| /* |
| drbd_worker.c |
| |
| This file is part of DRBD by Philipp Reisner and Lars Ellenberg. |
| |
| Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. |
| Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. |
| Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. |
| |
| drbd is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| drbd is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with drbd; see the file COPYING. If not, write to |
| the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/drbd.h> |
| #include <linux/sched/signal.h> |
| #include <linux/wait.h> |
| #include <linux/mm.h> |
| #include <linux/memcontrol.h> |
| #include <linux/mm_inline.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/string.h> |
| #include <linux/scatterlist.h> |
| |
| #include "drbd_int.h" |
| #include "drbd_protocol.h" |
| #include "drbd_req.h" |
| |
| static int make_ov_request(struct drbd_device *, int); |
| static int make_resync_request(struct drbd_device *, int); |
| |
| /* endio handlers: |
| * drbd_md_endio (defined here) |
| * drbd_request_endio (defined here) |
| * drbd_peer_request_endio (defined here) |
| * drbd_bm_endio (defined in drbd_bitmap.c) |
| * |
| * For all these callbacks, note the following: |
| * The callbacks will be called in irq context by the IDE drivers, |
| * and in Softirqs/Tasklets/BH context by the SCSI drivers. |
| * Try to get the locking right :) |
| * |
| */ |
| |
| /* used for synchronous meta data and bitmap IO |
| * submitted by drbd_md_sync_page_io() |
| */ |
| void drbd_md_endio(struct bio *bio) |
| { |
| struct drbd_device *device; |
| |
| device = bio->bi_private; |
| device->md_io.error = bio->bi_error; |
| |
| /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able |
| * to timeout on the lower level device, and eventually detach from it. |
| * If this io completion runs after that timeout expired, this |
| * drbd_md_put_buffer() may allow us to finally try and re-attach. |
| * During normal operation, this only puts that extra reference |
| * down to 1 again. |
| * Make sure we first drop the reference, and only then signal |
| * completion, or we may (in drbd_al_read_log()) cycle so fast into the |
| * next drbd_md_sync_page_io(), that we trigger the |
| * ASSERT(atomic_read(&device->md_io_in_use) == 1) there. |
| */ |
| drbd_md_put_buffer(device); |
| device->md_io.done = 1; |
| wake_up(&device->misc_wait); |
| bio_put(bio); |
| if (device->ldev) /* special case: drbd_md_read() during drbd_adm_attach() */ |
| put_ldev(device); |
| } |
| |
| /* reads on behalf of the partner, |
| * "submitted" by the receiver |
| */ |
| static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local) |
| { |
| unsigned long flags = 0; |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| |
| spin_lock_irqsave(&device->resource->req_lock, flags); |
| device->read_cnt += peer_req->i.size >> 9; |
| list_del(&peer_req->w.list); |
| if (list_empty(&device->read_ee)) |
| wake_up(&device->ee_wait); |
| if (test_bit(__EE_WAS_ERROR, &peer_req->flags)) |
| __drbd_chk_io_error(device, DRBD_READ_ERROR); |
| spin_unlock_irqrestore(&device->resource->req_lock, flags); |
| |
| drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w); |
| put_ldev(device); |
| } |
| |
| /* writes on behalf of the partner, or resync writes, |
| * "submitted" by the receiver, final stage. */ |
| void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local) |
| { |
| unsigned long flags = 0; |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| struct drbd_connection *connection = peer_device->connection; |
| struct drbd_interval i; |
| int do_wake; |
| u64 block_id; |
| int do_al_complete_io; |
| |
| /* after we moved peer_req to done_ee, |
| * we may no longer access it, |
| * it may be freed/reused already! |
| * (as soon as we release the req_lock) */ |
| i = peer_req->i; |
| do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO; |
| block_id = peer_req->block_id; |
| peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO; |
| |
| spin_lock_irqsave(&device->resource->req_lock, flags); |
| device->writ_cnt += peer_req->i.size >> 9; |
| list_move_tail(&peer_req->w.list, &device->done_ee); |
| |
| /* |
| * Do not remove from the write_requests tree here: we did not send the |
| * Ack yet and did not wake possibly waiting conflicting requests. |
| * Removed from the tree from "drbd_process_done_ee" within the |
| * appropriate dw.cb (e_end_block/e_end_resync_block) or from |
| * _drbd_clear_done_ee. |
| */ |
| |
| do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee); |
| |
| /* FIXME do we want to detach for failed REQ_DISCARD? |
| * ((peer_req->flags & (EE_WAS_ERROR|EE_IS_TRIM)) == EE_WAS_ERROR) */ |
| if (peer_req->flags & EE_WAS_ERROR) |
| __drbd_chk_io_error(device, DRBD_WRITE_ERROR); |
| |
| if (connection->cstate >= C_WF_REPORT_PARAMS) { |
| kref_get(&device->kref); /* put is in drbd_send_acks_wf() */ |
| if (!queue_work(connection->ack_sender, &peer_device->send_acks_work)) |
| kref_put(&device->kref, drbd_destroy_device); |
| } |
| spin_unlock_irqrestore(&device->resource->req_lock, flags); |
| |
| if (block_id == ID_SYNCER) |
| drbd_rs_complete_io(device, i.sector); |
| |
| if (do_wake) |
| wake_up(&device->ee_wait); |
| |
| if (do_al_complete_io) |
| drbd_al_complete_io(device, &i); |
| |
| put_ldev(device); |
| } |
| |
| /* writes on behalf of the partner, or resync writes, |
| * "submitted" by the receiver. |
| */ |
| void drbd_peer_request_endio(struct bio *bio) |
| { |
| struct drbd_peer_request *peer_req = bio->bi_private; |
| struct drbd_device *device = peer_req->peer_device->device; |
| bool is_write = bio_data_dir(bio) == WRITE; |
| bool is_discard = !!(bio_op(bio) == REQ_OP_DISCARD); |
| |
| if (bio->bi_error && __ratelimit(&drbd_ratelimit_state)) |
| drbd_warn(device, "%s: error=%d s=%llus\n", |
| is_write ? (is_discard ? "discard" : "write") |
| : "read", bio->bi_error, |
| (unsigned long long)peer_req->i.sector); |
| |
| if (bio->bi_error) |
| set_bit(__EE_WAS_ERROR, &peer_req->flags); |
| |
| bio_put(bio); /* no need for the bio anymore */ |
| if (atomic_dec_and_test(&peer_req->pending_bios)) { |
| if (is_write) |
| drbd_endio_write_sec_final(peer_req); |
| else |
| drbd_endio_read_sec_final(peer_req); |
| } |
| } |
| |
| void drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device) |
| { |
| panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n", |
| device->minor, device->resource->name, device->vnr); |
| } |
| |
| /* read, readA or write requests on R_PRIMARY coming from drbd_make_request |
| */ |
| void drbd_request_endio(struct bio *bio) |
| { |
| unsigned long flags; |
| struct drbd_request *req = bio->bi_private; |
| struct drbd_device *device = req->device; |
| struct bio_and_error m; |
| enum drbd_req_event what; |
| |
| /* If this request was aborted locally before, |
| * but now was completed "successfully", |
| * chances are that this caused arbitrary data corruption. |
| * |
| * "aborting" requests, or force-detaching the disk, is intended for |
| * completely blocked/hung local backing devices which do no longer |
| * complete requests at all, not even do error completions. In this |
| * situation, usually a hard-reset and failover is the only way out. |
| * |
| * By "aborting", basically faking a local error-completion, |
| * we allow for a more graceful swichover by cleanly migrating services. |
| * Still the affected node has to be rebooted "soon". |
| * |
| * By completing these requests, we allow the upper layers to re-use |
| * the associated data pages. |
| * |
| * If later the local backing device "recovers", and now DMAs some data |
| * from disk into the original request pages, in the best case it will |
| * just put random data into unused pages; but typically it will corrupt |
| * meanwhile completely unrelated data, causing all sorts of damage. |
| * |
| * Which means delayed successful completion, |
| * especially for READ requests, |
| * is a reason to panic(). |
| * |
| * We assume that a delayed *error* completion is OK, |
| * though we still will complain noisily about it. |
| */ |
| if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) { |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n"); |
| |
| if (!bio->bi_error) |
| drbd_panic_after_delayed_completion_of_aborted_request(device); |
| } |
| |
| /* to avoid recursion in __req_mod */ |
| if (unlikely(bio->bi_error)) { |
| switch (bio_op(bio)) { |
| case REQ_OP_DISCARD: |
| if (bio->bi_error == -EOPNOTSUPP) |
| what = DISCARD_COMPLETED_NOTSUPP; |
| else |
| what = DISCARD_COMPLETED_WITH_ERROR; |
| break; |
| case REQ_OP_READ: |
| if (bio->bi_opf & REQ_RAHEAD) |
| what = READ_AHEAD_COMPLETED_WITH_ERROR; |
| else |
| what = READ_COMPLETED_WITH_ERROR; |
| break; |
| default: |
| what = WRITE_COMPLETED_WITH_ERROR; |
| break; |
| } |
| } else { |
| what = COMPLETED_OK; |
| } |
| |
| bio_put(req->private_bio); |
| req->private_bio = ERR_PTR(bio->bi_error); |
| |
| /* not req_mod(), we need irqsave here! */ |
| spin_lock_irqsave(&device->resource->req_lock, flags); |
| __req_mod(req, what, &m); |
| spin_unlock_irqrestore(&device->resource->req_lock, flags); |
| put_ldev(device); |
| |
| if (m.bio) |
| complete_master_bio(device, &m); |
| } |
| |
| void drbd_csum_ee(struct crypto_ahash *tfm, struct drbd_peer_request *peer_req, void *digest) |
| { |
| AHASH_REQUEST_ON_STACK(req, tfm); |
| struct scatterlist sg; |
| struct page *page = peer_req->pages; |
| struct page *tmp; |
| unsigned len; |
| |
| ahash_request_set_tfm(req, tfm); |
| ahash_request_set_callback(req, 0, NULL, NULL); |
| |
| sg_init_table(&sg, 1); |
| crypto_ahash_init(req); |
| |
| while ((tmp = page_chain_next(page))) { |
| /* all but the last page will be fully used */ |
| sg_set_page(&sg, page, PAGE_SIZE, 0); |
| ahash_request_set_crypt(req, &sg, NULL, sg.length); |
| crypto_ahash_update(req); |
| page = tmp; |
| } |
| /* and now the last, possibly only partially used page */ |
| len = peer_req->i.size & (PAGE_SIZE - 1); |
| sg_set_page(&sg, page, len ?: PAGE_SIZE, 0); |
| ahash_request_set_crypt(req, &sg, digest, sg.length); |
| crypto_ahash_finup(req); |
| ahash_request_zero(req); |
| } |
| |
| void drbd_csum_bio(struct crypto_ahash *tfm, struct bio *bio, void *digest) |
| { |
| AHASH_REQUEST_ON_STACK(req, tfm); |
| struct scatterlist sg; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| |
| ahash_request_set_tfm(req, tfm); |
| ahash_request_set_callback(req, 0, NULL, NULL); |
| |
| sg_init_table(&sg, 1); |
| crypto_ahash_init(req); |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| sg_set_page(&sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset); |
| ahash_request_set_crypt(req, &sg, NULL, sg.length); |
| crypto_ahash_update(req); |
| /* REQ_OP_WRITE_SAME has only one segment, |
| * checksum the payload only once. */ |
| if (bio_op(bio) == REQ_OP_WRITE_SAME) |
| break; |
| } |
| ahash_request_set_crypt(req, NULL, digest, 0); |
| crypto_ahash_final(req); |
| ahash_request_zero(req); |
| } |
| |
| /* MAYBE merge common code with w_e_end_ov_req */ |
| static int w_e_send_csum(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| int digest_size; |
| void *digest; |
| int err = 0; |
| |
| if (unlikely(cancel)) |
| goto out; |
| |
| if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0)) |
| goto out; |
| |
| digest_size = crypto_ahash_digestsize(peer_device->connection->csums_tfm); |
| digest = kmalloc(digest_size, GFP_NOIO); |
| if (digest) { |
| sector_t sector = peer_req->i.sector; |
| unsigned int size = peer_req->i.size; |
| drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); |
| /* Free peer_req and pages before send. |
| * In case we block on congestion, we could otherwise run into |
| * some distributed deadlock, if the other side blocks on |
| * congestion as well, because our receiver blocks in |
| * drbd_alloc_pages due to pp_in_use > max_buffers. */ |
| drbd_free_peer_req(device, peer_req); |
| peer_req = NULL; |
| inc_rs_pending(device); |
| err = drbd_send_drequest_csum(peer_device, sector, size, |
| digest, digest_size, |
| P_CSUM_RS_REQUEST); |
| kfree(digest); |
| } else { |
| drbd_err(device, "kmalloc() of digest failed.\n"); |
| err = -ENOMEM; |
| } |
| |
| out: |
| if (peer_req) |
| drbd_free_peer_req(device, peer_req); |
| |
| if (unlikely(err)) |
| drbd_err(device, "drbd_send_drequest(..., csum) failed\n"); |
| return err; |
| } |
| |
| #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN) |
| |
| static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size) |
| { |
| struct drbd_device *device = peer_device->device; |
| struct drbd_peer_request *peer_req; |
| |
| if (!get_ldev(device)) |
| return -EIO; |
| |
| /* GFP_TRY, because if there is no memory available right now, this may |
| * be rescheduled for later. It is "only" background resync, after all. */ |
| peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector, |
| size, size, GFP_TRY); |
| if (!peer_req) |
| goto defer; |
| |
| peer_req->w.cb = w_e_send_csum; |
| spin_lock_irq(&device->resource->req_lock); |
| list_add_tail(&peer_req->w.list, &device->read_ee); |
| spin_unlock_irq(&device->resource->req_lock); |
| |
| atomic_add(size >> 9, &device->rs_sect_ev); |
| if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0, |
| DRBD_FAULT_RS_RD) == 0) |
| return 0; |
| |
| /* If it failed because of ENOMEM, retry should help. If it failed |
| * because bio_add_page failed (probably broken lower level driver), |
| * retry may or may not help. |
| * If it does not, you may need to force disconnect. */ |
| spin_lock_irq(&device->resource->req_lock); |
| list_del(&peer_req->w.list); |
| spin_unlock_irq(&device->resource->req_lock); |
| |
| drbd_free_peer_req(device, peer_req); |
| defer: |
| put_ldev(device); |
| return -EAGAIN; |
| } |
| |
| int w_resync_timer(struct drbd_work *w, int cancel) |
| { |
| struct drbd_device *device = |
| container_of(w, struct drbd_device, resync_work); |
| |
| switch (device->state.conn) { |
| case C_VERIFY_S: |
| make_ov_request(device, cancel); |
| break; |
| case C_SYNC_TARGET: |
| make_resync_request(device, cancel); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void resync_timer_fn(unsigned long data) |
| { |
| struct drbd_device *device = (struct drbd_device *) data; |
| |
| drbd_queue_work_if_unqueued( |
| &first_peer_device(device)->connection->sender_work, |
| &device->resync_work); |
| } |
| |
| static void fifo_set(struct fifo_buffer *fb, int value) |
| { |
| int i; |
| |
| for (i = 0; i < fb->size; i++) |
| fb->values[i] = value; |
| } |
| |
| static int fifo_push(struct fifo_buffer *fb, int value) |
| { |
| int ov; |
| |
| ov = fb->values[fb->head_index]; |
| fb->values[fb->head_index++] = value; |
| |
| if (fb->head_index >= fb->size) |
| fb->head_index = 0; |
| |
| return ov; |
| } |
| |
| static void fifo_add_val(struct fifo_buffer *fb, int value) |
| { |
| int i; |
| |
| for (i = 0; i < fb->size; i++) |
| fb->values[i] += value; |
| } |
| |
| struct fifo_buffer *fifo_alloc(int fifo_size) |
| { |
| struct fifo_buffer *fb; |
| |
| fb = kzalloc(sizeof(struct fifo_buffer) + sizeof(int) * fifo_size, GFP_NOIO); |
| if (!fb) |
| return NULL; |
| |
| fb->head_index = 0; |
| fb->size = fifo_size; |
| fb->total = 0; |
| |
| return fb; |
| } |
| |
| static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in) |
| { |
| struct disk_conf *dc; |
| unsigned int want; /* The number of sectors we want in-flight */ |
| int req_sect; /* Number of sectors to request in this turn */ |
| int correction; /* Number of sectors more we need in-flight */ |
| int cps; /* correction per invocation of drbd_rs_controller() */ |
| int steps; /* Number of time steps to plan ahead */ |
| int curr_corr; |
| int max_sect; |
| struct fifo_buffer *plan; |
| |
| dc = rcu_dereference(device->ldev->disk_conf); |
| plan = rcu_dereference(device->rs_plan_s); |
| |
| steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */ |
| |
| if (device->rs_in_flight + sect_in == 0) { /* At start of resync */ |
| want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps; |
| } else { /* normal path */ |
| want = dc->c_fill_target ? dc->c_fill_target : |
| sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10); |
| } |
| |
| correction = want - device->rs_in_flight - plan->total; |
| |
| /* Plan ahead */ |
| cps = correction / steps; |
| fifo_add_val(plan, cps); |
| plan->total += cps * steps; |
| |
| /* What we do in this step */ |
| curr_corr = fifo_push(plan, 0); |
| plan->total -= curr_corr; |
| |
| req_sect = sect_in + curr_corr; |
| if (req_sect < 0) |
| req_sect = 0; |
| |
| max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ; |
| if (req_sect > max_sect) |
| req_sect = max_sect; |
| |
| /* |
| drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n", |
| sect_in, device->rs_in_flight, want, correction, |
| steps, cps, device->rs_planed, curr_corr, req_sect); |
| */ |
| |
| return req_sect; |
| } |
| |
| static int drbd_rs_number_requests(struct drbd_device *device) |
| { |
| unsigned int sect_in; /* Number of sectors that came in since the last turn */ |
| int number, mxb; |
| |
| sect_in = atomic_xchg(&device->rs_sect_in, 0); |
| device->rs_in_flight -= sect_in; |
| |
| rcu_read_lock(); |
| mxb = drbd_get_max_buffers(device) / 2; |
| if (rcu_dereference(device->rs_plan_s)->size) { |
| number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9); |
| device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME; |
| } else { |
| device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate; |
| number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ); |
| } |
| rcu_read_unlock(); |
| |
| /* Don't have more than "max-buffers"/2 in-flight. |
| * Otherwise we may cause the remote site to stall on drbd_alloc_pages(), |
| * potentially causing a distributed deadlock on congestion during |
| * online-verify or (checksum-based) resync, if max-buffers, |
| * socket buffer sizes and resync rate settings are mis-configured. */ |
| |
| /* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k), |
| * mxb (as used here, and in drbd_alloc_pages on the peer) is |
| * "number of pages" (typically also 4k), |
| * but "rs_in_flight" is in "sectors" (512 Byte). */ |
| if (mxb - device->rs_in_flight/8 < number) |
| number = mxb - device->rs_in_flight/8; |
| |
| return number; |
| } |
| |
| static int make_resync_request(struct drbd_device *const device, int cancel) |
| { |
| struct drbd_peer_device *const peer_device = first_peer_device(device); |
| struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; |
| unsigned long bit; |
| sector_t sector; |
| const sector_t capacity = drbd_get_capacity(device->this_bdev); |
| int max_bio_size; |
| int number, rollback_i, size; |
| int align, requeue = 0; |
| int i = 0; |
| int discard_granularity = 0; |
| |
| if (unlikely(cancel)) |
| return 0; |
| |
| if (device->rs_total == 0) { |
| /* empty resync? */ |
| drbd_resync_finished(device); |
| return 0; |
| } |
| |
| if (!get_ldev(device)) { |
| /* Since we only need to access device->rsync a |
| get_ldev_if_state(device,D_FAILED) would be sufficient, but |
| to continue resync with a broken disk makes no sense at |
| all */ |
| drbd_err(device, "Disk broke down during resync!\n"); |
| return 0; |
| } |
| |
| if (connection->agreed_features & DRBD_FF_THIN_RESYNC) { |
| rcu_read_lock(); |
| discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity; |
| rcu_read_unlock(); |
| } |
| |
| max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9; |
| number = drbd_rs_number_requests(device); |
| if (number <= 0) |
| goto requeue; |
| |
| for (i = 0; i < number; i++) { |
| /* Stop generating RS requests when half of the send buffer is filled, |
| * but notify TCP that we'd like to have more space. */ |
| mutex_lock(&connection->data.mutex); |
| if (connection->data.socket) { |
| struct sock *sk = connection->data.socket->sk; |
| int queued = sk->sk_wmem_queued; |
| int sndbuf = sk->sk_sndbuf; |
| if (queued > sndbuf / 2) { |
| requeue = 1; |
| if (sk->sk_socket) |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| } |
| } else |
| requeue = 1; |
| mutex_unlock(&connection->data.mutex); |
| if (requeue) |
| goto requeue; |
| |
| next_sector: |
| size = BM_BLOCK_SIZE; |
| bit = drbd_bm_find_next(device, device->bm_resync_fo); |
| |
| if (bit == DRBD_END_OF_BITMAP) { |
| device->bm_resync_fo = drbd_bm_bits(device); |
| put_ldev(device); |
| return 0; |
| } |
| |
| sector = BM_BIT_TO_SECT(bit); |
| |
| if (drbd_try_rs_begin_io(device, sector)) { |
| device->bm_resync_fo = bit; |
| goto requeue; |
| } |
| device->bm_resync_fo = bit + 1; |
| |
| if (unlikely(drbd_bm_test_bit(device, bit) == 0)) { |
| drbd_rs_complete_io(device, sector); |
| goto next_sector; |
| } |
| |
| #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE |
| /* try to find some adjacent bits. |
| * we stop if we have already the maximum req size. |
| * |
| * Additionally always align bigger requests, in order to |
| * be prepared for all stripe sizes of software RAIDs. |
| */ |
| align = 1; |
| rollback_i = i; |
| while (i < number) { |
| if (size + BM_BLOCK_SIZE > max_bio_size) |
| break; |
| |
| /* Be always aligned */ |
| if (sector & ((1<<(align+3))-1)) |
| break; |
| |
| if (discard_granularity && size == discard_granularity) |
| break; |
| |
| /* do not cross extent boundaries */ |
| if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0) |
| break; |
| /* now, is it actually dirty, after all? |
| * caution, drbd_bm_test_bit is tri-state for some |
| * obscure reason; ( b == 0 ) would get the out-of-band |
| * only accidentally right because of the "oddly sized" |
| * adjustment below */ |
| if (drbd_bm_test_bit(device, bit+1) != 1) |
| break; |
| bit++; |
| size += BM_BLOCK_SIZE; |
| if ((BM_BLOCK_SIZE << align) <= size) |
| align++; |
| i++; |
| } |
| /* if we merged some, |
| * reset the offset to start the next drbd_bm_find_next from */ |
| if (size > BM_BLOCK_SIZE) |
| device->bm_resync_fo = bit + 1; |
| #endif |
| |
| /* adjust very last sectors, in case we are oddly sized */ |
| if (sector + (size>>9) > capacity) |
| size = (capacity-sector)<<9; |
| |
| if (device->use_csums) { |
| switch (read_for_csum(peer_device, sector, size)) { |
| case -EIO: /* Disk failure */ |
| put_ldev(device); |
| return -EIO; |
| case -EAGAIN: /* allocation failed, or ldev busy */ |
| drbd_rs_complete_io(device, sector); |
| device->bm_resync_fo = BM_SECT_TO_BIT(sector); |
| i = rollback_i; |
| goto requeue; |
| case 0: |
| /* everything ok */ |
| break; |
| default: |
| BUG(); |
| } |
| } else { |
| int err; |
| |
| inc_rs_pending(device); |
| err = drbd_send_drequest(peer_device, |
| size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST, |
| sector, size, ID_SYNCER); |
| if (err) { |
| drbd_err(device, "drbd_send_drequest() failed, aborting...\n"); |
| dec_rs_pending(device); |
| put_ldev(device); |
| return err; |
| } |
| } |
| } |
| |
| if (device->bm_resync_fo >= drbd_bm_bits(device)) { |
| /* last syncer _request_ was sent, |
| * but the P_RS_DATA_REPLY not yet received. sync will end (and |
| * next sync group will resume), as soon as we receive the last |
| * resync data block, and the last bit is cleared. |
| * until then resync "work" is "inactive" ... |
| */ |
| put_ldev(device); |
| return 0; |
| } |
| |
| requeue: |
| device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); |
| mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); |
| put_ldev(device); |
| return 0; |
| } |
| |
| static int make_ov_request(struct drbd_device *device, int cancel) |
| { |
| int number, i, size; |
| sector_t sector; |
| const sector_t capacity = drbd_get_capacity(device->this_bdev); |
| bool stop_sector_reached = false; |
| |
| if (unlikely(cancel)) |
| return 1; |
| |
| number = drbd_rs_number_requests(device); |
| |
| sector = device->ov_position; |
| for (i = 0; i < number; i++) { |
| if (sector >= capacity) |
| return 1; |
| |
| /* We check for "finished" only in the reply path: |
| * w_e_end_ov_reply(). |
| * We need to send at least one request out. */ |
| stop_sector_reached = i > 0 |
| && verify_can_do_stop_sector(device) |
| && sector >= device->ov_stop_sector; |
| if (stop_sector_reached) |
| break; |
| |
| size = BM_BLOCK_SIZE; |
| |
| if (drbd_try_rs_begin_io(device, sector)) { |
| device->ov_position = sector; |
| goto requeue; |
| } |
| |
| if (sector + (size>>9) > capacity) |
| size = (capacity-sector)<<9; |
| |
| inc_rs_pending(device); |
| if (drbd_send_ov_request(first_peer_device(device), sector, size)) { |
| dec_rs_pending(device); |
| return 0; |
| } |
| sector += BM_SECT_PER_BIT; |
| } |
| device->ov_position = sector; |
| |
| requeue: |
| device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9)); |
| if (i == 0 || !stop_sector_reached) |
| mod_timer(&device->resync_timer, jiffies + SLEEP_TIME); |
| return 1; |
| } |
| |
| int w_ov_finished(struct drbd_work *w, int cancel) |
| { |
| struct drbd_device_work *dw = |
| container_of(w, struct drbd_device_work, w); |
| struct drbd_device *device = dw->device; |
| kfree(dw); |
| ov_out_of_sync_print(device); |
| drbd_resync_finished(device); |
| |
| return 0; |
| } |
| |
| static int w_resync_finished(struct drbd_work *w, int cancel) |
| { |
| struct drbd_device_work *dw = |
| container_of(w, struct drbd_device_work, w); |
| struct drbd_device *device = dw->device; |
| kfree(dw); |
| |
| drbd_resync_finished(device); |
| |
| return 0; |
| } |
| |
| static void ping_peer(struct drbd_device *device) |
| { |
| struct drbd_connection *connection = first_peer_device(device)->connection; |
| |
| clear_bit(GOT_PING_ACK, &connection->flags); |
| request_ping(connection); |
| wait_event(connection->ping_wait, |
| test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED); |
| } |
| |
| int drbd_resync_finished(struct drbd_device *device) |
| { |
| struct drbd_connection *connection = first_peer_device(device)->connection; |
| unsigned long db, dt, dbdt; |
| unsigned long n_oos; |
| union drbd_state os, ns; |
| struct drbd_device_work *dw; |
| char *khelper_cmd = NULL; |
| int verify_done = 0; |
| |
| /* Remove all elements from the resync LRU. Since future actions |
| * might set bits in the (main) bitmap, then the entries in the |
| * resync LRU would be wrong. */ |
| if (drbd_rs_del_all(device)) { |
| /* In case this is not possible now, most probably because |
| * there are P_RS_DATA_REPLY Packets lingering on the worker's |
| * queue (or even the read operations for those packets |
| * is not finished by now). Retry in 100ms. */ |
| |
| schedule_timeout_interruptible(HZ / 10); |
| dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC); |
| if (dw) { |
| dw->w.cb = w_resync_finished; |
| dw->device = device; |
| drbd_queue_work(&connection->sender_work, &dw->w); |
| return 1; |
| } |
| drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n"); |
| } |
| |
| dt = (jiffies - device->rs_start - device->rs_paused) / HZ; |
| if (dt <= 0) |
| dt = 1; |
| |
| db = device->rs_total; |
| /* adjust for verify start and stop sectors, respective reached position */ |
| if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) |
| db -= device->ov_left; |
| |
| dbdt = Bit2KB(db/dt); |
| device->rs_paused /= HZ; |
| |
| if (!get_ldev(device)) |
| goto out; |
| |
| ping_peer(device); |
| |
| spin_lock_irq(&device->resource->req_lock); |
| os = drbd_read_state(device); |
| |
| verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T); |
| |
| /* This protects us against multiple calls (that can happen in the presence |
| of application IO), and against connectivity loss just before we arrive here. */ |
| if (os.conn <= C_CONNECTED) |
| goto out_unlock; |
| |
| ns = os; |
| ns.conn = C_CONNECTED; |
| |
| drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n", |
| verify_done ? "Online verify" : "Resync", |
| dt + device->rs_paused, device->rs_paused, dbdt); |
| |
| n_oos = drbd_bm_total_weight(device); |
| |
| if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) { |
| if (n_oos) { |
| drbd_alert(device, "Online verify found %lu %dk block out of sync!\n", |
| n_oos, Bit2KB(1)); |
| khelper_cmd = "out-of-sync"; |
| } |
| } else { |
| D_ASSERT(device, (n_oos - device->rs_failed) == 0); |
| |
| if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) |
| khelper_cmd = "after-resync-target"; |
| |
| if (device->use_csums && device->rs_total) { |
| const unsigned long s = device->rs_same_csum; |
| const unsigned long t = device->rs_total; |
| const int ratio = |
| (t == 0) ? 0 : |
| (t < 100000) ? ((s*100)/t) : (s/(t/100)); |
| drbd_info(device, "%u %% had equal checksums, eliminated: %luK; " |
| "transferred %luK total %luK\n", |
| ratio, |
| Bit2KB(device->rs_same_csum), |
| Bit2KB(device->rs_total - device->rs_same_csum), |
| Bit2KB(device->rs_total)); |
| } |
| } |
| |
| if (device->rs_failed) { |
| drbd_info(device, " %lu failed blocks\n", device->rs_failed); |
| |
| if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { |
| ns.disk = D_INCONSISTENT; |
| ns.pdsk = D_UP_TO_DATE; |
| } else { |
| ns.disk = D_UP_TO_DATE; |
| ns.pdsk = D_INCONSISTENT; |
| } |
| } else { |
| ns.disk = D_UP_TO_DATE; |
| ns.pdsk = D_UP_TO_DATE; |
| |
| if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) { |
| if (device->p_uuid) { |
| int i; |
| for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++) |
| _drbd_uuid_set(device, i, device->p_uuid[i]); |
| drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]); |
| _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]); |
| } else { |
| drbd_err(device, "device->p_uuid is NULL! BUG\n"); |
| } |
| } |
| |
| if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) { |
| /* for verify runs, we don't update uuids here, |
| * so there would be nothing to report. */ |
| drbd_uuid_set_bm(device, 0UL); |
| drbd_print_uuids(device, "updated UUIDs"); |
| if (device->p_uuid) { |
| /* Now the two UUID sets are equal, update what we |
| * know of the peer. */ |
| int i; |
| for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++) |
| device->p_uuid[i] = device->ldev->md.uuid[i]; |
| } |
| } |
| } |
| |
| _drbd_set_state(device, ns, CS_VERBOSE, NULL); |
| out_unlock: |
| spin_unlock_irq(&device->resource->req_lock); |
| |
| /* If we have been sync source, and have an effective fencing-policy, |
| * once *all* volumes are back in sync, call "unfence". */ |
| if (os.conn == C_SYNC_SOURCE) { |
| enum drbd_disk_state disk_state = D_MASK; |
| enum drbd_disk_state pdsk_state = D_MASK; |
| enum drbd_fencing_p fp = FP_DONT_CARE; |
| |
| rcu_read_lock(); |
| fp = rcu_dereference(device->ldev->disk_conf)->fencing; |
| if (fp != FP_DONT_CARE) { |
| struct drbd_peer_device *peer_device; |
| int vnr; |
| idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { |
| struct drbd_device *device = peer_device->device; |
| disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk); |
| pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk); |
| } |
| } |
| rcu_read_unlock(); |
| if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE) |
| conn_khelper(connection, "unfence-peer"); |
| } |
| |
| put_ldev(device); |
| out: |
| device->rs_total = 0; |
| device->rs_failed = 0; |
| device->rs_paused = 0; |
| |
| /* reset start sector, if we reached end of device */ |
| if (verify_done && device->ov_left == 0) |
| device->ov_start_sector = 0; |
| |
| drbd_md_sync(device); |
| |
| if (khelper_cmd) |
| drbd_khelper(device, khelper_cmd); |
| |
| return 1; |
| } |
| |
| /* helper */ |
| static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req) |
| { |
| if (drbd_peer_req_has_active_page(peer_req)) { |
| /* This might happen if sendpage() has not finished */ |
| int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT; |
| atomic_add(i, &device->pp_in_use_by_net); |
| atomic_sub(i, &device->pp_in_use); |
| spin_lock_irq(&device->resource->req_lock); |
| list_add_tail(&peer_req->w.list, &device->net_ee); |
| spin_unlock_irq(&device->resource->req_lock); |
| wake_up(&drbd_pp_wait); |
| } else |
| drbd_free_peer_req(device, peer_req); |
| } |
| |
| /** |
| * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST |
| * @w: work object. |
| * @cancel: The connection will be closed anyways |
| */ |
| int w_e_end_data_req(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| int err; |
| |
| if (unlikely(cancel)) { |
| drbd_free_peer_req(device, peer_req); |
| dec_unacked(device); |
| return 0; |
| } |
| |
| if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { |
| err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req); |
| } else { |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_err(device, "Sending NegDReply. sector=%llus.\n", |
| (unsigned long long)peer_req->i.sector); |
| |
| err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req); |
| } |
| |
| dec_unacked(device); |
| |
| move_to_net_ee_or_free(device, peer_req); |
| |
| if (unlikely(err)) |
| drbd_err(device, "drbd_send_block() failed\n"); |
| return err; |
| } |
| |
| static bool all_zero(struct drbd_peer_request *peer_req) |
| { |
| struct page *page = peer_req->pages; |
| unsigned int len = peer_req->i.size; |
| |
| page_chain_for_each(page) { |
| unsigned int l = min_t(unsigned int, len, PAGE_SIZE); |
| unsigned int i, words = l / sizeof(long); |
| unsigned long *d; |
| |
| d = kmap_atomic(page); |
| for (i = 0; i < words; i++) { |
| if (d[i]) { |
| kunmap_atomic(d); |
| return false; |
| } |
| } |
| kunmap_atomic(d); |
| len -= l; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST |
| * @w: work object. |
| * @cancel: The connection will be closed anyways |
| */ |
| int w_e_end_rsdata_req(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| int err; |
| |
| if (unlikely(cancel)) { |
| drbd_free_peer_req(device, peer_req); |
| dec_unacked(device); |
| return 0; |
| } |
| |
| if (get_ldev_if_state(device, D_FAILED)) { |
| drbd_rs_complete_io(device, peer_req->i.sector); |
| put_ldev(device); |
| } |
| |
| if (device->state.conn == C_AHEAD) { |
| err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req); |
| } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { |
| if (likely(device->state.pdsk >= D_INCONSISTENT)) { |
| inc_rs_pending(device); |
| if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req)) |
| err = drbd_send_rs_deallocated(peer_device, peer_req); |
| else |
| err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); |
| } else { |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_err(device, "Not sending RSDataReply, " |
| "partner DISKLESS!\n"); |
| err = 0; |
| } |
| } else { |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_err(device, "Sending NegRSDReply. sector %llus.\n", |
| (unsigned long long)peer_req->i.sector); |
| |
| err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); |
| |
| /* update resync data with failure */ |
| drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size); |
| } |
| |
| dec_unacked(device); |
| |
| move_to_net_ee_or_free(device, peer_req); |
| |
| if (unlikely(err)) |
| drbd_err(device, "drbd_send_block() failed\n"); |
| return err; |
| } |
| |
| int w_e_end_csum_rs_req(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| struct digest_info *di; |
| int digest_size; |
| void *digest = NULL; |
| int err, eq = 0; |
| |
| if (unlikely(cancel)) { |
| drbd_free_peer_req(device, peer_req); |
| dec_unacked(device); |
| return 0; |
| } |
| |
| if (get_ldev(device)) { |
| drbd_rs_complete_io(device, peer_req->i.sector); |
| put_ldev(device); |
| } |
| |
| di = peer_req->digest; |
| |
| if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { |
| /* quick hack to try to avoid a race against reconfiguration. |
| * a real fix would be much more involved, |
| * introducing more locking mechanisms */ |
| if (peer_device->connection->csums_tfm) { |
| digest_size = crypto_ahash_digestsize(peer_device->connection->csums_tfm); |
| D_ASSERT(device, digest_size == di->digest_size); |
| digest = kmalloc(digest_size, GFP_NOIO); |
| } |
| if (digest) { |
| drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest); |
| eq = !memcmp(digest, di->digest, digest_size); |
| kfree(digest); |
| } |
| |
| if (eq) { |
| drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size); |
| /* rs_same_csums unit is BM_BLOCK_SIZE */ |
| device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT; |
| err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req); |
| } else { |
| inc_rs_pending(device); |
| peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */ |
| peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */ |
| kfree(di); |
| err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req); |
| } |
| } else { |
| err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req); |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_err(device, "Sending NegDReply. I guess it gets messy.\n"); |
| } |
| |
| dec_unacked(device); |
| move_to_net_ee_or_free(device, peer_req); |
| |
| if (unlikely(err)) |
| drbd_err(device, "drbd_send_block/ack() failed\n"); |
| return err; |
| } |
| |
| int w_e_end_ov_req(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| sector_t sector = peer_req->i.sector; |
| unsigned int size = peer_req->i.size; |
| int digest_size; |
| void *digest; |
| int err = 0; |
| |
| if (unlikely(cancel)) |
| goto out; |
| |
| digest_size = crypto_ahash_digestsize(peer_device->connection->verify_tfm); |
| digest = kmalloc(digest_size, GFP_NOIO); |
| if (!digest) { |
| err = 1; /* terminate the connection in case the allocation failed */ |
| goto out; |
| } |
| |
| if (likely(!(peer_req->flags & EE_WAS_ERROR))) |
| drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); |
| else |
| memset(digest, 0, digest_size); |
| |
| /* Free e and pages before send. |
| * In case we block on congestion, we could otherwise run into |
| * some distributed deadlock, if the other side blocks on |
| * congestion as well, because our receiver blocks in |
| * drbd_alloc_pages due to pp_in_use > max_buffers. */ |
| drbd_free_peer_req(device, peer_req); |
| peer_req = NULL; |
| inc_rs_pending(device); |
| err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY); |
| if (err) |
| dec_rs_pending(device); |
| kfree(digest); |
| |
| out: |
| if (peer_req) |
| drbd_free_peer_req(device, peer_req); |
| dec_unacked(device); |
| return err; |
| } |
| |
| void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size) |
| { |
| if (device->ov_last_oos_start + device->ov_last_oos_size == sector) { |
| device->ov_last_oos_size += size>>9; |
| } else { |
| device->ov_last_oos_start = sector; |
| device->ov_last_oos_size = size>>9; |
| } |
| drbd_set_out_of_sync(device, sector, size); |
| } |
| |
| int w_e_end_ov_reply(struct drbd_work *w, int cancel) |
| { |
| struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w); |
| struct drbd_peer_device *peer_device = peer_req->peer_device; |
| struct drbd_device *device = peer_device->device; |
| struct digest_info *di; |
| void *digest; |
| sector_t sector = peer_req->i.sector; |
| unsigned int size = peer_req->i.size; |
| int digest_size; |
| int err, eq = 0; |
| bool stop_sector_reached = false; |
| |
| if (unlikely(cancel)) { |
| drbd_free_peer_req(device, peer_req); |
| dec_unacked(device); |
| return 0; |
| } |
| |
| /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all |
| * the resync lru has been cleaned up already */ |
| if (get_ldev(device)) { |
| drbd_rs_complete_io(device, peer_req->i.sector); |
| put_ldev(device); |
| } |
| |
| di = peer_req->digest; |
| |
| if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) { |
| digest_size = crypto_ahash_digestsize(peer_device->connection->verify_tfm); |
| digest = kmalloc(digest_size, GFP_NOIO); |
| if (digest) { |
| drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest); |
| |
| D_ASSERT(device, digest_size == di->digest_size); |
| eq = !memcmp(digest, di->digest, digest_size); |
| kfree(digest); |
| } |
| } |
| |
| /* Free peer_req and pages before send. |
| * In case we block on congestion, we could otherwise run into |
| * some distributed deadlock, if the other side blocks on |
| * congestion as well, because our receiver blocks in |
| * drbd_alloc_pages due to pp_in_use > max_buffers. */ |
| drbd_free_peer_req(device, peer_req); |
| if (!eq) |
| drbd_ov_out_of_sync_found(device, sector, size); |
| else |
| ov_out_of_sync_print(device); |
| |
| err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, |
| eq ? ID_IN_SYNC : ID_OUT_OF_SYNC); |
| |
| dec_unacked(device); |
| |
| --device->ov_left; |
| |
| /* let's advance progress step marks only for every other megabyte */ |
| if ((device->ov_left & 0x200) == 0x200) |
| drbd_advance_rs_marks(device, device->ov_left); |
| |
| stop_sector_reached = verify_can_do_stop_sector(device) && |
| (sector + (size>>9)) >= device->ov_stop_sector; |
| |
| if (device->ov_left == 0 || stop_sector_reached) { |
| ov_out_of_sync_print(device); |
| drbd_resync_finished(device); |
| } |
| |
| return err; |
| } |
| |
| /* FIXME |
| * We need to track the number of pending barrier acks, |
| * and to be able to wait for them. |
| * See also comment in drbd_adm_attach before drbd_suspend_io. |
| */ |
| static int drbd_send_barrier(struct drbd_connection *connection) |
| { |
| struct p_barrier *p; |
| struct drbd_socket *sock; |
| |
| sock = &connection->data; |
| p = conn_prepare_command(connection, sock); |
| if (!p) |
| return -EIO; |
| p->barrier = connection->send.current_epoch_nr; |
| p->pad = 0; |
| connection->send.current_epoch_writes = 0; |
| connection->send.last_sent_barrier_jif = jiffies; |
| |
| return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0); |
| } |
| |
| int w_send_write_hint(struct drbd_work *w, int cancel) |
| { |
| struct drbd_device *device = |
| container_of(w, struct drbd_device, unplug_work); |
| struct drbd_socket *sock; |
| |
| if (cancel) |
| return 0; |
| sock = &first_peer_device(device)->connection->data; |
| if (!drbd_prepare_command(first_peer_device(device), sock)) |
| return -EIO; |
| return drbd_send_command(first_peer_device(device), sock, P_UNPLUG_REMOTE, 0, NULL, 0); |
| } |
| |
| static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch) |
| { |
| if (!connection->send.seen_any_write_yet) { |
| connection->send.seen_any_write_yet = true; |
| connection->send.current_epoch_nr = epoch; |
| connection->send.current_epoch_writes = 0; |
| connection->send.last_sent_barrier_jif = jiffies; |
| } |
| } |
| |
| static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch) |
| { |
| /* re-init if first write on this connection */ |
| if (!connection->send.seen_any_write_yet) |
| return; |
| if (connection->send.current_epoch_nr != epoch) { |
| if (connection->send.current_epoch_writes) |
| drbd_send_barrier(connection); |
| connection->send.current_epoch_nr = epoch; |
| } |
| } |
| |
| int w_send_out_of_sync(struct drbd_work *w, int cancel) |
| { |
| struct drbd_request *req = container_of(w, struct drbd_request, w); |
| struct drbd_device *device = req->device; |
| struct drbd_peer_device *const peer_device = first_peer_device(device); |
| struct drbd_connection *const connection = peer_device->connection; |
| int err; |
| |
| if (unlikely(cancel)) { |
| req_mod(req, SEND_CANCELED); |
| return 0; |
| } |
| req->pre_send_jif = jiffies; |
| |
| /* this time, no connection->send.current_epoch_writes++; |
| * If it was sent, it was the closing barrier for the last |
| * replicated epoch, before we went into AHEAD mode. |
| * No more barriers will be sent, until we leave AHEAD mode again. */ |
| maybe_send_barrier(connection, req->epoch); |
| |
| err = drbd_send_out_of_sync(peer_device, req); |
| req_mod(req, OOS_HANDED_TO_NETWORK); |
| |
| return err; |
| } |
| |
| /** |
| * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request |
| * @w: work object. |
| * @cancel: The connection will be closed anyways |
| */ |
| int w_send_dblock(struct drbd_work *w, int cancel) |
| { |
| struct drbd_request *req = container_of(w, struct drbd_request, w); |
| struct drbd_device *device = req->device; |
| struct drbd_peer_device *const peer_device = first_peer_device(device); |
| struct drbd_connection *connection = peer_device->connection; |
| int err; |
| |
| if (unlikely(cancel)) { |
| req_mod(req, SEND_CANCELED); |
| return 0; |
| } |
| req->pre_send_jif = jiffies; |
| |
| re_init_if_first_write(connection, req->epoch); |
| maybe_send_barrier(connection, req->epoch); |
| connection->send.current_epoch_writes++; |
| |
| err = drbd_send_dblock(peer_device, req); |
| req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); |
| |
| return err; |
| } |
| |
| /** |
| * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet |
| * @w: work object. |
| * @cancel: The connection will be closed anyways |
| */ |
| int w_send_read_req(struct drbd_work *w, int cancel) |
| { |
| struct drbd_request *req = container_of(w, struct drbd_request, w); |
| struct drbd_device *device = req->device; |
| struct drbd_peer_device *const peer_device = first_peer_device(device); |
| struct drbd_connection *connection = peer_device->connection; |
| int err; |
| |
| if (unlikely(cancel)) { |
| req_mod(req, SEND_CANCELED); |
| return 0; |
| } |
| req->pre_send_jif = jiffies; |
| |
| /* Even read requests may close a write epoch, |
| * if there was any yet. */ |
| maybe_send_barrier(connection, req->epoch); |
| |
| err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size, |
| (unsigned long)req); |
| |
| req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK); |
| |
| return err; |
| } |
| |
| int w_restart_disk_io(struct drbd_work *w, int cancel) |
| { |
| struct drbd_request *req = container_of(w, struct drbd_request, w); |
| struct drbd_device *device = req->device; |
| |
| if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG) |
| drbd_al_begin_io(device, &req->i); |
| |
| drbd_req_make_private_bio(req, req->master_bio); |
| req->private_bio->bi_bdev = device->ldev->backing_bdev; |
| generic_make_request(req->private_bio); |
| |
| return 0; |
| } |
| |
| static int _drbd_may_sync_now(struct drbd_device *device) |
| { |
| struct drbd_device *odev = device; |
| int resync_after; |
| |
| while (1) { |
| if (!odev->ldev || odev->state.disk == D_DISKLESS) |
| return 1; |
| rcu_read_lock(); |
| resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; |
| rcu_read_unlock(); |
| if (resync_after == -1) |
| return 1; |
| odev = minor_to_device(resync_after); |
| if (!odev) |
| return 1; |
| if ((odev->state.conn >= C_SYNC_SOURCE && |
| odev->state.conn <= C_PAUSED_SYNC_T) || |
| odev->state.aftr_isp || odev->state.peer_isp || |
| odev->state.user_isp) |
| return 0; |
| } |
| } |
| |
| /** |
| * drbd_pause_after() - Pause resync on all devices that may not resync now |
| * @device: DRBD device. |
| * |
| * Called from process context only (admin command and after_state_ch). |
| */ |
| static bool drbd_pause_after(struct drbd_device *device) |
| { |
| bool changed = false; |
| struct drbd_device *odev; |
| int i; |
| |
| rcu_read_lock(); |
| idr_for_each_entry(&drbd_devices, odev, i) { |
| if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) |
| continue; |
| if (!_drbd_may_sync_now(odev) && |
| _drbd_set_state(_NS(odev, aftr_isp, 1), |
| CS_HARD, NULL) != SS_NOTHING_TO_DO) |
| changed = true; |
| } |
| rcu_read_unlock(); |
| |
| return changed; |
| } |
| |
| /** |
| * drbd_resume_next() - Resume resync on all devices that may resync now |
| * @device: DRBD device. |
| * |
| * Called from process context only (admin command and worker). |
| */ |
| static bool drbd_resume_next(struct drbd_device *device) |
| { |
| bool changed = false; |
| struct drbd_device *odev; |
| int i; |
| |
| rcu_read_lock(); |
| idr_for_each_entry(&drbd_devices, odev, i) { |
| if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS) |
| continue; |
| if (odev->state.aftr_isp) { |
| if (_drbd_may_sync_now(odev) && |
| _drbd_set_state(_NS(odev, aftr_isp, 0), |
| CS_HARD, NULL) != SS_NOTHING_TO_DO) |
| changed = true; |
| } |
| } |
| rcu_read_unlock(); |
| return changed; |
| } |
| |
| void resume_next_sg(struct drbd_device *device) |
| { |
| lock_all_resources(); |
| drbd_resume_next(device); |
| unlock_all_resources(); |
| } |
| |
| void suspend_other_sg(struct drbd_device *device) |
| { |
| lock_all_resources(); |
| drbd_pause_after(device); |
| unlock_all_resources(); |
| } |
| |
| /* caller must lock_all_resources() */ |
| enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor) |
| { |
| struct drbd_device *odev; |
| int resync_after; |
| |
| if (o_minor == -1) |
| return NO_ERROR; |
| if (o_minor < -1 || o_minor > MINORMASK) |
| return ERR_RESYNC_AFTER; |
| |
| /* check for loops */ |
| odev = minor_to_device(o_minor); |
| while (1) { |
| if (odev == device) |
| return ERR_RESYNC_AFTER_CYCLE; |
| |
| /* You are free to depend on diskless, non-existing, |
| * or not yet/no longer existing minors. |
| * We only reject dependency loops. |
| * We cannot follow the dependency chain beyond a detached or |
| * missing minor. |
| */ |
| if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS) |
| return NO_ERROR; |
| |
| rcu_read_lock(); |
| resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after; |
| rcu_read_unlock(); |
| /* dependency chain ends here, no cycles. */ |
| if (resync_after == -1) |
| return NO_ERROR; |
| |
| /* follow the dependency chain */ |
| odev = minor_to_device(resync_after); |
| } |
| } |
| |
| /* caller must lock_all_resources() */ |
| void drbd_resync_after_changed(struct drbd_device *device) |
| { |
| int changed; |
| |
| do { |
| changed = drbd_pause_after(device); |
| changed |= drbd_resume_next(device); |
| } while (changed); |
| } |
| |
| void drbd_rs_controller_reset(struct drbd_device *device) |
| { |
| struct gendisk *disk = device->ldev->backing_bdev->bd_contains->bd_disk; |
| struct fifo_buffer *plan; |
| |
| atomic_set(&device->rs_sect_in, 0); |
| atomic_set(&device->rs_sect_ev, 0); |
| device->rs_in_flight = 0; |
| device->rs_last_events = |
| (int)part_stat_read(&disk->part0, sectors[0]) + |
| (int)part_stat_read(&disk->part0, sectors[1]); |
| |
| /* Updating the RCU protected object in place is necessary since |
| this function gets called from atomic context. |
| It is valid since all other updates also lead to an completely |
| empty fifo */ |
| rcu_read_lock(); |
| plan = rcu_dereference(device->rs_plan_s); |
| plan->total = 0; |
| fifo_set(plan, 0); |
| rcu_read_unlock(); |
| } |
| |
| void start_resync_timer_fn(unsigned long data) |
| { |
| struct drbd_device *device = (struct drbd_device *) data; |
| drbd_device_post_work(device, RS_START); |
| } |
| |
| static void do_start_resync(struct drbd_device *device) |
| { |
| if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) { |
| drbd_warn(device, "postponing start_resync ...\n"); |
| device->start_resync_timer.expires = jiffies + HZ/10; |
| add_timer(&device->start_resync_timer); |
| return; |
| } |
| |
| drbd_start_resync(device, C_SYNC_SOURCE); |
| clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags); |
| } |
| |
| static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device) |
| { |
| bool csums_after_crash_only; |
| rcu_read_lock(); |
| csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only; |
| rcu_read_unlock(); |
| return connection->agreed_pro_version >= 89 && /* supported? */ |
| connection->csums_tfm && /* configured? */ |
| (csums_after_crash_only == false /* use for each resync? */ |
| || test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */ |
| } |
| |
| /** |
| * drbd_start_resync() - Start the resync process |
| * @device: DRBD device. |
| * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET |
| * |
| * This function might bring you directly into one of the |
| * C_PAUSED_SYNC_* states. |
| */ |
| void drbd_start_resync(struct drbd_device *device, enum drbd_conns side) |
| { |
| struct drbd_peer_device *peer_device = first_peer_device(device); |
| struct drbd_connection *connection = peer_device ? peer_device->connection : NULL; |
| union drbd_state ns; |
| int r; |
| |
| if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) { |
| drbd_err(device, "Resync already running!\n"); |
| return; |
| } |
| |
| if (!test_bit(B_RS_H_DONE, &device->flags)) { |
| if (side == C_SYNC_TARGET) { |
| /* Since application IO was locked out during C_WF_BITMAP_T and |
| C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET |
| we check that we might make the data inconsistent. */ |
| r = drbd_khelper(device, "before-resync-target"); |
| r = (r >> 8) & 0xff; |
| if (r > 0) { |
| drbd_info(device, "before-resync-target handler returned %d, " |
| "dropping connection.\n", r); |
| conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); |
| return; |
| } |
| } else /* C_SYNC_SOURCE */ { |
| r = drbd_khelper(device, "before-resync-source"); |
| r = (r >> 8) & 0xff; |
| if (r > 0) { |
| if (r == 3) { |
| drbd_info(device, "before-resync-source handler returned %d, " |
| "ignoring. Old userland tools?", r); |
| } else { |
| drbd_info(device, "before-resync-source handler returned %d, " |
| "dropping connection.\n", r); |
| conn_request_state(connection, |
| NS(conn, C_DISCONNECTING), CS_HARD); |
| return; |
| } |
| } |
| } |
| } |
| |
| if (current == connection->worker.task) { |
| /* The worker should not sleep waiting for state_mutex, |
| that can take long */ |
| if (!mutex_trylock(device->state_mutex)) { |
| set_bit(B_RS_H_DONE, &device->flags); |
| device->start_resync_timer.expires = jiffies + HZ/5; |
| add_timer(&device->start_resync_timer); |
| return; |
| } |
| } else { |
| mutex_lock(device->state_mutex); |
| } |
| |
| lock_all_resources(); |
| clear_bit(B_RS_H_DONE, &device->flags); |
| /* Did some connection breakage or IO error race with us? */ |
| if (device->state.conn < C_CONNECTED |
| || !get_ldev_if_state(device, D_NEGOTIATING)) { |
| unlock_all_resources(); |
| goto out; |
| } |
| |
| ns = drbd_read_state(device); |
| |
| ns.aftr_isp = !_drbd_may_sync_now(device); |
| |
| ns.conn = side; |
| |
| if (side == C_SYNC_TARGET) |
| ns.disk = D_INCONSISTENT; |
| else /* side == C_SYNC_SOURCE */ |
| ns.pdsk = D_INCONSISTENT; |
| |
| r = _drbd_set_state(device, ns, CS_VERBOSE, NULL); |
| ns = drbd_read_state(device); |
| |
| if (ns.conn < C_CONNECTED) |
| r = SS_UNKNOWN_ERROR; |
| |
| if (r == SS_SUCCESS) { |
| unsigned long tw = drbd_bm_total_weight(device); |
| unsigned long now = jiffies; |
| int i; |
| |
| device->rs_failed = 0; |
| device->rs_paused = 0; |
| device->rs_same_csum = 0; |
| device->rs_last_sect_ev = 0; |
| device->rs_total = tw; |
| device->rs_start = now; |
| for (i = 0; i < DRBD_SYNC_MARKS; i++) { |
| device->rs_mark_left[i] = tw; |
| device->rs_mark_time[i] = now; |
| } |
| drbd_pause_after(device); |
| /* Forget potentially stale cached per resync extent bit-counts. |
| * Open coded drbd_rs_cancel_all(device), we already have IRQs |
| * disabled, and know the disk state is ok. */ |
| spin_lock(&device->al_lock); |
| lc_reset(device->resync); |
| device->resync_locked = 0; |
| device->resync_wenr = LC_FREE; |
| spin_unlock(&device->al_lock); |
| } |
| unlock_all_resources(); |
| |
| if (r == SS_SUCCESS) { |
| wake_up(&device->al_wait); /* for lc_reset() above */ |
| /* reset rs_last_bcast when a resync or verify is started, |
| * to deal with potential jiffies wrap. */ |
| device->rs_last_bcast = jiffies - HZ; |
| |
| drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n", |
| drbd_conn_str(ns.conn), |
| (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10), |
| (unsigned long) device->rs_total); |
| if (side == C_SYNC_TARGET) { |
| device->bm_resync_fo = 0; |
| device->use_csums = use_checksum_based_resync(connection, device); |
| } else { |
| device->use_csums = false; |
| } |
| |
| /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid |
| * with w_send_oos, or the sync target will get confused as to |
| * how much bits to resync. We cannot do that always, because for an |
| * empty resync and protocol < 95, we need to do it here, as we call |
| * drbd_resync_finished from here in that case. |
| * We drbd_gen_and_send_sync_uuid here for protocol < 96, |
| * and from after_state_ch otherwise. */ |
| if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96) |
| drbd_gen_and_send_sync_uuid(peer_device); |
| |
| if (connection->agreed_pro_version < 95 && device->rs_total == 0) { |
| /* This still has a race (about when exactly the peers |
| * detect connection loss) that can lead to a full sync |
| * on next handshake. In 8.3.9 we fixed this with explicit |
| * resync-finished notifications, but the fix |
| * introduces a protocol change. Sleeping for some |
| * time longer than the ping interval + timeout on the |
| * SyncSource, to give the SyncTarget the chance to |
| * detect connection loss, then waiting for a ping |
| * response (implicit in drbd_resync_finished) reduces |
| * the race considerably, but does not solve it. */ |
| if (side == C_SYNC_SOURCE) { |
| struct net_conf *nc; |
| int timeo; |
| |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9; |
| rcu_read_unlock(); |
| schedule_timeout_interruptible(timeo); |
| } |
| drbd_resync_finished(device); |
| } |
| |
| drbd_rs_controller_reset(device); |
| /* ns.conn may already be != device->state.conn, |
| * we may have been paused in between, or become paused until |
| * the timer triggers. |
| * No matter, that is handled in resync_timer_fn() */ |
| if (ns.conn == C_SYNC_TARGET) |
| mod_timer(&device->resync_timer, jiffies); |
| |
| drbd_md_sync(device); |
| } |
| put_ldev(device); |
| out: |
| mutex_unlock(device->state_mutex); |
| } |
| |
| static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done) |
| { |
| struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, }; |
| device->rs_last_bcast = jiffies; |
| |
| if (!get_ldev(device)) |
| return; |
| |
| drbd_bm_write_lazy(device, 0); |
| if (resync_done && is_sync_state(device->state.conn)) |
| drbd_resync_finished(device); |
| |
| drbd_bcast_event(device, &sib); |
| /* update timestamp, in case it took a while to write out stuff */ |
| device->rs_last_bcast = jiffies; |
| put_ldev(device); |
| } |
| |
| static void drbd_ldev_destroy(struct drbd_device *device) |
| { |
| lc_destroy(device->resync); |
| device->resync = NULL; |
| lc_destroy(device->act_log); |
| device->act_log = NULL; |
| |
| __acquire(local); |
| drbd_backing_dev_free(device, device->ldev); |
| device->ldev = NULL; |
| __release(local); |
| |
| clear_bit(GOING_DISKLESS, &device->flags); |
| wake_up(&device->misc_wait); |
| } |
| |
| static void go_diskless(struct drbd_device *device) |
| { |
| D_ASSERT(device, device->state.disk == D_FAILED); |
| /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will |
| * inc/dec it frequently. Once we are D_DISKLESS, no one will touch |
| * the protected members anymore, though, so once put_ldev reaches zero |
| * again, it will be safe to free them. */ |
| |
| /* Try to write changed bitmap pages, read errors may have just |
| * set some bits outside the area covered by the activity log. |
| * |
| * If we have an IO error during the bitmap writeout, |
| * we will want a full sync next time, just in case. |
| * (Do we want a specific meta data flag for this?) |
| * |
| * If that does not make it to stable storage either, |
| * we cannot do anything about that anymore. |
| * |
| * We still need to check if both bitmap and ldev are present, we may |
| * end up here after a failed attach, before ldev was even assigned. |
| */ |
| if (device->bitmap && device->ldev) { |
| /* An interrupted resync or similar is allowed to recounts bits |
| * while we detach. |
| * Any modifications would not be expected anymore, though. |
| */ |
| if (drbd_bitmap_io_from_worker(device, drbd_bm_write, |
| "detach", BM_LOCKED_TEST_ALLOWED)) { |
| if (test_bit(WAS_READ_ERROR, &device->flags)) { |
| drbd_md_set_flag(device, MDF_FULL_SYNC); |
| drbd_md_sync(device); |
| } |
| } |
| } |
| |
| drbd_force_state(device, NS(disk, D_DISKLESS)); |
| } |
| |
| static int do_md_sync(struct drbd_device *device) |
| { |
| drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n"); |
| drbd_md_sync(device); |
| return 0; |
| } |
| |
| /* only called from drbd_worker thread, no locking */ |
| void __update_timing_details( |
| struct drbd_thread_timing_details *tdp, |
| unsigned int *cb_nr, |
| void *cb, |
| const char *fn, const unsigned int line) |
| { |
| unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST; |
| struct drbd_thread_timing_details *td = tdp + i; |
| |
| td->start_jif = jiffies; |
| td->cb_addr = cb; |
| td->caller_fn = fn; |
| td->line = line; |
| td->cb_nr = *cb_nr; |
| |
| i = (i+1) % DRBD_THREAD_DETAILS_HIST; |
| td = tdp + i; |
| memset(td, 0, sizeof(*td)); |
| |
| ++(*cb_nr); |
| } |
| |
| static void do_device_work(struct drbd_device *device, const unsigned long todo) |
| { |
| if (test_bit(MD_SYNC, &todo)) |
| do_md_sync(device); |
| if (test_bit(RS_DONE, &todo) || |
| test_bit(RS_PROGRESS, &todo)) |
| update_on_disk_bitmap(device, test_bit(RS_DONE, &todo)); |
| if (test_bit(GO_DISKLESS, &todo)) |
| go_diskless(device); |
| if (test_bit(DESTROY_DISK, &todo)) |
| drbd_ldev_destroy(device); |
| if (test_bit(RS_START, &todo)) |
| do_start_resync(device); |
| } |
| |
| #define DRBD_DEVICE_WORK_MASK \ |
| ((1UL << GO_DISKLESS) \ |
| |(1UL << DESTROY_DISK) \ |
| |(1UL << MD_SYNC) \ |
| |(1UL << RS_START) \ |
| |(1UL << RS_PROGRESS) \ |
| |(1UL << RS_DONE) \ |
| ) |
| |
| static unsigned long get_work_bits(unsigned long *flags) |
| { |
| unsigned long old, new; |
| do { |
| old = *flags; |
| new = old & ~DRBD_DEVICE_WORK_MASK; |
| } while (cmpxchg(flags, old, new) != old); |
| return old & DRBD_DEVICE_WORK_MASK; |
| } |
| |
| static void do_unqueued_work(struct drbd_connection *connection) |
| { |
| struct drbd_peer_device *peer_device; |
| int vnr; |
| |
| rcu_read_lock(); |
| idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { |
| struct drbd_device *device = peer_device->device; |
| unsigned long todo = get_work_bits(&device->flags); |
| if (!todo) |
| continue; |
| |
| kref_get(&device->kref); |
| rcu_read_unlock(); |
| do_device_work(device, todo); |
| kref_put(&device->kref, drbd_destroy_device); |
| rcu_read_lock(); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list) |
| { |
| spin_lock_irq(&queue->q_lock); |
| list_splice_tail_init(&queue->q, work_list); |
| spin_unlock_irq(&queue->q_lock); |
| return !list_empty(work_list); |
| } |
| |
| static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list) |
| { |
| DEFINE_WAIT(wait); |
| struct net_conf *nc; |
| int uncork, cork; |
| |
| dequeue_work_batch(&connection->sender_work, work_list); |
| if (!list_empty(work_list)) |
| return; |
| |
| /* Still nothing to do? |
| * Maybe we still need to close the current epoch, |
| * even if no new requests are queued yet. |
| * |
| * Also, poke TCP, just in case. |
| * Then wait for new work (or signal). */ |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| uncork = nc ? nc->tcp_cork : 0; |
| rcu_read_unlock(); |
| if (uncork) { |
| mutex_lock(&connection->data.mutex); |
| if (connection->data.socket) |
| drbd_tcp_uncork(connection->data.socket); |
| mutex_unlock(&connection->data.mutex); |
| } |
| |
| for (;;) { |
| int send_barrier; |
| prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE); |
| spin_lock_irq(&connection->resource->req_lock); |
| spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ |
| if (!list_empty(&connection->sender_work.q)) |
| list_splice_tail_init(&connection->sender_work.q, work_list); |
| spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */ |
| if (!list_empty(work_list) || signal_pending(current)) { |
| spin_unlock_irq(&connection->resource->req_lock); |
| break; |
| } |
| |
| /* We found nothing new to do, no to-be-communicated request, |
| * no other work item. We may still need to close the last |
| * epoch. Next incoming request epoch will be connection -> |
| * current transfer log epoch number. If that is different |
| * from the epoch of the last request we communicated, it is |
| * safe to send the epoch separating barrier now. |
| */ |
| send_barrier = |
| atomic_read(&connection->current_tle_nr) != |
| connection->send.current_epoch_nr; |
| spin_unlock_irq(&connection->resource->req_lock); |
| |
| if (send_barrier) |
| maybe_send_barrier(connection, |
| connection->send.current_epoch_nr + 1); |
| |
| if (test_bit(DEVICE_WORK_PENDING, &connection->flags)) |
| break; |
| |
| /* drbd_send() may have called flush_signals() */ |
| if (get_t_state(&connection->worker) != RUNNING) |
| break; |
| |
| schedule(); |
| /* may be woken up for other things but new work, too, |
| * e.g. if the current epoch got closed. |
| * In which case we send the barrier above. */ |
| } |
| finish_wait(&connection->sender_work.q_wait, &wait); |
| |
| /* someone may have changed the config while we have been waiting above. */ |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| cork = nc ? nc->tcp_cork : 0; |
| rcu_read_unlock(); |
| mutex_lock(&connection->data.mutex); |
| if (connection->data.socket) { |
| if (cork) |
| drbd_tcp_cork(connection->data.socket); |
| else if (!uncork) |
| drbd_tcp_uncork(connection->data.socket); |
| } |
| mutex_unlock(&connection->data.mutex); |
| } |
| |
| int drbd_worker(struct drbd_thread *thi) |
| { |
| struct drbd_connection *connection = thi->connection; |
| struct drbd_work *w = NULL; |
| struct drbd_peer_device *peer_device; |
| LIST_HEAD(work_list); |
| int vnr; |
| |
| while (get_t_state(thi) == RUNNING) { |
| drbd_thread_current_set_cpu(thi); |
| |
| if (list_empty(&work_list)) { |
| update_worker_timing_details(connection, wait_for_work); |
| wait_for_work(connection, &work_list); |
| } |
| |
| if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { |
| update_worker_timing_details(connection, do_unqueued_work); |
| do_unqueued_work(connection); |
| } |
| |
| if (signal_pending(current)) { |
| flush_signals(current); |
| if (get_t_state(thi) == RUNNING) { |
| drbd_warn(connection, "Worker got an unexpected signal\n"); |
| continue; |
| } |
| break; |
| } |
| |
| if (get_t_state(thi) != RUNNING) |
| break; |
| |
| if (!list_empty(&work_list)) { |
| w = list_first_entry(&work_list, struct drbd_work, list); |
| list_del_init(&w->list); |
| update_worker_timing_details(connection, w->cb); |
| if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0) |
| continue; |
| if (connection->cstate >= C_WF_REPORT_PARAMS) |
| conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD); |
| } |
| } |
| |
| do { |
| if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) { |
| update_worker_timing_details(connection, do_unqueued_work); |
| do_unqueued_work(connection); |
| } |
| if (!list_empty(&work_list)) { |
| w = list_first_entry(&work_list, struct drbd_work, list); |
| list_del_init(&w->list); |
| update_worker_timing_details(connection, w->cb); |
| w->cb(w, 1); |
| } else |
| dequeue_work_batch(&connection->sender_work, &work_list); |
| } while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags)); |
| |
| rcu_read_lock(); |
| idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { |
| struct drbd_device *device = peer_device->device; |
| D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE); |
| kref_get(&device->kref); |
| rcu_read_unlock(); |
| drbd_device_cleanup(device); |
| kref_put(&device->kref, drbd_destroy_device); |
| rcu_read_lock(); |
| } |
| rcu_read_unlock(); |
| |
| return 0; |
| } |