| /**************************************************************************** |
| * |
| * Driver for the IFX 6x60 spi modem. |
| * |
| * Copyright (C) 2008 Option International |
| * Copyright (C) 2008 Filip Aben <f.aben@option.com> |
| * Denis Joseph Barrow <d.barow@option.com> |
| * Jan Dumon <j.dumon@option.com> |
| * |
| * Copyright (C) 2009, 2010 Intel Corp |
| * Russ Gorby <russ.gorby@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, |
| * USA |
| * |
| * Driver modified by Intel from Option gtm501l_spi.c |
| * |
| * Notes |
| * o The driver currently assumes a single device only. If you need to |
| * change this then look for saved_ifx_dev and add a device lookup |
| * o The driver is intended to be big-endian safe but has never been |
| * tested that way (no suitable hardware). There are a couple of FIXME |
| * notes by areas that may need addressing |
| * o Some of the GPIO naming/setup assumptions may need revisiting if |
| * you need to use this driver for another platform. |
| * |
| *****************************************************************************/ |
| #include <linux/dma-mapping.h> |
| #include <linux/module.h> |
| #include <linux/termios.h> |
| #include <linux/tty.h> |
| #include <linux/device.h> |
| #include <linux/spi/spi.h> |
| #include <linux/kfifo.h> |
| #include <linux/tty_flip.h> |
| #include <linux/timer.h> |
| #include <linux/serial.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/rfkill.h> |
| #include <linux/fs.h> |
| #include <linux/ip.h> |
| #include <linux/dmapool.h> |
| #include <linux/gpio.h> |
| #include <linux/sched.h> |
| #include <linux/time.h> |
| #include <linux/wait.h> |
| #include <linux/pm.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/spi/ifx_modem.h> |
| #include <linux/delay.h> |
| |
| #include "ifx6x60.h" |
| |
| #define IFX_SPI_MORE_MASK 0x10 |
| #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */ |
| #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */ |
| #define IFX_SPI_MODE SPI_MODE_1 |
| #define IFX_SPI_TTY_ID 0 |
| #define IFX_SPI_TIMEOUT_SEC 2 |
| #define IFX_SPI_HEADER_0 (-1) |
| #define IFX_SPI_HEADER_F (-2) |
| |
| /* forward reference */ |
| static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev); |
| |
| /* local variables */ |
| static int spi_bpw = 16; /* 8, 16 or 32 bit word length */ |
| static struct tty_driver *tty_drv; |
| static struct ifx_spi_device *saved_ifx_dev; |
| static struct lock_class_key ifx_spi_key; |
| |
| /* GPIO/GPE settings */ |
| |
| /** |
| * mrdy_set_high - set MRDY GPIO |
| * @ifx: device we are controlling |
| * |
| */ |
| static inline void mrdy_set_high(struct ifx_spi_device *ifx) |
| { |
| gpio_set_value(ifx->gpio.mrdy, 1); |
| } |
| |
| /** |
| * mrdy_set_low - clear MRDY GPIO |
| * @ifx: device we are controlling |
| * |
| */ |
| static inline void mrdy_set_low(struct ifx_spi_device *ifx) |
| { |
| gpio_set_value(ifx->gpio.mrdy, 0); |
| } |
| |
| /** |
| * ifx_spi_power_state_set |
| * @ifx_dev: our SPI device |
| * @val: bits to set |
| * |
| * Set bit in power status and signal power system if status becomes non-0 |
| */ |
| static void |
| ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ifx_dev->power_lock, flags); |
| |
| /* |
| * if power status is already non-0, just update, else |
| * tell power system |
| */ |
| if (!ifx_dev->power_status) |
| pm_runtime_get(&ifx_dev->spi_dev->dev); |
| ifx_dev->power_status |= val; |
| |
| spin_unlock_irqrestore(&ifx_dev->power_lock, flags); |
| } |
| |
| /** |
| * ifx_spi_power_state_clear - clear power bit |
| * @ifx_dev: our SPI device |
| * @val: bits to clear |
| * |
| * clear bit in power status and signal power system if status becomes 0 |
| */ |
| static void |
| ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ifx_dev->power_lock, flags); |
| |
| if (ifx_dev->power_status) { |
| ifx_dev->power_status &= ~val; |
| if (!ifx_dev->power_status) |
| pm_runtime_put(&ifx_dev->spi_dev->dev); |
| } |
| |
| spin_unlock_irqrestore(&ifx_dev->power_lock, flags); |
| } |
| |
| /** |
| * swap_buf_8 |
| * @buf: our buffer |
| * @len : number of bytes (not words) in the buffer |
| * @end: end of buffer |
| * |
| * Swap the contents of a buffer into big endian format |
| */ |
| static inline void swap_buf_8(unsigned char *buf, int len, void *end) |
| { |
| /* don't swap buffer if SPI word width is 8 bits */ |
| return; |
| } |
| |
| /** |
| * swap_buf_16 |
| * @buf: our buffer |
| * @len : number of bytes (not words) in the buffer |
| * @end: end of buffer |
| * |
| * Swap the contents of a buffer into big endian format |
| */ |
| static inline void swap_buf_16(unsigned char *buf, int len, void *end) |
| { |
| int n; |
| |
| u16 *buf_16 = (u16 *)buf; |
| len = ((len + 1) >> 1); |
| if ((void *)&buf_16[len] > end) { |
| pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!", |
| &buf_16[len], end); |
| return; |
| } |
| for (n = 0; n < len; n++) { |
| *buf_16 = cpu_to_be16(*buf_16); |
| buf_16++; |
| } |
| } |
| |
| /** |
| * swap_buf_32 |
| * @buf: our buffer |
| * @len : number of bytes (not words) in the buffer |
| * @end: end of buffer |
| * |
| * Swap the contents of a buffer into big endian format |
| */ |
| static inline void swap_buf_32(unsigned char *buf, int len, void *end) |
| { |
| int n; |
| |
| u32 *buf_32 = (u32 *)buf; |
| len = (len + 3) >> 2; |
| |
| if ((void *)&buf_32[len] > end) { |
| pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n", |
| &buf_32[len], end); |
| return; |
| } |
| for (n = 0; n < len; n++) { |
| *buf_32 = cpu_to_be32(*buf_32); |
| buf_32++; |
| } |
| } |
| |
| /** |
| * mrdy_assert - assert MRDY line |
| * @ifx_dev: our SPI device |
| * |
| * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low |
| * now. |
| * |
| * FIXME: Can SRDY even go high as we are running this code ? |
| */ |
| static void mrdy_assert(struct ifx_spi_device *ifx_dev) |
| { |
| int val = gpio_get_value(ifx_dev->gpio.srdy); |
| if (!val) { |
| if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING, |
| &ifx_dev->flags)) { |
| mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ); |
| |
| } |
| } |
| ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING); |
| mrdy_set_high(ifx_dev); |
| } |
| |
| /** |
| * ifx_spi_hangup - hang up an IFX device |
| * @ifx_dev: our SPI device |
| * |
| * Hang up the tty attached to the IFX device if one is currently |
| * open. If not take no action |
| */ |
| static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev) |
| { |
| struct tty_port *pport = &ifx_dev->tty_port; |
| struct tty_struct *tty = tty_port_tty_get(pport); |
| if (tty) { |
| tty_hangup(tty); |
| tty_kref_put(tty); |
| } |
| } |
| |
| /** |
| * ifx_spi_timeout - SPI timeout |
| * @arg: our SPI device |
| * |
| * The SPI has timed out: hang up the tty. Users will then see a hangup |
| * and error events. |
| */ |
| static void ifx_spi_timeout(unsigned long arg) |
| { |
| struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg; |
| |
| dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***"); |
| ifx_spi_ttyhangup(ifx_dev); |
| mrdy_set_low(ifx_dev); |
| clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); |
| } |
| |
| /* char/tty operations */ |
| |
| /** |
| * ifx_spi_tiocmget - get modem lines |
| * @tty: our tty device |
| * @filp: file handle issuing the request |
| * |
| * Map the signal state into Linux modem flags and report the value |
| * in Linux terms |
| */ |
| static int ifx_spi_tiocmget(struct tty_struct *tty) |
| { |
| unsigned int value; |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| |
| value = |
| (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) | |
| (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) | |
| (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) | |
| (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) | |
| (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) | |
| (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0); |
| return value; |
| } |
| |
| /** |
| * ifx_spi_tiocmset - set modem bits |
| * @tty: the tty structure |
| * @set: bits to set |
| * @clear: bits to clear |
| * |
| * The IFX6x60 only supports DTR and RTS. Set them accordingly |
| * and flag that an update to the modem is needed. |
| * |
| * FIXME: do we need to kick the tranfers when we do this ? |
| */ |
| static int ifx_spi_tiocmset(struct tty_struct *tty, |
| unsigned int set, unsigned int clear) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| |
| if (set & TIOCM_RTS) |
| set_bit(IFX_SPI_RTS, &ifx_dev->signal_state); |
| if (set & TIOCM_DTR) |
| set_bit(IFX_SPI_DTR, &ifx_dev->signal_state); |
| if (clear & TIOCM_RTS) |
| clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state); |
| if (clear & TIOCM_DTR) |
| clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state); |
| |
| set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state); |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_open - called on tty open |
| * @tty: our tty device |
| * @filp: file handle being associated with the tty |
| * |
| * Open the tty interface. We let the tty_port layer do all the work |
| * for us. |
| * |
| * FIXME: Remove single device assumption and saved_ifx_dev |
| */ |
| static int ifx_spi_open(struct tty_struct *tty, struct file *filp) |
| { |
| return tty_port_open(&saved_ifx_dev->tty_port, tty, filp); |
| } |
| |
| /** |
| * ifx_spi_close - called when our tty closes |
| * @tty: the tty being closed |
| * @filp: the file handle being closed |
| * |
| * Perform the close of the tty. We use the tty_port layer to do all |
| * our hard work. |
| */ |
| static void ifx_spi_close(struct tty_struct *tty, struct file *filp) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| tty_port_close(&ifx_dev->tty_port, tty, filp); |
| /* FIXME: should we do an ifx_spi_reset here ? */ |
| } |
| |
| /** |
| * ifx_decode_spi_header - decode received header |
| * @buffer: the received data |
| * @length: decoded length |
| * @more: decoded more flag |
| * @received_cts: status of cts we received |
| * |
| * Note how received_cts is handled -- if header is all F it is left |
| * the same as it was, if header is all 0 it is set to 0 otherwise it is |
| * taken from the incoming header. |
| * |
| * FIXME: endianness |
| */ |
| static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length, |
| unsigned char *more, unsigned char *received_cts) |
| { |
| u16 h1; |
| u16 h2; |
| u16 *in_buffer = (u16 *)buffer; |
| |
| h1 = *in_buffer; |
| h2 = *(in_buffer+1); |
| |
| if (h1 == 0 && h2 == 0) { |
| *received_cts = 0; |
| return IFX_SPI_HEADER_0; |
| } else if (h1 == 0xffff && h2 == 0xffff) { |
| /* spi_slave_cts remains as it was */ |
| return IFX_SPI_HEADER_F; |
| } |
| |
| *length = h1 & 0xfff; /* upper bits of byte are flags */ |
| *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1; |
| *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1; |
| return 0; |
| } |
| |
| /** |
| * ifx_setup_spi_header - set header fields |
| * @txbuffer: pointer to start of SPI buffer |
| * @tx_count: bytes |
| * @more: indicate if more to follow |
| * |
| * Format up an SPI header for a transfer |
| * |
| * FIXME: endianness? |
| */ |
| static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count, |
| unsigned char more) |
| { |
| *(u16 *)(txbuffer) = tx_count; |
| *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE; |
| txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK; |
| } |
| |
| /** |
| * ifx_spi_wakeup_serial - SPI space made |
| * @port_data: our SPI device |
| * |
| * We have emptied the FIFO enough that we want to get more data |
| * queued into it. Poke the line discipline via tty_wakeup so that |
| * it will feed us more bits |
| */ |
| static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev) |
| { |
| struct tty_struct *tty; |
| |
| tty = tty_port_tty_get(&ifx_dev->tty_port); |
| if (!tty) |
| return; |
| tty_wakeup(tty); |
| tty_kref_put(tty); |
| } |
| |
| /** |
| * ifx_spi_prepare_tx_buffer - prepare transmit frame |
| * @ifx_dev: our SPI device |
| * |
| * The transmit buffr needs a header and various other bits of |
| * information followed by as much data as we can pull from the FIFO |
| * and transfer. This function formats up a suitable buffer in the |
| * ifx_dev->tx_buffer |
| * |
| * FIXME: performance - should we wake the tty when the queue is half |
| * empty ? |
| */ |
| static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev) |
| { |
| int temp_count; |
| int queue_length; |
| int tx_count; |
| unsigned char *tx_buffer; |
| |
| tx_buffer = ifx_dev->tx_buffer; |
| memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE); |
| |
| /* make room for required SPI header */ |
| tx_buffer += IFX_SPI_HEADER_OVERHEAD; |
| tx_count = IFX_SPI_HEADER_OVERHEAD; |
| |
| /* clear to signal no more data if this turns out to be the |
| * last buffer sent in a sequence */ |
| ifx_dev->spi_more = 0; |
| |
| /* if modem cts is set, just send empty buffer */ |
| if (!ifx_dev->spi_slave_cts) { |
| /* see if there's tx data */ |
| queue_length = kfifo_len(&ifx_dev->tx_fifo); |
| if (queue_length != 0) { |
| /* data to mux -- see if there's room for it */ |
| temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE); |
| temp_count = kfifo_out_locked(&ifx_dev->tx_fifo, |
| tx_buffer, temp_count, |
| &ifx_dev->fifo_lock); |
| |
| /* update buffer pointer and data count in message */ |
| tx_buffer += temp_count; |
| tx_count += temp_count; |
| if (temp_count == queue_length) |
| /* poke port to get more data */ |
| ifx_spi_wakeup_serial(ifx_dev); |
| else /* more data in port, use next SPI message */ |
| ifx_dev->spi_more = 1; |
| } |
| } |
| /* have data and info for header -- set up SPI header in buffer */ |
| /* spi header needs payload size, not entire buffer size */ |
| ifx_spi_setup_spi_header(ifx_dev->tx_buffer, |
| tx_count-IFX_SPI_HEADER_OVERHEAD, |
| ifx_dev->spi_more); |
| /* swap actual data in the buffer */ |
| ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count, |
| &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]); |
| return tx_count; |
| } |
| |
| /** |
| * ifx_spi_write - line discipline write |
| * @tty: our tty device |
| * @buf: pointer to buffer to write (kernel space) |
| * @count: size of buffer |
| * |
| * Write the characters we have been given into the FIFO. If the device |
| * is not active then activate it, when the SRDY line is asserted back |
| * this will commence I/O |
| */ |
| static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf, |
| int count) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| unsigned char *tmp_buf = (unsigned char *)buf; |
| unsigned long flags; |
| bool is_fifo_empty; |
| |
| spin_lock_irqsave(&ifx_dev->fifo_lock, flags); |
| is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo); |
| int tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count); |
| spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags); |
| if (is_fifo_empty) |
| mrdy_assert(ifx_dev); |
| |
| return tx_count; |
| } |
| |
| /** |
| * ifx_spi_chars_in_buffer - line discipline helper |
| * @tty: our tty device |
| * |
| * Report how much data we can accept before we drop bytes. As we use |
| * a simple FIFO this is nice and easy. |
| */ |
| static int ifx_spi_write_room(struct tty_struct *tty) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo); |
| } |
| |
| /** |
| * ifx_spi_chars_in_buffer - line discipline helper |
| * @tty: our tty device |
| * |
| * Report how many characters we have buffered. In our case this is the |
| * number of bytes sitting in our transmit FIFO. |
| */ |
| static int ifx_spi_chars_in_buffer(struct tty_struct *tty) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| return kfifo_len(&ifx_dev->tx_fifo); |
| } |
| |
| /** |
| * ifx_port_hangup |
| * @port: our tty port |
| * |
| * tty port hang up. Called when tty_hangup processing is invoked either |
| * by loss of carrier, or by software (eg vhangup). Serialized against |
| * activate/shutdown by the tty layer. |
| */ |
| static void ifx_spi_hangup(struct tty_struct *tty) |
| { |
| struct ifx_spi_device *ifx_dev = tty->driver_data; |
| tty_port_hangup(&ifx_dev->tty_port); |
| } |
| |
| /** |
| * ifx_port_activate |
| * @port: our tty port |
| * |
| * tty port activate method - called for first open. Serialized |
| * with hangup and shutdown by the tty layer. |
| */ |
| static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty) |
| { |
| struct ifx_spi_device *ifx_dev = |
| container_of(port, struct ifx_spi_device, tty_port); |
| |
| /* clear any old data; can't do this in 'close' */ |
| kfifo_reset(&ifx_dev->tx_fifo); |
| |
| /* clear any flag which may be set in port shutdown procedure */ |
| clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags); |
| clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags); |
| |
| /* put port data into this tty */ |
| tty->driver_data = ifx_dev; |
| |
| /* allows flip string push from int context */ |
| tty->low_latency = 1; |
| |
| /* set flag to allows data transfer */ |
| set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags); |
| |
| return 0; |
| } |
| |
| /** |
| * ifx_port_shutdown |
| * @port: our tty port |
| * |
| * tty port shutdown method - called for last port close. Serialized |
| * with hangup and activate by the tty layer. |
| */ |
| static void ifx_port_shutdown(struct tty_port *port) |
| { |
| struct ifx_spi_device *ifx_dev = |
| container_of(port, struct ifx_spi_device, tty_port); |
| |
| clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags); |
| mrdy_set_low(ifx_dev); |
| clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); |
| tasklet_kill(&ifx_dev->io_work_tasklet); |
| } |
| |
| static const struct tty_port_operations ifx_tty_port_ops = { |
| .activate = ifx_port_activate, |
| .shutdown = ifx_port_shutdown, |
| }; |
| |
| static const struct tty_operations ifx_spi_serial_ops = { |
| .open = ifx_spi_open, |
| .close = ifx_spi_close, |
| .write = ifx_spi_write, |
| .hangup = ifx_spi_hangup, |
| .write_room = ifx_spi_write_room, |
| .chars_in_buffer = ifx_spi_chars_in_buffer, |
| .tiocmget = ifx_spi_tiocmget, |
| .tiocmset = ifx_spi_tiocmset, |
| }; |
| |
| /** |
| * ifx_spi_insert_fip_string - queue received data |
| * @ifx_ser: our SPI device |
| * @chars: buffer we have received |
| * @size: number of chars reeived |
| * |
| * Queue bytes to the tty assuming the tty side is currently open. If |
| * not the discard the data. |
| */ |
| static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev, |
| unsigned char *chars, size_t size) |
| { |
| struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port); |
| if (!tty) |
| return; |
| tty_insert_flip_string(tty, chars, size); |
| tty_flip_buffer_push(tty); |
| tty_kref_put(tty); |
| } |
| |
| /** |
| * ifx_spi_complete - SPI transfer completed |
| * @ctx: our SPI device |
| * |
| * An SPI transfer has completed. Process any received data and kick off |
| * any further transmits we can commence. |
| */ |
| static void ifx_spi_complete(void *ctx) |
| { |
| struct ifx_spi_device *ifx_dev = ctx; |
| struct tty_struct *tty; |
| struct tty_ldisc *ldisc = NULL; |
| int length; |
| int actual_length; |
| unsigned char more; |
| unsigned char cts; |
| int local_write_pending = 0; |
| int queue_length; |
| int srdy; |
| int decode_result; |
| |
| mrdy_set_low(ifx_dev); |
| |
| if (!ifx_dev->spi_msg.status) { |
| /* check header validity, get comm flags */ |
| ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD, |
| &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]); |
| decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer, |
| &length, &more, &cts); |
| if (decode_result == IFX_SPI_HEADER_0) { |
| dev_dbg(&ifx_dev->spi_dev->dev, |
| "ignore input: invalid header 0"); |
| ifx_dev->spi_slave_cts = 0; |
| goto complete_exit; |
| } else if (decode_result == IFX_SPI_HEADER_F) { |
| dev_dbg(&ifx_dev->spi_dev->dev, |
| "ignore input: invalid header F"); |
| goto complete_exit; |
| } |
| |
| ifx_dev->spi_slave_cts = cts; |
| |
| actual_length = min((unsigned int)length, |
| ifx_dev->spi_msg.actual_length); |
| ifx_dev->swap_buf( |
| (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD), |
| actual_length, |
| &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]); |
| ifx_spi_insert_flip_string( |
| ifx_dev, |
| ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD, |
| (size_t)actual_length); |
| } else { |
| dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d", |
| ifx_dev->spi_msg.status); |
| } |
| |
| complete_exit: |
| if (ifx_dev->write_pending) { |
| ifx_dev->write_pending = 0; |
| local_write_pending = 1; |
| } |
| |
| clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags)); |
| |
| queue_length = kfifo_len(&ifx_dev->tx_fifo); |
| srdy = gpio_get_value(ifx_dev->gpio.srdy); |
| if (!srdy) |
| ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY); |
| |
| /* schedule output if there is more to do */ |
| if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags)) |
| tasklet_schedule(&ifx_dev->io_work_tasklet); |
| else { |
| if (more || ifx_dev->spi_more || queue_length > 0 || |
| local_write_pending) { |
| if (ifx_dev->spi_slave_cts) { |
| if (more) |
| mrdy_assert(ifx_dev); |
| } else |
| mrdy_assert(ifx_dev); |
| } else { |
| /* |
| * poke line discipline driver if any for more data |
| * may or may not get more data to write |
| * for now, say not busy |
| */ |
| ifx_spi_power_state_clear(ifx_dev, |
| IFX_SPI_POWER_DATA_PENDING); |
| tty = tty_port_tty_get(&ifx_dev->tty_port); |
| if (tty) { |
| ldisc = tty_ldisc_ref(tty); |
| if (ldisc) { |
| ldisc->ops->write_wakeup(tty); |
| tty_ldisc_deref(ldisc); |
| } |
| tty_kref_put(tty); |
| } |
| } |
| } |
| } |
| |
| /** |
| * ifx_spio_io - I/O tasklet |
| * @data: our SPI device |
| * |
| * Queue data for transmission if possible and then kick off the |
| * transfer. |
| */ |
| static void ifx_spi_io(unsigned long data) |
| { |
| int retval; |
| struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data; |
| |
| if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) && |
| test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) { |
| if (ifx_dev->gpio.unack_srdy_int_nb > 0) |
| ifx_dev->gpio.unack_srdy_int_nb--; |
| |
| ifx_spi_prepare_tx_buffer(ifx_dev); |
| |
| spi_message_init(&ifx_dev->spi_msg); |
| INIT_LIST_HEAD(&ifx_dev->spi_msg.queue); |
| |
| ifx_dev->spi_msg.context = ifx_dev; |
| ifx_dev->spi_msg.complete = ifx_spi_complete; |
| |
| /* set up our spi transfer */ |
| /* note len is BYTES, not transfers */ |
| ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE; |
| ifx_dev->spi_xfer.cs_change = 0; |
| ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz; |
| /* ifx_dev->spi_xfer.speed_hz = 390625; */ |
| ifx_dev->spi_xfer.bits_per_word = spi_bpw; |
| |
| ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer; |
| ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer; |
| |
| /* |
| * setup dma pointers |
| */ |
| if (ifx_dev->use_dma) { |
| ifx_dev->spi_msg.is_dma_mapped = 1; |
| ifx_dev->tx_dma = ifx_dev->tx_bus; |
| ifx_dev->rx_dma = ifx_dev->rx_bus; |
| ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma; |
| ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma; |
| } else { |
| ifx_dev->spi_msg.is_dma_mapped = 0; |
| ifx_dev->tx_dma = (dma_addr_t)0; |
| ifx_dev->rx_dma = (dma_addr_t)0; |
| ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0; |
| ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0; |
| } |
| |
| spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg); |
| |
| /* Assert MRDY. This may have already been done by the write |
| * routine. |
| */ |
| mrdy_assert(ifx_dev); |
| |
| retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg); |
| if (retval) { |
| clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, |
| &ifx_dev->flags); |
| tasklet_schedule(&ifx_dev->io_work_tasklet); |
| return; |
| } |
| } else |
| ifx_dev->write_pending = 1; |
| } |
| |
| /** |
| * ifx_spi_free_port - free up the tty side |
| * @ifx_dev: IFX device going away |
| * |
| * Unregister and free up a port when the device goes away |
| */ |
| static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev) |
| { |
| if (ifx_dev->tty_dev) |
| tty_unregister_device(tty_drv, ifx_dev->minor); |
| tty_port_destroy(&ifx_dev->tty_port); |
| kfifo_free(&ifx_dev->tx_fifo); |
| } |
| |
| /** |
| * ifx_spi_create_port - create a new port |
| * @ifx_dev: our spi device |
| * |
| * Allocate and initialise the tty port that goes with this interface |
| * and add it to the tty layer so that it can be opened. |
| */ |
| static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev) |
| { |
| int ret = 0; |
| struct tty_port *pport = &ifx_dev->tty_port; |
| |
| spin_lock_init(&ifx_dev->fifo_lock); |
| lockdep_set_class_and_subclass(&ifx_dev->fifo_lock, |
| &ifx_spi_key, 0); |
| |
| if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) { |
| ret = -ENOMEM; |
| goto error_ret; |
| } |
| |
| tty_port_init(pport); |
| pport->ops = &ifx_tty_port_ops; |
| ifx_dev->minor = IFX_SPI_TTY_ID; |
| ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv, |
| ifx_dev->minor, &ifx_dev->spi_dev->dev); |
| if (IS_ERR(ifx_dev->tty_dev)) { |
| dev_dbg(&ifx_dev->spi_dev->dev, |
| "%s: registering tty device failed", __func__); |
| ret = PTR_ERR(ifx_dev->tty_dev); |
| goto error_port; |
| } |
| return 0; |
| |
| error_port: |
| tty_port_destroy(pport); |
| error_ret: |
| ifx_spi_free_port(ifx_dev); |
| return ret; |
| } |
| |
| /** |
| * ifx_spi_handle_srdy - handle SRDY |
| * @ifx_dev: device asserting SRDY |
| * |
| * Check our device state and see what we need to kick off when SRDY |
| * is asserted. This usually means killing the timer and firing off the |
| * I/O processing. |
| */ |
| static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev) |
| { |
| if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) { |
| del_timer(&ifx_dev->spi_timer); |
| clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags); |
| } |
| |
| ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY); |
| |
| if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) |
| tasklet_schedule(&ifx_dev->io_work_tasklet); |
| else |
| set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags); |
| } |
| |
| /** |
| * ifx_spi_srdy_interrupt - SRDY asserted |
| * @irq: our IRQ number |
| * @dev: our ifx device |
| * |
| * The modem asserted SRDY. Handle the srdy event |
| */ |
| static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev) |
| { |
| struct ifx_spi_device *ifx_dev = dev; |
| ifx_dev->gpio.unack_srdy_int_nb++; |
| ifx_spi_handle_srdy(ifx_dev); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ifx_spi_reset_interrupt - Modem has changed reset state |
| * @irq: interrupt number |
| * @dev: our device pointer |
| * |
| * The modem has either entered or left reset state. Check the GPIO |
| * line to see which. |
| * |
| * FIXME: review locking on MR_INPROGRESS versus |
| * parallel unsolicited reset/solicited reset |
| */ |
| static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev) |
| { |
| struct ifx_spi_device *ifx_dev = dev; |
| int val = gpio_get_value(ifx_dev->gpio.reset_out); |
| int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state); |
| |
| if (val == 0) { |
| /* entered reset */ |
| set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state); |
| if (!solreset) { |
| /* unsolicited reset */ |
| ifx_spi_ttyhangup(ifx_dev); |
| } |
| } else { |
| /* exited reset */ |
| clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state); |
| if (solreset) { |
| set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state); |
| wake_up(&ifx_dev->mdm_reset_wait); |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ifx_spi_free_device - free device |
| * @ifx_dev: device to free |
| * |
| * Free the IFX device |
| */ |
| static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev) |
| { |
| ifx_spi_free_port(ifx_dev); |
| dma_free_coherent(&ifx_dev->spi_dev->dev, |
| IFX_SPI_TRANSFER_SIZE, |
| ifx_dev->tx_buffer, |
| ifx_dev->tx_bus); |
| dma_free_coherent(&ifx_dev->spi_dev->dev, |
| IFX_SPI_TRANSFER_SIZE, |
| ifx_dev->rx_buffer, |
| ifx_dev->rx_bus); |
| } |
| |
| /** |
| * ifx_spi_reset - reset modem |
| * @ifx_dev: modem to reset |
| * |
| * Perform a reset on the modem |
| */ |
| static int ifx_spi_reset(struct ifx_spi_device *ifx_dev) |
| { |
| int ret; |
| /* |
| * set up modem power, reset |
| * |
| * delays are required on some platforms for the modem |
| * to reset properly |
| */ |
| set_bit(MR_START, &ifx_dev->mdm_reset_state); |
| gpio_set_value(ifx_dev->gpio.po, 0); |
| gpio_set_value(ifx_dev->gpio.reset, 0); |
| msleep(25); |
| gpio_set_value(ifx_dev->gpio.reset, 1); |
| msleep(1); |
| gpio_set_value(ifx_dev->gpio.po, 1); |
| msleep(1); |
| gpio_set_value(ifx_dev->gpio.po, 0); |
| ret = wait_event_timeout(ifx_dev->mdm_reset_wait, |
| test_bit(MR_COMPLETE, |
| &ifx_dev->mdm_reset_state), |
| IFX_RESET_TIMEOUT); |
| if (!ret) |
| dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)", |
| ifx_dev->mdm_reset_state); |
| |
| ifx_dev->mdm_reset_state = 0; |
| return ret; |
| } |
| |
| /** |
| * ifx_spi_spi_probe - probe callback |
| * @spi: our possible matching SPI device |
| * |
| * Probe for a 6x60 modem on SPI bus. Perform any needed device and |
| * GPIO setup. |
| * |
| * FIXME: |
| * - Support for multiple devices |
| * - Split out MID specific GPIO handling eventually |
| */ |
| |
| static int ifx_spi_spi_probe(struct spi_device *spi) |
| { |
| int ret; |
| int srdy; |
| struct ifx_modem_platform_data *pl_data; |
| struct ifx_spi_device *ifx_dev; |
| |
| if (saved_ifx_dev) { |
| dev_dbg(&spi->dev, "ignoring subsequent detection"); |
| return -ENODEV; |
| } |
| |
| pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data; |
| if (!pl_data) { |
| dev_err(&spi->dev, "missing platform data!"); |
| return -ENODEV; |
| } |
| |
| /* initialize structure to hold our device variables */ |
| ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL); |
| if (!ifx_dev) { |
| dev_err(&spi->dev, "spi device allocation failed"); |
| return -ENOMEM; |
| } |
| saved_ifx_dev = ifx_dev; |
| ifx_dev->spi_dev = spi; |
| clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags); |
| spin_lock_init(&ifx_dev->write_lock); |
| spin_lock_init(&ifx_dev->power_lock); |
| ifx_dev->power_status = 0; |
| init_timer(&ifx_dev->spi_timer); |
| ifx_dev->spi_timer.function = ifx_spi_timeout; |
| ifx_dev->spi_timer.data = (unsigned long)ifx_dev; |
| ifx_dev->modem = pl_data->modem_type; |
| ifx_dev->use_dma = pl_data->use_dma; |
| ifx_dev->max_hz = pl_data->max_hz; |
| /* initialize spi mode, etc */ |
| spi->max_speed_hz = ifx_dev->max_hz; |
| spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode); |
| spi->bits_per_word = spi_bpw; |
| ret = spi_setup(spi); |
| if (ret) { |
| dev_err(&spi->dev, "SPI setup wasn't successful %d", ret); |
| return -ENODEV; |
| } |
| |
| /* init swap_buf function according to word width configuration */ |
| if (spi->bits_per_word == 32) |
| ifx_dev->swap_buf = swap_buf_32; |
| else if (spi->bits_per_word == 16) |
| ifx_dev->swap_buf = swap_buf_16; |
| else |
| ifx_dev->swap_buf = swap_buf_8; |
| |
| /* ensure SPI protocol flags are initialized to enable transfer */ |
| ifx_dev->spi_more = 0; |
| ifx_dev->spi_slave_cts = 0; |
| |
| /*initialize transfer and dma buffers */ |
| ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent, |
| IFX_SPI_TRANSFER_SIZE, |
| &ifx_dev->tx_bus, |
| GFP_KERNEL); |
| if (!ifx_dev->tx_buffer) { |
| dev_err(&spi->dev, "DMA-TX buffer allocation failed"); |
| ret = -ENOMEM; |
| goto error_ret; |
| } |
| ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent, |
| IFX_SPI_TRANSFER_SIZE, |
| &ifx_dev->rx_bus, |
| GFP_KERNEL); |
| if (!ifx_dev->rx_buffer) { |
| dev_err(&spi->dev, "DMA-RX buffer allocation failed"); |
| ret = -ENOMEM; |
| goto error_ret; |
| } |
| |
| /* initialize waitq for modem reset */ |
| init_waitqueue_head(&ifx_dev->mdm_reset_wait); |
| |
| spi_set_drvdata(spi, ifx_dev); |
| tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io, |
| (unsigned long)ifx_dev); |
| |
| set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags); |
| |
| /* create our tty port */ |
| ret = ifx_spi_create_port(ifx_dev); |
| if (ret != 0) { |
| dev_err(&spi->dev, "create default tty port failed"); |
| goto error_ret; |
| } |
| |
| ifx_dev->gpio.reset = pl_data->rst_pmu; |
| ifx_dev->gpio.po = pl_data->pwr_on; |
| ifx_dev->gpio.mrdy = pl_data->mrdy; |
| ifx_dev->gpio.srdy = pl_data->srdy; |
| ifx_dev->gpio.reset_out = pl_data->rst_out; |
| |
| dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d", |
| ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy, |
| ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out); |
| |
| /* Configure gpios */ |
| ret = gpio_request(ifx_dev->gpio.reset, "ifxModem"); |
| if (ret < 0) { |
| dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)", |
| ifx_dev->gpio.reset); |
| goto error_ret; |
| } |
| ret += gpio_direction_output(ifx_dev->gpio.reset, 0); |
| ret += gpio_export(ifx_dev->gpio.reset, 1); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)", |
| ifx_dev->gpio.reset); |
| ret = -EBUSY; |
| goto error_ret2; |
| } |
| |
| ret = gpio_request(ifx_dev->gpio.po, "ifxModem"); |
| ret += gpio_direction_output(ifx_dev->gpio.po, 0); |
| ret += gpio_export(ifx_dev->gpio.po, 1); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to configure GPIO%d (ON)", |
| ifx_dev->gpio.po); |
| ret = -EBUSY; |
| goto error_ret3; |
| } |
| |
| ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem"); |
| if (ret < 0) { |
| dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)", |
| ifx_dev->gpio.mrdy); |
| goto error_ret3; |
| } |
| ret += gpio_export(ifx_dev->gpio.mrdy, 1); |
| ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)", |
| ifx_dev->gpio.mrdy); |
| ret = -EBUSY; |
| goto error_ret4; |
| } |
| |
| ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem"); |
| if (ret < 0) { |
| dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)", |
| ifx_dev->gpio.srdy); |
| ret = -EBUSY; |
| goto error_ret4; |
| } |
| ret += gpio_export(ifx_dev->gpio.srdy, 1); |
| ret += gpio_direction_input(ifx_dev->gpio.srdy); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)", |
| ifx_dev->gpio.srdy); |
| ret = -EBUSY; |
| goto error_ret5; |
| } |
| |
| ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem"); |
| if (ret < 0) { |
| dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)", |
| ifx_dev->gpio.reset_out); |
| goto error_ret5; |
| } |
| ret += gpio_export(ifx_dev->gpio.reset_out, 1); |
| ret += gpio_direction_input(ifx_dev->gpio.reset_out); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)", |
| ifx_dev->gpio.reset_out); |
| ret = -EBUSY; |
| goto error_ret6; |
| } |
| |
| ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out), |
| ifx_spi_reset_interrupt, |
| IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME, |
| (void *)ifx_dev); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to get irq %x\n", |
| gpio_to_irq(ifx_dev->gpio.reset_out)); |
| goto error_ret6; |
| } |
| |
| ret = ifx_spi_reset(ifx_dev); |
| |
| ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy), |
| ifx_spi_srdy_interrupt, |
| IRQF_TRIGGER_RISING, DRVNAME, |
| (void *)ifx_dev); |
| if (ret) { |
| dev_err(&spi->dev, "Unable to get irq %x", |
| gpio_to_irq(ifx_dev->gpio.srdy)); |
| goto error_ret7; |
| } |
| |
| /* set pm runtime power state and register with power system */ |
| pm_runtime_set_active(&spi->dev); |
| pm_runtime_enable(&spi->dev); |
| |
| /* handle case that modem is already signaling SRDY */ |
| /* no outgoing tty open at this point, this just satisfies the |
| * modem's read and should reset communication properly |
| */ |
| srdy = gpio_get_value(ifx_dev->gpio.srdy); |
| |
| if (srdy) { |
| mrdy_assert(ifx_dev); |
| ifx_spi_handle_srdy(ifx_dev); |
| } else |
| mrdy_set_low(ifx_dev); |
| return 0; |
| |
| error_ret7: |
| free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev); |
| error_ret6: |
| gpio_free(ifx_dev->gpio.srdy); |
| error_ret5: |
| gpio_free(ifx_dev->gpio.mrdy); |
| error_ret4: |
| gpio_free(ifx_dev->gpio.reset); |
| error_ret3: |
| gpio_free(ifx_dev->gpio.po); |
| error_ret2: |
| gpio_free(ifx_dev->gpio.reset_out); |
| error_ret: |
| ifx_spi_free_device(ifx_dev); |
| saved_ifx_dev = NULL; |
| return ret; |
| } |
| |
| /** |
| * ifx_spi_spi_remove - SPI device was removed |
| * @spi: SPI device |
| * |
| * FIXME: We should be shutting the device down here not in |
| * the module unload path. |
| */ |
| |
| static int ifx_spi_spi_remove(struct spi_device *spi) |
| { |
| struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi); |
| /* stop activity */ |
| tasklet_kill(&ifx_dev->io_work_tasklet); |
| /* free irq */ |
| free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev); |
| free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev); |
| |
| gpio_free(ifx_dev->gpio.srdy); |
| gpio_free(ifx_dev->gpio.mrdy); |
| gpio_free(ifx_dev->gpio.reset); |
| gpio_free(ifx_dev->gpio.po); |
| gpio_free(ifx_dev->gpio.reset_out); |
| |
| /* free allocations */ |
| ifx_spi_free_device(ifx_dev); |
| |
| saved_ifx_dev = NULL; |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_spi_shutdown - called on SPI shutdown |
| * @spi: SPI device |
| * |
| * No action needs to be taken here |
| */ |
| |
| static void ifx_spi_spi_shutdown(struct spi_device *spi) |
| { |
| } |
| |
| /* |
| * various suspends and resumes have nothing to do |
| * no hardware to save state for |
| */ |
| |
| /** |
| * ifx_spi_spi_suspend - suspend SPI on system suspend |
| * @dev: device being suspended |
| * |
| * Suspend the SPI side. No action needed on Intel MID platforms, may |
| * need extending for other systems. |
| */ |
| static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_spi_resume - resume SPI side on system resume |
| * @dev: device being suspended |
| * |
| * Suspend the SPI side. No action needed on Intel MID platforms, may |
| * need extending for other systems. |
| */ |
| static int ifx_spi_spi_resume(struct spi_device *spi) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_pm_suspend - suspend modem on system suspend |
| * @dev: device being suspended |
| * |
| * Suspend the modem. No action needed on Intel MID platforms, may |
| * need extending for other systems. |
| */ |
| static int ifx_spi_pm_suspend(struct device *dev) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_pm_resume - resume modem on system resume |
| * @dev: device being suspended |
| * |
| * Allow the modem to resume. No action needed. |
| * |
| * FIXME: do we need to reset anything here ? |
| */ |
| static int ifx_spi_pm_resume(struct device *dev) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_pm_runtime_resume - suspend modem |
| * @dev: device being suspended |
| * |
| * Allow the modem to resume. No action needed. |
| */ |
| static int ifx_spi_pm_runtime_resume(struct device *dev) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_pm_runtime_suspend - suspend modem |
| * @dev: device being suspended |
| * |
| * Allow the modem to suspend and thus suspend to continue up the |
| * device tree. |
| */ |
| static int ifx_spi_pm_runtime_suspend(struct device *dev) |
| { |
| return 0; |
| } |
| |
| /** |
| * ifx_spi_pm_runtime_idle - check if modem idle |
| * @dev: our device |
| * |
| * Check conditions and queue runtime suspend if idle. |
| */ |
| static int ifx_spi_pm_runtime_idle(struct device *dev) |
| { |
| struct spi_device *spi = to_spi_device(dev); |
| struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi); |
| |
| if (!ifx_dev->power_status) |
| pm_runtime_suspend(dev); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops ifx_spi_pm = { |
| .resume = ifx_spi_pm_resume, |
| .suspend = ifx_spi_pm_suspend, |
| .runtime_resume = ifx_spi_pm_runtime_resume, |
| .runtime_suspend = ifx_spi_pm_runtime_suspend, |
| .runtime_idle = ifx_spi_pm_runtime_idle |
| }; |
| |
| static const struct spi_device_id ifx_id_table[] = { |
| {"ifx6160", 0}, |
| {"ifx6260", 0}, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(spi, ifx_id_table); |
| |
| /* spi operations */ |
| static struct spi_driver ifx_spi_driver = { |
| .driver = { |
| .name = DRVNAME, |
| .pm = &ifx_spi_pm, |
| .owner = THIS_MODULE}, |
| .probe = ifx_spi_spi_probe, |
| .shutdown = ifx_spi_spi_shutdown, |
| .remove = __devexit_p(ifx_spi_spi_remove), |
| .suspend = ifx_spi_spi_suspend, |
| .resume = ifx_spi_spi_resume, |
| .id_table = ifx_id_table |
| }; |
| |
| /** |
| * ifx_spi_exit - module exit |
| * |
| * Unload the module. |
| */ |
| |
| static void __exit ifx_spi_exit(void) |
| { |
| /* unregister */ |
| tty_unregister_driver(tty_drv); |
| spi_unregister_driver((void *)&ifx_spi_driver); |
| } |
| |
| /** |
| * ifx_spi_init - module entry point |
| * |
| * Initialise the SPI and tty interfaces for the IFX SPI driver |
| * We need to initialize upper-edge spi driver after the tty |
| * driver because otherwise the spi probe will race |
| */ |
| |
| static int __init ifx_spi_init(void) |
| { |
| int result; |
| |
| tty_drv = alloc_tty_driver(1); |
| if (!tty_drv) { |
| pr_err("%s: alloc_tty_driver failed", DRVNAME); |
| return -ENOMEM; |
| } |
| |
| tty_drv->driver_name = DRVNAME; |
| tty_drv->name = TTYNAME; |
| tty_drv->minor_start = IFX_SPI_TTY_ID; |
| tty_drv->type = TTY_DRIVER_TYPE_SERIAL; |
| tty_drv->subtype = SERIAL_TYPE_NORMAL; |
| tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; |
| tty_drv->init_termios = tty_std_termios; |
| |
| tty_set_operations(tty_drv, &ifx_spi_serial_ops); |
| |
| result = tty_register_driver(tty_drv); |
| if (result) { |
| pr_err("%s: tty_register_driver failed(%d)", |
| DRVNAME, result); |
| put_tty_driver(tty_drv); |
| return result; |
| } |
| |
| result = spi_register_driver((void *)&ifx_spi_driver); |
| if (result) { |
| pr_err("%s: spi_register_driver failed(%d)", |
| DRVNAME, result); |
| tty_unregister_driver(tty_drv); |
| } |
| return result; |
| } |
| |
| module_init(ifx_spi_init); |
| module_exit(ifx_spi_exit); |
| |
| MODULE_AUTHOR("Intel"); |
| MODULE_DESCRIPTION("IFX6x60 spi driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_INFO(Version, "0.1-IFX6x60"); |