| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2018 Intel Corporation. */ |
| |
| #include <linux/bpf_trace.h> |
| #include <net/xdp_sock.h> |
| #include <net/xdp.h> |
| |
| #include "i40e.h" |
| #include "i40e_txrx_common.h" |
| #include "i40e_xsk.h" |
| |
| /** |
| * i40e_alloc_xsk_umems - Allocate an array to store per ring UMEMs |
| * @vsi: Current VSI |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| static int i40e_alloc_xsk_umems(struct i40e_vsi *vsi) |
| { |
| if (vsi->xsk_umems) |
| return 0; |
| |
| vsi->num_xsk_umems_used = 0; |
| vsi->num_xsk_umems = vsi->alloc_queue_pairs; |
| vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems), |
| GFP_KERNEL); |
| if (!vsi->xsk_umems) { |
| vsi->num_xsk_umems = 0; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_add_xsk_umem - Store an UMEM for a certain ring/qid |
| * @vsi: Current VSI |
| * @umem: UMEM to store |
| * @qid: Ring/qid to associate with the UMEM |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| static int i40e_add_xsk_umem(struct i40e_vsi *vsi, struct xdp_umem *umem, |
| u16 qid) |
| { |
| int err; |
| |
| err = i40e_alloc_xsk_umems(vsi); |
| if (err) |
| return err; |
| |
| vsi->xsk_umems[qid] = umem; |
| vsi->num_xsk_umems_used++; |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_remove_xsk_umem - Remove an UMEM for a certain ring/qid |
| * @vsi: Current VSI |
| * @qid: Ring/qid associated with the UMEM |
| **/ |
| static void i40e_remove_xsk_umem(struct i40e_vsi *vsi, u16 qid) |
| { |
| vsi->xsk_umems[qid] = NULL; |
| vsi->num_xsk_umems_used--; |
| |
| if (vsi->num_xsk_umems == 0) { |
| kfree(vsi->xsk_umems); |
| vsi->xsk_umems = NULL; |
| vsi->num_xsk_umems = 0; |
| } |
| } |
| |
| /** |
| * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev |
| * @vsi: Current VSI |
| * @umem: UMEM to DMA map |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem) |
| { |
| struct i40e_pf *pf = vsi->back; |
| struct device *dev; |
| unsigned int i, j; |
| dma_addr_t dma; |
| |
| dev = &pf->pdev->dev; |
| for (i = 0; i < umem->npgs; i++) { |
| dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE, |
| DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); |
| if (dma_mapping_error(dev, dma)) |
| goto out_unmap; |
| |
| umem->pages[i].dma = dma; |
| } |
| |
| return 0; |
| |
| out_unmap: |
| for (j = 0; j < i; j++) { |
| dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, |
| DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); |
| umem->pages[i].dma = 0; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev |
| * @vsi: Current VSI |
| * @umem: UMEM to DMA map |
| **/ |
| static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem) |
| { |
| struct i40e_pf *pf = vsi->back; |
| struct device *dev; |
| unsigned int i; |
| |
| dev = &pf->pdev->dev; |
| |
| for (i = 0; i < umem->npgs; i++) { |
| dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, |
| DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR); |
| |
| umem->pages[i].dma = 0; |
| } |
| } |
| |
| /** |
| * i40e_xsk_umem_enable - Enable/associate an UMEM to a certain ring/qid |
| * @vsi: Current VSI |
| * @umem: UMEM |
| * @qid: Rx ring to associate UMEM to |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, |
| u16 qid) |
| { |
| struct xdp_umem_fq_reuse *reuseq; |
| bool if_running; |
| int err; |
| |
| if (vsi->type != I40E_VSI_MAIN) |
| return -EINVAL; |
| |
| if (qid >= vsi->num_queue_pairs) |
| return -EINVAL; |
| |
| if (vsi->xsk_umems) { |
| if (qid >= vsi->num_xsk_umems) |
| return -EINVAL; |
| if (vsi->xsk_umems[qid]) |
| return -EBUSY; |
| } |
| |
| reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); |
| if (!reuseq) |
| return -ENOMEM; |
| |
| xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); |
| |
| err = i40e_xsk_umem_dma_map(vsi, umem); |
| if (err) |
| return err; |
| |
| if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); |
| |
| if (if_running) { |
| err = i40e_queue_pair_disable(vsi, qid); |
| if (err) |
| return err; |
| } |
| |
| err = i40e_add_xsk_umem(vsi, umem, qid); |
| if (err) |
| return err; |
| |
| if (if_running) { |
| err = i40e_queue_pair_enable(vsi, qid); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_xsk_umem_disable - Diassociate an UMEM from a certain ring/qid |
| * @vsi: Current VSI |
| * @qid: Rx ring to associate UMEM to |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) |
| { |
| bool if_running; |
| int err; |
| |
| if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems || |
| !vsi->xsk_umems[qid]) |
| return -EINVAL; |
| |
| if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); |
| |
| if (if_running) { |
| err = i40e_queue_pair_disable(vsi, qid); |
| if (err) |
| return err; |
| } |
| |
| i40e_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]); |
| i40e_remove_xsk_umem(vsi, qid); |
| |
| if (if_running) { |
| err = i40e_queue_pair_enable(vsi, qid); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM |
| * @vsi: Current VSI |
| * @umem: UMEM associated to the ring, if any |
| * @qid: Rx ring to associate UMEM to |
| * |
| * This function will store, if any, the UMEM associated to certain ring. |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| int i40e_xsk_umem_query(struct i40e_vsi *vsi, struct xdp_umem **umem, |
| u16 qid) |
| { |
| if (vsi->type != I40E_VSI_MAIN) |
| return -EINVAL; |
| |
| if (qid >= vsi->num_queue_pairs) |
| return -EINVAL; |
| |
| if (vsi->xsk_umems) { |
| if (qid >= vsi->num_xsk_umems) |
| return -EINVAL; |
| *umem = vsi->xsk_umems[qid]; |
| return 0; |
| } |
| |
| *umem = NULL; |
| return 0; |
| } |
| |
| /** |
| * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM |
| * @vsi: Current VSI |
| * @umem: UMEM to enable/associate to a ring, or NULL to disable |
| * @qid: Rx ring to (dis)associate UMEM (from)to |
| * |
| * This function enables or disables an UMEM to a certain ring. |
| * |
| * Returns 0 on success, <0 on failure |
| **/ |
| int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, |
| u16 qid) |
| { |
| return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : |
| i40e_xsk_umem_disable(vsi, qid); |
| } |
| |
| /** |
| * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff |
| * @rx_ring: Rx ring |
| * @xdp: xdp_buff used as input to the XDP program |
| * |
| * This function enables or disables an UMEM to a certain ring. |
| * |
| * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} |
| **/ |
| static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) |
| { |
| int err, result = I40E_XDP_PASS; |
| struct i40e_ring *xdp_ring; |
| struct bpf_prog *xdp_prog; |
| u32 act; |
| |
| rcu_read_lock(); |
| /* NB! xdp_prog will always be !NULL, due to the fact that |
| * this path is enabled by setting an XDP program. |
| */ |
| xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| act = bpf_prog_run_xdp(xdp_prog, xdp); |
| xdp->handle += xdp->data - xdp->data_hard_start; |
| switch (act) { |
| case XDP_PASS: |
| break; |
| case XDP_TX: |
| xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; |
| result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); |
| break; |
| case XDP_REDIRECT: |
| err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); |
| result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; |
| break; |
| default: |
| bpf_warn_invalid_xdp_action(act); |
| case XDP_ABORTED: |
| trace_xdp_exception(rx_ring->netdev, xdp_prog, act); |
| /* fallthrough -- handle aborts by dropping packet */ |
| case XDP_DROP: |
| result = I40E_XDP_CONSUMED; |
| break; |
| } |
| rcu_read_unlock(); |
| return result; |
| } |
| |
| /** |
| * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer |
| * @rx_ring: Rx ring |
| * @bi: Rx buffer to populate |
| * |
| * This function allocates an Rx buffer. The buffer can come from fill |
| * queue, or via the recycle queue (next_to_alloc). |
| * |
| * Returns true for a successful allocation, false otherwise |
| **/ |
| static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring, |
| struct i40e_rx_buffer *bi) |
| { |
| struct xdp_umem *umem = rx_ring->xsk_umem; |
| void *addr = bi->addr; |
| u64 handle, hr; |
| |
| if (addr) { |
| rx_ring->rx_stats.page_reuse_count++; |
| return true; |
| } |
| |
| if (!xsk_umem_peek_addr(umem, &handle)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| hr = umem->headroom + XDP_PACKET_HEADROOM; |
| |
| bi->dma = xdp_umem_get_dma(umem, handle); |
| bi->dma += hr; |
| |
| bi->addr = xdp_umem_get_data(umem, handle); |
| bi->addr += hr; |
| |
| bi->handle = handle + umem->headroom; |
| |
| xsk_umem_discard_addr(umem); |
| return true; |
| } |
| |
| /** |
| * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer |
| * @rx_ring: Rx ring |
| * @bi: Rx buffer to populate |
| * |
| * This function allocates an Rx buffer. The buffer can come from fill |
| * queue, or via the reuse queue. |
| * |
| * Returns true for a successful allocation, false otherwise |
| **/ |
| static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring, |
| struct i40e_rx_buffer *bi) |
| { |
| struct xdp_umem *umem = rx_ring->xsk_umem; |
| u64 handle, hr; |
| |
| if (!xsk_umem_peek_addr_rq(umem, &handle)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| handle &= rx_ring->xsk_umem->chunk_mask; |
| |
| hr = umem->headroom + XDP_PACKET_HEADROOM; |
| |
| bi->dma = xdp_umem_get_dma(umem, handle); |
| bi->dma += hr; |
| |
| bi->addr = xdp_umem_get_data(umem, handle); |
| bi->addr += hr; |
| |
| bi->handle = handle + umem->headroom; |
| |
| xsk_umem_discard_addr_rq(umem); |
| return true; |
| } |
| |
| static __always_inline bool |
| __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, |
| bool alloc(struct i40e_ring *rx_ring, |
| struct i40e_rx_buffer *bi)) |
| { |
| u16 ntu = rx_ring->next_to_use; |
| union i40e_rx_desc *rx_desc; |
| struct i40e_rx_buffer *bi; |
| bool ok = true; |
| |
| rx_desc = I40E_RX_DESC(rx_ring, ntu); |
| bi = &rx_ring->rx_bi[ntu]; |
| do { |
| if (!alloc(rx_ring, bi)) { |
| ok = false; |
| goto no_buffers; |
| } |
| |
| dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, |
| rx_ring->rx_buf_len, |
| DMA_BIDIRECTIONAL); |
| |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); |
| |
| rx_desc++; |
| bi++; |
| ntu++; |
| |
| if (unlikely(ntu == rx_ring->count)) { |
| rx_desc = I40E_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_bi; |
| ntu = 0; |
| } |
| |
| rx_desc->wb.qword1.status_error_len = 0; |
| count--; |
| } while (count); |
| |
| no_buffers: |
| if (rx_ring->next_to_use != ntu) |
| i40e_release_rx_desc(rx_ring, ntu); |
| |
| return ok; |
| } |
| |
| /** |
| * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers |
| * @rx_ring: Rx ring |
| * @count: The number of buffers to allocate |
| * |
| * This function allocates a number of Rx buffers from the reuse queue |
| * or fill ring and places them on the Rx ring. |
| * |
| * Returns true for a successful allocation, false otherwise |
| **/ |
| bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) |
| { |
| return __i40e_alloc_rx_buffers_zc(rx_ring, count, |
| i40e_alloc_buffer_slow_zc); |
| } |
| |
| /** |
| * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers |
| * @rx_ring: Rx ring |
| * @count: The number of buffers to allocate |
| * |
| * This function allocates a number of Rx buffers from the fill ring |
| * or the internal recycle mechanism and places them on the Rx ring. |
| * |
| * Returns true for a successful allocation, false otherwise |
| **/ |
| static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count) |
| { |
| return __i40e_alloc_rx_buffers_zc(rx_ring, count, |
| i40e_alloc_buffer_zc); |
| } |
| |
| /** |
| * i40e_get_rx_buffer_zc - Return the current Rx buffer |
| * @rx_ring: Rx ring |
| * @size: The size of the rx buffer (read from descriptor) |
| * |
| * This function returns the current, received Rx buffer, and also |
| * does DMA synchronization. the Rx ring. |
| * |
| * Returns the received Rx buffer |
| **/ |
| static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring, |
| const unsigned int size) |
| { |
| struct i40e_rx_buffer *bi; |
| |
| bi = &rx_ring->rx_bi[rx_ring->next_to_clean]; |
| |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| bi->dma, 0, |
| size, |
| DMA_BIDIRECTIONAL); |
| |
| return bi; |
| } |
| |
| /** |
| * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer |
| * @rx_ring: Rx ring |
| * @old_bi: The Rx buffer to recycle |
| * |
| * This function recycles a finished Rx buffer, and places it on the |
| * recycle queue (next_to_alloc). |
| **/ |
| static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring, |
| struct i40e_rx_buffer *old_bi) |
| { |
| struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc]; |
| unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask; |
| u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; |
| u16 nta = rx_ring->next_to_alloc; |
| |
| /* update, and store next to alloc */ |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| /* transfer page from old buffer to new buffer */ |
| new_bi->dma = old_bi->dma & mask; |
| new_bi->dma += hr; |
| |
| new_bi->addr = (void *)((unsigned long)old_bi->addr & mask); |
| new_bi->addr += hr; |
| |
| new_bi->handle = old_bi->handle & mask; |
| new_bi->handle += rx_ring->xsk_umem->headroom; |
| |
| old_bi->addr = NULL; |
| } |
| |
| /** |
| * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations |
| * @alloc: Zero-copy allocator |
| * @handle: Buffer handle |
| **/ |
| void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) |
| { |
| struct i40e_rx_buffer *bi; |
| struct i40e_ring *rx_ring; |
| u64 hr, mask; |
| u16 nta; |
| |
| rx_ring = container_of(alloc, struct i40e_ring, zca); |
| hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; |
| mask = rx_ring->xsk_umem->chunk_mask; |
| |
| nta = rx_ring->next_to_alloc; |
| bi = &rx_ring->rx_bi[nta]; |
| |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| handle &= mask; |
| |
| bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle); |
| bi->dma += hr; |
| |
| bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle); |
| bi->addr += hr; |
| |
| bi->handle = (u64)handle + rx_ring->xsk_umem->headroom; |
| } |
| |
| /** |
| * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer |
| * @rx_ring: Rx ring |
| * @bi: Rx buffer |
| * @xdp: xdp_buff |
| * |
| * This functions allocates a new skb from a zero-copy Rx buffer. |
| * |
| * Returns the skb, or NULL on failure. |
| **/ |
| static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, |
| struct i40e_rx_buffer *bi, |
| struct xdp_buff *xdp) |
| { |
| unsigned int metasize = xdp->data - xdp->data_meta; |
| unsigned int datasize = xdp->data_end - xdp->data; |
| struct sk_buff *skb; |
| |
| /* allocate a skb to store the frags */ |
| skb = __napi_alloc_skb(&rx_ring->q_vector->napi, |
| xdp->data_end - xdp->data_hard_start, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| skb_reserve(skb, xdp->data - xdp->data_hard_start); |
| memcpy(__skb_put(skb, datasize), xdp->data, datasize); |
| if (metasize) |
| skb_metadata_set(skb, metasize); |
| |
| i40e_reuse_rx_buffer_zc(rx_ring, bi); |
| return skb; |
| } |
| |
| /** |
| * i40e_inc_ntc: Advance the next_to_clean index |
| * @rx_ring: Rx ring |
| **/ |
| static void i40e_inc_ntc(struct i40e_ring *rx_ring) |
| { |
| u32 ntc = rx_ring->next_to_clean + 1; |
| |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| prefetch(I40E_RX_DESC(rx_ring, ntc)); |
| } |
| |
| /** |
| * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring |
| * @rx_ring: Rx ring |
| * @budget: NAPI budget |
| * |
| * Returns amount of work completed |
| **/ |
| int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); |
| unsigned int xdp_res, xdp_xmit = 0; |
| bool failure = false; |
| struct sk_buff *skb; |
| struct xdp_buff xdp; |
| |
| xdp.rxq = &rx_ring->xdp_rxq; |
| |
| while (likely(total_rx_packets < (unsigned int)budget)) { |
| struct i40e_rx_buffer *bi; |
| union i40e_rx_desc *rx_desc; |
| unsigned int size; |
| u16 vlan_tag; |
| u8 rx_ptype; |
| u64 qword; |
| |
| if (cleaned_count >= I40E_RX_BUFFER_WRITE) { |
| failure = failure || |
| !i40e_alloc_rx_buffers_fast_zc(rx_ring, |
| cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we have |
| * verified the descriptor has been written back. |
| */ |
| dma_rmb(); |
| |
| bi = i40e_clean_programming_status(rx_ring, rx_desc, |
| qword); |
| if (unlikely(bi)) { |
| i40e_reuse_rx_buffer_zc(rx_ring, bi); |
| cleaned_count++; |
| continue; |
| } |
| |
| size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> |
| I40E_RXD_QW1_LENGTH_PBUF_SHIFT; |
| if (!size) |
| break; |
| |
| bi = i40e_get_rx_buffer_zc(rx_ring, size); |
| xdp.data = bi->addr; |
| xdp.data_meta = xdp.data; |
| xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; |
| xdp.data_end = xdp.data + size; |
| xdp.handle = bi->handle; |
| |
| xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); |
| if (xdp_res) { |
| if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { |
| xdp_xmit |= xdp_res; |
| bi->addr = NULL; |
| } else { |
| i40e_reuse_rx_buffer_zc(rx_ring, bi); |
| } |
| |
| total_rx_bytes += size; |
| total_rx_packets++; |
| |
| cleaned_count++; |
| i40e_inc_ntc(rx_ring); |
| continue; |
| } |
| |
| /* XDP_PASS path */ |
| |
| /* NB! We are not checking for errors using |
| * i40e_test_staterr with |
| * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that |
| * SBP is *not* set in PRT_SBPVSI (default not set). |
| */ |
| skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buff_failed++; |
| break; |
| } |
| |
| cleaned_count++; |
| i40e_inc_ntc(rx_ring); |
| |
| if (eth_skb_pad(skb)) |
| continue; |
| |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> |
| I40E_RXD_QW1_PTYPE_SHIFT; |
| i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| |
| vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? |
| le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; |
| i40e_receive_skb(rx_ring, skb, vlan_tag); |
| } |
| |
| i40e_finalize_xdp_rx(rx_ring, xdp_xmit); |
| i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); |
| return failure ? budget : (int)total_rx_packets; |
| } |
| |
| /** |
| * i40e_xmit_zc - Performs zero-copy Tx AF_XDP |
| * @xdp_ring: XDP Tx ring |
| * @budget: NAPI budget |
| * |
| * Returns true if the work is finished. |
| **/ |
| static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) |
| { |
| struct i40e_tx_desc *tx_desc = NULL; |
| struct i40e_tx_buffer *tx_bi; |
| bool work_done = true; |
| dma_addr_t dma; |
| u32 len; |
| |
| while (budget-- > 0) { |
| if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { |
| xdp_ring->tx_stats.tx_busy++; |
| work_done = false; |
| break; |
| } |
| |
| if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len)) |
| break; |
| |
| dma_sync_single_for_device(xdp_ring->dev, dma, len, |
| DMA_BIDIRECTIONAL); |
| |
| tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; |
| tx_bi->bytecount = len; |
| |
| tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(I40E_TX_DESC_CMD_ICRC |
| | I40E_TX_DESC_CMD_EOP, |
| 0, len, 0); |
| |
| xdp_ring->next_to_use++; |
| if (xdp_ring->next_to_use == xdp_ring->count) |
| xdp_ring->next_to_use = 0; |
| } |
| |
| if (tx_desc) { |
| /* Request an interrupt for the last frame and bump tail ptr. */ |
| tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << |
| I40E_TXD_QW1_CMD_SHIFT); |
| i40e_xdp_ring_update_tail(xdp_ring); |
| |
| xsk_umem_consume_tx_done(xdp_ring->xsk_umem); |
| } |
| |
| return !!budget && work_done; |
| } |
| |
| /** |
| * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry |
| * @tx_ring: XDP Tx ring |
| * @tx_bi: Tx buffer info to clean |
| **/ |
| static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, |
| struct i40e_tx_buffer *tx_bi) |
| { |
| xdp_return_frame(tx_bi->xdpf); |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_bi, dma), |
| dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_bi, len, 0); |
| } |
| |
| /** |
| * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries |
| * @tx_ring: XDP Tx ring |
| * @tx_bi: Tx buffer info to clean |
| * |
| * Returns true if cleanup/tranmission is done. |
| **/ |
| bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, |
| struct i40e_ring *tx_ring, int napi_budget) |
| { |
| unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; |
| u32 i, completed_frames, frames_ready, xsk_frames = 0; |
| struct xdp_umem *umem = tx_ring->xsk_umem; |
| u32 head_idx = i40e_get_head(tx_ring); |
| bool work_done = true, xmit_done; |
| struct i40e_tx_buffer *tx_bi; |
| |
| if (head_idx < tx_ring->next_to_clean) |
| head_idx += tx_ring->count; |
| frames_ready = head_idx - tx_ring->next_to_clean; |
| |
| if (frames_ready == 0) { |
| goto out_xmit; |
| } else if (frames_ready > budget) { |
| completed_frames = budget; |
| work_done = false; |
| } else { |
| completed_frames = frames_ready; |
| } |
| |
| ntc = tx_ring->next_to_clean; |
| |
| for (i = 0; i < completed_frames; i++) { |
| tx_bi = &tx_ring->tx_bi[ntc]; |
| |
| if (tx_bi->xdpf) |
| i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); |
| else |
| xsk_frames++; |
| |
| tx_bi->xdpf = NULL; |
| total_bytes += tx_bi->bytecount; |
| |
| if (++ntc >= tx_ring->count) |
| ntc = 0; |
| } |
| |
| tx_ring->next_to_clean += completed_frames; |
| if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) |
| tx_ring->next_to_clean -= tx_ring->count; |
| |
| if (xsk_frames) |
| xsk_umem_complete_tx(umem, xsk_frames); |
| |
| i40e_arm_wb(tx_ring, vsi, budget); |
| i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); |
| |
| out_xmit: |
| xmit_done = i40e_xmit_zc(tx_ring, budget); |
| |
| return work_done && xmit_done; |
| } |
| |
| /** |
| * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit |
| * @dev: the netdevice |
| * @queue_id: queue id to wake up |
| * |
| * Returns <0 for errors, 0 otherwise. |
| **/ |
| int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id) |
| { |
| struct i40e_netdev_priv *np = netdev_priv(dev); |
| struct i40e_vsi *vsi = np->vsi; |
| struct i40e_ring *ring; |
| |
| if (test_bit(__I40E_VSI_DOWN, vsi->state)) |
| return -ENETDOWN; |
| |
| if (!i40e_enabled_xdp_vsi(vsi)) |
| return -ENXIO; |
| |
| if (queue_id >= vsi->num_queue_pairs) |
| return -ENXIO; |
| |
| if (!vsi->xdp_rings[queue_id]->xsk_umem) |
| return -ENXIO; |
| |
| ring = vsi->xdp_rings[queue_id]; |
| |
| /* The idea here is that if NAPI is running, mark a miss, so |
| * it will run again. If not, trigger an interrupt and |
| * schedule the NAPI from interrupt context. If NAPI would be |
| * scheduled here, the interrupt affinity would not be |
| * honored. |
| */ |
| if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) |
| i40e_force_wb(vsi, ring->q_vector); |
| |
| return 0; |
| } |
| |
| void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) |
| { |
| u16 i; |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; |
| |
| if (!rx_bi->addr) |
| continue; |
| |
| xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); |
| rx_bi->addr = NULL; |
| } |
| } |
| |
| /** |
| * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown |
| * @xdp_ring: XDP Tx ring |
| **/ |
| void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) |
| { |
| u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; |
| struct xdp_umem *umem = tx_ring->xsk_umem; |
| struct i40e_tx_buffer *tx_bi; |
| u32 xsk_frames = 0; |
| |
| while (ntc != ntu) { |
| tx_bi = &tx_ring->tx_bi[ntc]; |
| |
| if (tx_bi->xdpf) |
| i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); |
| else |
| xsk_frames++; |
| |
| tx_bi->xdpf = NULL; |
| |
| ntc++; |
| if (ntc >= tx_ring->count) |
| ntc = 0; |
| } |
| |
| if (xsk_frames) |
| xsk_umem_complete_tx(umem, xsk_frames); |
| } |
| |
| /** |
| * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached |
| * @vsi: vsi |
| * |
| * Returns true if any of the Rx rings has an AF_XDP UMEM attached |
| **/ |
| bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) |
| { |
| int i; |
| |
| if (!vsi->xsk_umems) |
| return false; |
| |
| for (i = 0; i < vsi->num_queue_pairs; i++) { |
| if (vsi->xsk_umems[i]) |
| return true; |
| } |
| |
| return false; |
| } |