| /* |
| * SWIOTLB-based DMA API implementation |
| * |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Catalin Marinas <catalin.marinas@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/acpi.h> |
| #include <linux/memblock.h> |
| #include <linux/cache.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/genalloc.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-noncoherent.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/vmalloc.h> |
| #include <linux/swiotlb.h> |
| #include <linux/pci.h> |
| |
| #include <asm/cacheflush.h> |
| |
| pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, |
| unsigned long attrs) |
| { |
| if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE)) |
| return pgprot_writecombine(prot); |
| return prot; |
| } |
| |
| void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, |
| size_t size, enum dma_data_direction dir) |
| { |
| __dma_map_area(phys_to_virt(paddr), size, dir); |
| } |
| |
| void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, |
| size_t size, enum dma_data_direction dir) |
| { |
| __dma_unmap_area(phys_to_virt(paddr), size, dir); |
| } |
| |
| void arch_dma_prep_coherent(struct page *page, size_t size) |
| { |
| __dma_flush_area(page_address(page), size); |
| } |
| |
| #ifdef CONFIG_IOMMU_DMA |
| static int __swiotlb_get_sgtable_page(struct sg_table *sgt, |
| struct page *page, size_t size) |
| { |
| int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| |
| if (!ret) |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| |
| return ret; |
| } |
| |
| static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, |
| unsigned long pfn, size_t size) |
| { |
| int ret = -ENXIO; |
| unsigned long nr_vma_pages = vma_pages(vma); |
| unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long off = vma->vm_pgoff; |
| |
| if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| pfn + off, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| } |
| |
| return ret; |
| } |
| #endif /* CONFIG_IOMMU_DMA */ |
| |
| static int __init arm64_dma_init(void) |
| { |
| WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(), |
| TAINT_CPU_OUT_OF_SPEC, |
| "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)", |
| ARCH_DMA_MINALIGN, cache_line_size()); |
| return dma_atomic_pool_init(GFP_DMA32, __pgprot(PROT_NORMAL_NC)); |
| } |
| arch_initcall(arm64_dma_init); |
| |
| #ifdef CONFIG_IOMMU_DMA |
| #include <linux/dma-iommu.h> |
| #include <linux/platform_device.h> |
| #include <linux/amba/bus.h> |
| |
| /* Thankfully, all cache ops are by VA so we can ignore phys here */ |
| static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) |
| { |
| __dma_flush_area(virt, PAGE_SIZE); |
| } |
| |
| static void *__iommu_alloc_attrs(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, |
| unsigned long attrs) |
| { |
| bool coherent = dev_is_dma_coherent(dev); |
| int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); |
| size_t iosize = size; |
| void *addr; |
| |
| if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) |
| return NULL; |
| |
| size = PAGE_ALIGN(size); |
| |
| /* |
| * Some drivers rely on this, and we probably don't want the |
| * possibility of stale kernel data being read by devices anyway. |
| */ |
| gfp |= __GFP_ZERO; |
| |
| if (!gfpflags_allow_blocking(gfp)) { |
| struct page *page; |
| /* |
| * In atomic context we can't remap anything, so we'll only |
| * get the virtually contiguous buffer we need by way of a |
| * physically contiguous allocation. |
| */ |
| if (coherent) { |
| page = alloc_pages(gfp, get_order(size)); |
| addr = page ? page_address(page) : NULL; |
| } else { |
| addr = dma_alloc_from_pool(size, &page, gfp); |
| } |
| if (!addr) |
| return NULL; |
| |
| *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); |
| if (*handle == DMA_MAPPING_ERROR) { |
| if (coherent) |
| __free_pages(page, get_order(size)); |
| else |
| dma_free_from_pool(addr, size); |
| addr = NULL; |
| } |
| } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); |
| struct page *page; |
| |
| page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, |
| get_order(size), gfp & __GFP_NOWARN); |
| if (!page) |
| return NULL; |
| |
| *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); |
| if (*handle == DMA_MAPPING_ERROR) { |
| dma_release_from_contiguous(dev, page, |
| size >> PAGE_SHIFT); |
| return NULL; |
| } |
| addr = dma_common_contiguous_remap(page, size, VM_USERMAP, |
| prot, |
| __builtin_return_address(0)); |
| if (addr) { |
| if (!coherent) |
| __dma_flush_area(page_to_virt(page), iosize); |
| memset(addr, 0, size); |
| } else { |
| iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); |
| dma_release_from_contiguous(dev, page, |
| size >> PAGE_SHIFT); |
| } |
| } else { |
| pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); |
| struct page **pages; |
| |
| pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, |
| handle, flush_page); |
| if (!pages) |
| return NULL; |
| |
| addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, |
| __builtin_return_address(0)); |
| if (!addr) |
| iommu_dma_free(dev, pages, iosize, handle); |
| } |
| return addr; |
| } |
| |
| static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs) |
| { |
| size_t iosize = size; |
| |
| size = PAGE_ALIGN(size); |
| /* |
| * @cpu_addr will be one of 4 things depending on how it was allocated: |
| * - A remapped array of pages for contiguous allocations. |
| * - A remapped array of pages from iommu_dma_alloc(), for all |
| * non-atomic allocations. |
| * - A non-cacheable alias from the atomic pool, for atomic |
| * allocations by non-coherent devices. |
| * - A normal lowmem address, for atomic allocations by |
| * coherent devices. |
| * Hence how dodgy the below logic looks... |
| */ |
| if (dma_in_atomic_pool(cpu_addr, size)) { |
| iommu_dma_unmap_page(dev, handle, iosize, 0, 0); |
| dma_free_from_pool(cpu_addr, size); |
| } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| struct page *page = vmalloc_to_page(cpu_addr); |
| |
| iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); |
| dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); |
| dma_common_free_remap(cpu_addr, size, VM_USERMAP); |
| } else if (is_vmalloc_addr(cpu_addr)){ |
| struct vm_struct *area = find_vm_area(cpu_addr); |
| |
| if (WARN_ON(!area || !area->pages)) |
| return; |
| iommu_dma_free(dev, area->pages, iosize, &handle); |
| dma_common_free_remap(cpu_addr, size, VM_USERMAP); |
| } else { |
| iommu_dma_unmap_page(dev, handle, iosize, 0, 0); |
| __free_pages(virt_to_page(cpu_addr), get_order(size)); |
| } |
| } |
| |
| static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct vm_struct *area; |
| int ret; |
| |
| vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| /* |
| * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, |
| * hence in the vmalloc space. |
| */ |
| unsigned long pfn = vmalloc_to_pfn(cpu_addr); |
| return __swiotlb_mmap_pfn(vma, pfn, size); |
| } |
| |
| area = find_vm_area(cpu_addr); |
| if (WARN_ON(!area || !area->pages)) |
| return -ENXIO; |
| |
| return iommu_dma_mmap(area->pages, size, vma); |
| } |
| |
| static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, |
| size_t size, unsigned long attrs) |
| { |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| struct vm_struct *area = find_vm_area(cpu_addr); |
| |
| if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| /* |
| * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, |
| * hence in the vmalloc space. |
| */ |
| struct page *page = vmalloc_to_page(cpu_addr); |
| return __swiotlb_get_sgtable_page(sgt, page, size); |
| } |
| |
| if (WARN_ON(!area || !area->pages)) |
| return -ENXIO; |
| |
| return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, |
| GFP_KERNEL); |
| } |
| |
| static void __iommu_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dev_addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| phys_addr_t phys; |
| |
| if (dev_is_dma_coherent(dev)) |
| return; |
| |
| phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); |
| arch_sync_dma_for_cpu(dev, phys, size, dir); |
| } |
| |
| static void __iommu_sync_single_for_device(struct device *dev, |
| dma_addr_t dev_addr, size_t size, |
| enum dma_data_direction dir) |
| { |
| phys_addr_t phys; |
| |
| if (dev_is_dma_coherent(dev)) |
| return; |
| |
| phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); |
| arch_sync_dma_for_device(dev, phys, size, dir); |
| } |
| |
| static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| bool coherent = dev_is_dma_coherent(dev); |
| int prot = dma_info_to_prot(dir, coherent, attrs); |
| dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); |
| |
| if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| dev_addr != DMA_MAPPING_ERROR) |
| __dma_map_area(page_address(page) + offset, size, dir); |
| |
| return dev_addr; |
| } |
| |
| static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); |
| |
| iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); |
| } |
| |
| static void __iommu_sync_sg_for_cpu(struct device *dev, |
| struct scatterlist *sgl, int nelems, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (dev_is_dma_coherent(dev)) |
| return; |
| |
| for_each_sg(sgl, sg, nelems, i) |
| arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); |
| } |
| |
| static void __iommu_sync_sg_for_device(struct device *dev, |
| struct scatterlist *sgl, int nelems, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| if (dev_is_dma_coherent(dev)) |
| return; |
| |
| for_each_sg(sgl, sg, nelems, i) |
| arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); |
| } |
| |
| static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, |
| int nelems, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| bool coherent = dev_is_dma_coherent(dev); |
| |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __iommu_sync_sg_for_device(dev, sgl, nelems, dir); |
| |
| return iommu_dma_map_sg(dev, sgl, nelems, |
| dma_info_to_prot(dir, coherent, attrs)); |
| } |
| |
| static void __iommu_unmap_sg_attrs(struct device *dev, |
| struct scatterlist *sgl, int nelems, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); |
| |
| iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); |
| } |
| |
| static const struct dma_map_ops iommu_dma_ops = { |
| .alloc = __iommu_alloc_attrs, |
| .free = __iommu_free_attrs, |
| .mmap = __iommu_mmap_attrs, |
| .get_sgtable = __iommu_get_sgtable, |
| .map_page = __iommu_map_page, |
| .unmap_page = __iommu_unmap_page, |
| .map_sg = __iommu_map_sg_attrs, |
| .unmap_sg = __iommu_unmap_sg_attrs, |
| .sync_single_for_cpu = __iommu_sync_single_for_cpu, |
| .sync_single_for_device = __iommu_sync_single_for_device, |
| .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, |
| .sync_sg_for_device = __iommu_sync_sg_for_device, |
| .map_resource = iommu_dma_map_resource, |
| .unmap_resource = iommu_dma_unmap_resource, |
| }; |
| |
| static int __init __iommu_dma_init(void) |
| { |
| return iommu_dma_init(); |
| } |
| arch_initcall(__iommu_dma_init); |
| |
| static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *ops) |
| { |
| struct iommu_domain *domain; |
| |
| if (!ops) |
| return; |
| |
| /* |
| * The IOMMU core code allocates the default DMA domain, which the |
| * underlying IOMMU driver needs to support via the dma-iommu layer. |
| */ |
| domain = iommu_get_domain_for_dev(dev); |
| |
| if (!domain) |
| goto out_err; |
| |
| if (domain->type == IOMMU_DOMAIN_DMA) { |
| if (iommu_dma_init_domain(domain, dma_base, size, dev)) |
| goto out_err; |
| |
| dev->dma_ops = &iommu_dma_ops; |
| } |
| |
| return; |
| |
| out_err: |
| pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", |
| dev_name(dev)); |
| } |
| |
| void arch_teardown_dma_ops(struct device *dev) |
| { |
| dev->dma_ops = NULL; |
| } |
| |
| #else |
| |
| static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *iommu) |
| { } |
| |
| #endif /* CONFIG_IOMMU_DMA */ |
| |
| void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *iommu, bool coherent) |
| { |
| dev->dma_coherent = coherent; |
| __iommu_setup_dma_ops(dev, dma_base, size, iommu); |
| |
| #ifdef CONFIG_XEN |
| if (xen_initial_domain()) { |
| dev->archdata.dev_dma_ops = dev->dma_ops; |
| dev->dma_ops = xen_dma_ops; |
| } |
| #endif |
| } |