |
| } |
| |
| /** |
| * iommu_dma_init_domain - Initialise a DMA mapping domain |
| * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| * @base: IOVA at which the mappable address space starts |
| * @size: Size of IOVA space |
| * @dev: Device the domain is being initialised for |
| * |
| * @base and @size should be exact multiples of IOMMU page granularity to |
| * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| * any change which could make prior IOVAs invalid will fail. |
| */ |
| int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, |
| u64 size, struct device *dev) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iova_domain *iovad = &cookie->iovad; |
| unsigned long order, base_pfn, end_pfn; |
| bool pci = dev && dev_is_pci(dev); |
| |
| if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) |
| return -EINVAL; |
| |
| /* Use the smallest supported page size for IOVA granularity */ |
| order = __ffs(domain->pgsize_bitmap); |
| base_pfn = max_t(unsigned long, 1, base >> order); |
| end_pfn = (base + size - 1) >> order; |
| |
| /* Check the domain allows at least some access to the device... */ |
| if (domain->geometry.force_aperture) { |
| if (base > domain->geometry.aperture_end || |
| base + size <= domain->geometry.aperture_start) { |
| pr_warn("specified DMA range outside IOMMU capability\n"); |
| return -EFAULT; |
| } |
| /* ...then finally give it a kicking to make sure it fits */ |
| base_pfn = max_t(unsigned long, base_pfn, |
| domain->geometry.aperture_start >> order); |
| end_pfn = min_t(unsigned long, end_pfn, |
| domain->geometry.aperture_end >> order); |
| } |
| /* |
| * PCI devices may have larger DMA masks, but still prefer allocating |
| * within a 32-bit mask to avoid DAC addressing. Such limitations don't |
| * apply to the typical platform device, so for those we may as well |
| * leave the cache limit at the top of their range to save an rb_last() |
| * traversal on every allocation. |
| */ |
| if (pci) |
| end_pfn &= DMA_BIT_MASK(32) >> order; |
| |
| /* start_pfn is always nonzero for an already-initialised domain */ |
| if (iovad->start_pfn) { |
| if (1UL << order != iovad->granule || |
| base_pfn != iovad->start_pfn) { |
| pr_warn("Incompatible range for DMA domain\n"); |
| return -EFAULT; |
| } |
| /* |
| * If we have devices with different DMA masks, move the free |
| * area cache limit down for the benefit of the smaller one. |
| */ |
| iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn); |
| } else { |
| init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); |
| if (pci) |
| iova_reserve_pci_windows(to_pci_dev(dev), iovad); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(iommu_dma_init_domain); |
| |
| /** |
| * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API |
| * page flags. |
| * @dir: Direction of DMA transfer |
| * @coherent: Is the DMA master cache-coherent? |
| * @attrs: DMA attributes for the mapping |
| * |
| * Return: corresponding IOMMU API page protection flags |
| */ |
| int dma_info_to_prot(enum dma_data_direction dir, bool coherent, |
| unsigned long attrs) |
| { |
| int prot = coherent ? IOMMU_CACHE : 0; |
| |
| if (attrs & DMA_ATTR_PRIVILEGED) |
| prot |= IOMMU_PRIV; |
| |
| switch (dir) { |
| case DMA_BIDIRECTIONAL: |
| return prot | IOMMU_READ | IOMMU_WRITE; |
| case DMA_TO_DEVICE: |
| return prot | IOMMU_READ; |
| case DMA_FROM_DEVICE: |
| return prot | IOMMU_WRITE; |
| default: |
| return 0; |
| } |
| } |
| |
| static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size, |
| dma_addr_t dma_limit, struct device *dev) |
| { |
| struct iova_domain *iovad = cookie_iovad(domain); |
| unsigned long shift = iova_shift(iovad); |
| unsigned long length = iova_align(iovad, size) >> shift; |
| struct iova *iova = NULL; |
| |
| if (domain->geometry.force_aperture) |
| dma_limit = min(dma_limit, domain->geometry.aperture_end); |
| |
| /* Try to get PCI devices a SAC address */ |
| if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) |
| iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift, |
| true); |
| /* |
| * Enforce size-alignment to be safe - there could perhaps be an |
| * attribute to control this per-device, or at least per-domain... |
| */ |
| if (!iova) |
| iova = alloc_iova(iovad, length, dma_limit >> shift, true); |
| |
| return iova; |
| } |
| |
| /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ |
| static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) |
| { |
| struct iova_domain *iovad = cookie_iovad(domain); |
| unsigned long shift = iova_shift(iovad); |
| unsigned long pfn = dma_addr >> shift; |
| struct iova *iova = find_iova(iovad, pfn); |
| size_t size; |
| |
| if (WARN_ON(!iova)) |
| return; |
| |
| size = iova_size(iova) << shift; |
| size -= iommu_unmap(domain, pfn << shift, size); |
| /* ...and if we can't, then something is horribly, horribly wrong */ |
| WARN_ON(size > 0); |
| __free_iova(iovad, iova); |
| } |
| |
| static void __iommu_dma_free_pages(struct page **pages, int count) |
| { |
| while (count--) |
| __free_page(pages[count]); |
| kvfree(pages); |
| } |
| |
| static struct page **__iommu_dma_alloc_pages(unsigned int count, |
| unsigned long order_mask, gfp_t gfp) |
| { |
| struct page **pages; |
| unsigned int i = 0, array_size = count * sizeof(*pages); |
| |
| order_mask &= (2U << MAX_ORDER) - 1; |
| if (!order_mask) |
| return NULL; |
| |
| if (array_size <= PAGE_SIZE) |
| pages = kzalloc(array_size, GFP_KERNEL); |
| else |
| pages = vzalloc(array_size); |
| if (!pages) |
| return NULL; |
| |
| /* IOMMU can map any pages, so himem can also be used here */ |
| gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| |
| while (count) { |
| struct page *page = NULL; |
| unsigned int order_size; |
| |
| /* |
| * Higher-order allocations are a convenience rather |
| * than a necessity, hence using __GFP_NORETRY until |
| * falling back to minimum-order allocations. |
| */ |
| for (order_mask &= (2U << __fls(count)) - 1; |
| order_mask; order_mask &= ~order_size) { |
| unsigned int order = __fls(order_mask); |
| |
| order_size = 1U << order; |
| page = alloc_pages((order_mask - order_size) ? |
| gfp | __GFP_NORETRY : gfp, order); |
| if (!page) |
| continue; |
| if (!order) |
| break; |
| if (!PageCompound(page)) { |
| split_page(page, order); |
| break; |
| } else if (!split_huge_page(page)) { |
| break; |
| } |
| __free_pages(page, order); |
| } |
| if (!page) { |
| __iommu_dma_free_pages(pages, i); |
| return NULL; |
| } |
| count -= order_size; |
| while (order_size--) |
| pages[i++] = page++; |
| } |
| return pages; |
| } |
| |
| /** |
| * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() |
| * @dev: Device which owns this buffer |
| * @pages: Array of buffer pages as returned by iommu_dma_alloc() |
| * @size: Size of buffer in bytes |
| * @handle: DMA address of buffer |
| * |
| * Frees both the pages associated with the buffer, and the array |
| * describing them |
| */ |
| void iommu_dma_free(struct device *dev, struct page **pages, size_t size, |
| dma_addr_t *handle) |
| { |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); |
| __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| *handle = DMA_ERROR_CODE; |
| } |
| |
| /** |
| * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space |
| * @dev: Device to allocate memory for. Must be a real device |
| * attached to an iommu_dma_domain |
| * @size: Size of buffer in bytes |
| * @gfp: Allocation flags |
| * @attrs: DMA attributes for this allocation |
| * @prot: IOMMU mapping flags |
| * @handle: Out argument for allocated DMA handle |
| * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the |
| * given VA/PA are visible to the given non-coherent device. |
| * |
| * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| * but an IOMMU which supports smaller pages might not map the whole thing. |
| * |
| * Return: Array of struct page pointers describing the buffer, |
| * or NULL on failure. |
| */ |
| struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, |
| unsigned long attrs, int prot, dma_addr_t *handle, |
| void (*flush_page)(struct device *, const void *, phys_addr_t)) |
| { |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = cookie_iovad(domain); |
| struct iova *iova; |
| struct page **pages; |
| struct sg_table sgt; |
| dma_addr_t dma_addr; |
| unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
| |
| *handle = DMA_ERROR_CODE; |
| |
| min_size = alloc_sizes & -alloc_sizes; |
| if (min_size < PAGE_SIZE) { |
| min_size = PAGE_SIZE; |
| alloc_sizes |= PAGE_SIZE; |
| } else { |
| size = ALIGN(size, min_size); |
| } |
| if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| alloc_sizes = min_size; |
| |
| count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); |
| if (!pages) |
| return NULL; |
| |
| iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev); |
| if (!iova) |
| goto out_free_pages; |
| |
| size = iova_align(iovad, size); |
| if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| goto out_free_iova; |
| |
| if (!(prot & IOMMU_CACHE)) { |
| struct sg_mapping_iter miter; |
| /* |
| * The CPU-centric flushing implied by SG_MITER_TO_SG isn't |
| * sufficient here, so skip it by using the "wrong" direction. |
| */ |
| sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); |
| while (sg_miter_next(&miter)) |
| flush_page(dev, miter.addr, page_to_phys(miter.page)); |
| sg_miter_stop(&miter); |
| } |
| |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) |
| < size) |
| goto out_free_sg; |
| |
| *handle = dma_addr; |
| sg_free_table(&sgt); |
| return pages; |
| |
| out_free_sg: |
| sg_free_table(&sgt); |
| out_free_iova: |
| __free_iova(iovad, iova); |
| out_free_pages: |
| __iommu_dma_free_pages(pages, count); |
| return NULL; |
| } |
| |
| /** |
| * iommu_dma_mmap - Map a buffer into provided user VMA |
| * @pages: Array representing buffer from iommu_dma_alloc() |
| * @size: Size of buffer in bytes |
| * @vma: VMA describing requested userspace mapping |
| * |
| * Maps the pages of the buffer in @pages into @vma. The caller is responsible |
| * for verifying the correct size and protection of @vma beforehand. |
| */ |
| |
| int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) |
| { |
| unsigned long uaddr = vma->vm_start; |
| unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| int ret = -ENXIO; |
| |
| for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { |
| ret = vm_insert_page(vma, uaddr, pages[i]); |
| if (ret) |
| break; |
| uaddr += PAGE_SIZE; |
| } |
| return ret; |
| } |
| |
| static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, |
| size_t size, int prot) |
| { |
| dma_addr_t dma_addr; |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = cookie_iovad(domain); |
| size_t iova_off = iova_offset(iovad, phys); |
| size_t len = iova_align(iovad, size + iova_off); |
| struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev); |
| |
| if (!iova) |
| return DMA_ERROR_CODE; |
| |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { |
| __free_iova(iovad, iova); |
| return DMA_ERROR_CODE; |
| } |
| return dma_addr + iova_off; |
| } |
| |
| dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, int prot) |
| { |
| return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot); |
| } |
| |
| void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); |
| } |
| |
| /* |
| * Prepare a successfully-mapped scatterlist to give back to the caller. |
| * |
| * At this point the segments are already laid out by iommu_dma_map_sg() to |
| * avoid individually crossing any boundaries, so we merely need to check a |
| * segment's start address to avoid concatenating across one. |
| */ |
| static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| dma_addr_t dma_addr) |
| { |
| struct scatterlist *s, *cur = sg; |
| unsigned long seg_mask = dma_get_seg_boundary(dev); |
| unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); |
| int i, count = 0; |
| |
| for_each_sg(sg, s, nents, i) { |
| /* Restore this segment's original unaligned fields first */ |
| unsigned int s_iova_off = sg_dma_address(s); |
| unsigned int s_length = sg_dma_len(s); |
| unsigned int s_iova_len = s->length; |
| |
| s->offset += s_iova_off; |
| s->length = s_length; |
| sg_dma_address(s) = DMA_ERROR_CODE; |
| sg_dma_len(s) = 0; |
| |
| /* |
| * Now fill in the real DMA data. If... |
| * - there is a valid output segment to append to |
| * - and this segment starts on an IOVA page boundary |
| * - but doesn't fall at a segment boundary |
| * - and wouldn't make the resulting output segment too long |
| */ |
| if (cur_len && !s_iova_off && (dma_addr & seg_mask) && |
| (cur_len + s_length <= max_len)) { |
| /* ...then concatenate it with the previous one */ |
| cur_len += s_length; |
| } else { |
| /* Otherwise start the next output segment */ |
| if (i > 0) |
| cur = sg_next(cur); |
| cur_len = s_length; |
| count++; |
| |
| sg_dma_address(cur) = dma_addr + s_iova_off; |
| } |
| |
| sg_dma_len(cur) = cur_len; |
| dma_addr += s_iova_len; |
| |
| if (s_length + s_iova_off < s_iova_len) |
| cur_len = 0; |
| } |
| return count; |
| } |
| |
| /* |
| * If mapping failed, then just restore the original list, |
| * but making sure the DMA fields are invalidated. |
| */ |
| static void __invalidate_sg(struct scatterlist *sg, int nents) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (sg_dma_address(s) != DMA_ERROR_CODE) |
| s->offset += sg_dma_address(s); |
| if (sg_dma_len(s)) |
| s->length = sg_dma_len(s); |
| sg_dma_address(s) = DMA_ERROR_CODE; |
| sg_dma_len(s) = 0; |
| } |
| } |
| |
| /* |
| * The DMA API client is passing in a scatterlist which could describe |
| * any old buffer layout, but the IOMMU API requires everything to be |
| * aligned to IOMMU pages. Hence the need for this complicated bit of |
| * impedance-matching, to be able to hand off a suitably-aligned list, |
| * but still preserve the original offsets and sizes for the caller. |
| */ |
| int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, int prot) |
| { |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iova_domain *iovad = cookie_iovad(domain); |
| struct iova *iova; |
| struct scatterlist *s, *prev = NULL; |
| dma_addr_t dma_addr; |
| size_t iova_len = 0; |
| unsigned long mask = dma_get_seg_boundary(dev); |
| int i; |
| |
| /* |
| * Work out how much IOVA space we need, and align the segments to |
| * IOVA granules for the IOMMU driver to handle. With some clever |
| * trickery we can modify the list in-place, but reversibly, by |
| * stashing the unaligned parts in the as-yet-unused DMA fields. |
| */ |
| for_each_sg(sg, s, nents, i) { |
| size_t s_iova_off = iova_offset(iovad, s->offset); |
| size_t s_length = s->length; |
| size_t pad_len = (mask - iova_len + 1) & mask; |
| |
| sg_dma_address(s) = s_iova_off; |
| sg_dma_len(s) = s_length; |
| s->offset -= s_iova_off; |
| s_length = iova_align(iovad, s_length + s_iova_off); |
| s->length = s_length; |
| |
| /* |
| * Due to the alignment of our single IOVA allocation, we can |
| * depend on these assumptions about the segment boundary mask: |
| * - If mask size >= IOVA size, then the IOVA range cannot |
| * possibly fall across a boundary, so we don't care. |
| * - If mask size < IOVA size, then the IOVA range must start |
| * exactly on a boundary, therefore we can lay things out |
| * based purely on segment lengths without needing to know |
| * the actual addresses beforehand. |
| * - The mask must be a power of 2, so pad_len == 0 if |
| * iova_len == 0, thus we cannot dereference prev the first |
| * time through here (i.e. before it has a meaningful value). |
| */ |
| if (pad_len && pad_len < s_length - 1) { |
| prev->length += pad_len; |
| iova_len += pad_len; |
| } |
| |
| iova_len += s_length; |
| prev = s; |
| } |
| |
| iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev); |
| if (!iova) |
| goto out_restore_sg; |
| |
| /* |
| * We'll leave any physical concatenation to the IOMMU driver's |
| * implementation - it knows better than we do. |
| */ |
| dma_addr = iova_dma_addr(iovad, iova); |
| if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) |
| goto out_free_iova; |
| |
| return __finalise_sg(dev, sg, nents, dma_addr); |
| |
| out_free_iova: |
| __free_iova(iovad, iova); |
| out_restore_sg: |
| __invalidate_sg(sg, nents); |
| return 0; |
| } |
| |
| void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| /* |
| * The scatterlist segments are mapped into a single |
| * contiguous IOVA allocation, so this is incredibly easy. |
| */ |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); |
| } |
| |
| dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __iommu_dma_map(dev, phys, size, |
| dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO); |
| } |
| |
| void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); |
| } |
| |
| int iommu_dma_supported(struct device *dev, u64 mask) |
| { |
| /* |
| * 'Special' IOMMUs which don't have the same addressing capability |
| * as the CPU will have to wait until we have some way to query that |
| * before they'll be able to use this framework. |
| */ |
| return 1; |
| } |
| |
| int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return dma_addr == DMA_ERROR_CODE; |
| } |
| |
| static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, |
| phys_addr_t msi_addr, struct iommu_domain *domain) |
| { |
| struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| struct iommu_dma_msi_page *msi_page; |
| struct iova_domain *iovad = cookie_iovad(domain); |
| struct iova *iova; |
| int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; |
| size_t size = cookie_msi_granule(cookie); |
| |
| msi_addr &= ~(phys_addr_t)(size - 1); |
| list_for_each_entry(msi_page, &cookie->msi_page_list, list) |
| if (msi_page->phys == msi_addr) |
| return msi_page; |
| |
| msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); |
| if (!msi_page) |
| return NULL; |
| |
| msi_page->phys = msi_addr; |
| if (iovad) { |
| iova = __alloc_iova(domain, size, dma_get_mask(dev), dev); |
| if (!iova) |
| goto out_free_page; |
| msi_page->iova = iova_dma_addr(iovad, iova); |
| } else { |
| msi_page->iova = cookie->msi_iova; |
| cookie->msi_iova += size; |
| } |
| |
| if (iommu_map(domain, msi_page->iova, msi_addr, size, prot)) |
| goto out_free_iova; |
| |
| INIT_LIST_HEAD(&msi_page->list); |
| list_add(&msi_page->list, &cookie->msi_page_list); |
| return msi_page; |
| |
| out_free_iova: |
| if (iovad) |
| __free_iova(iovad, iova); |
| else |
| cookie->msi_iova -= size; |
| out_free_page: |
| kfree(msi_page); |
| return NULL; |
| } |
| |
| void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) |
| { |
| struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); |
| struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| struct iommu_dma_cookie *cookie; |
| struct iommu_dma_msi_page *msi_page; |
| phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; |
| unsigned long flags; |
| |
| if (!domain || !domain->iova_cookie) |
| return; |
| |
| cookie = domain->iova_cookie; |
| |
| /* |
| * We disable IRQs to rule out a possible inversion against |
| * irq_desc_lock if, say, someone tries to retarget the affinity |
| * of an MSI from within an IPI handler. |
| */ |
| spin_lock_irqsave(&cookie->msi_lock, flags); |
| msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); |
| spin_unlock_irqrestore(&cookie->msi_lock, flags); |
| |
| if (WARN_ON(!msi_page)) { |
| /* |
| * We're called from a void callback, so the best we can do is |
| * 'fail' by filling the message with obviously bogus values. |
| * Since we got this far due to an IOMMU being present, it's |
| * not like the existing address would have worked anyway... |
| */ |
| msg->address_hi = ~0U; |
| msg->address_lo = ~0U; |
| msg->data = ~0U; |
| } else { |
| msg->address_hi = upper_32_bits(msi_page->iova); |
| msg->address_lo &= cookie_msi_granule(cookie) - 1; |
| msg->address_lo += lower_32_bits(msi_page->iova); |
| } |
| } |