| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * DMA operations that map physical memory directly without using an IOMMU or |
| * flushing caches. |
| */ |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/dma-direct.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/pfn.h> |
| #include <linux/set_memory.h> |
| |
| #define DIRECT_MAPPING_ERROR 0 |
| |
| /* |
| * Most architectures use ZONE_DMA for the first 16 Megabytes, but |
| * some use it for entirely different regions: |
| */ |
| #ifndef ARCH_ZONE_DMA_BITS |
| #define ARCH_ZONE_DMA_BITS 24 |
| #endif |
| |
| /* |
| * For AMD SEV all DMA must be to unencrypted addresses. |
| */ |
| static inline bool force_dma_unencrypted(void) |
| { |
| return sev_active(); |
| } |
| |
| static bool |
| check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, |
| const char *caller) |
| { |
| if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { |
| if (*dev->dma_mask >= DMA_BIT_MASK(32)) { |
| dev_err(dev, |
| "%s: overflow %pad+%zu of device mask %llx\n", |
| caller, &dma_addr, size, *dev->dma_mask); |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
| { |
| dma_addr_t addr = force_dma_unencrypted() ? |
| __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); |
| return addr + size - 1 <= dev->coherent_dma_mask; |
| } |
| |
| void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t gfp, unsigned long attrs) |
| { |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| int page_order = get_order(size); |
| struct page *page = NULL; |
| void *ret; |
| |
| /* we always manually zero the memory once we are done: */ |
| gfp &= ~__GFP_ZERO; |
| |
| /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ |
| if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) |
| gfp |= GFP_DMA; |
| if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) |
| gfp |= GFP_DMA32; |
| |
| again: |
| /* CMA can be used only in the context which permits sleeping */ |
| if (gfpflags_allow_blocking(gfp)) { |
| page = dma_alloc_from_contiguous(dev, count, page_order, gfp); |
| if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| dma_release_from_contiguous(dev, page, count); |
| page = NULL; |
| } |
| } |
| if (!page) |
| page = alloc_pages_node(dev_to_node(dev), gfp, page_order); |
| |
| if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| __free_pages(page, page_order); |
| page = NULL; |
| |
| if (IS_ENABLED(CONFIG_ZONE_DMA) && |
| dev->coherent_dma_mask < DMA_BIT_MASK(32) && |
| !(gfp & GFP_DMA)) { |
| gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
| goto again; |
| } |
| } |
| |
| if (!page) |
| return NULL; |
| ret = page_address(page); |
| if (force_dma_unencrypted()) { |
| set_memory_decrypted((unsigned long)ret, 1 << page_order); |
| *dma_handle = __phys_to_dma(dev, page_to_phys(page)); |
| } else { |
| *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| } |
| memset(ret, 0, size); |
| return ret; |
| } |
| |
| /* |
| * NOTE: this function must never look at the dma_addr argument, because we want |
| * to be able to use it as a helper for iommu implementations as well. |
| */ |
| void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_addr, unsigned long attrs) |
| { |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned int page_order = get_order(size); |
| |
| if (force_dma_unencrypted()) |
| set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); |
| if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) |
| free_pages((unsigned long)cpu_addr, page_order); |
| } |
| |
| static dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; |
| |
| if (!check_addr(dev, dma_addr, size, __func__)) |
| return DIRECT_MAPPING_ERROR; |
| return dma_addr; |
| } |
| |
| static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| BUG_ON(!sg_page(sg)); |
| |
| sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); |
| if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) |
| return 0; |
| sg_dma_len(sg) = sg->length; |
| } |
| |
| return nents; |
| } |
| |
| int dma_direct_supported(struct device *dev, u64 mask) |
| { |
| #ifdef CONFIG_ZONE_DMA |
| if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) |
| return 0; |
| #else |
| /* |
| * Because 32-bit DMA masks are so common we expect every architecture |
| * to be able to satisfy them - either by not supporting more physical |
| * memory, or by providing a ZONE_DMA32. If neither is the case, the |
| * architecture needs to use an IOMMU instead of the direct mapping. |
| */ |
| if (mask < DMA_BIT_MASK(32)) |
| return 0; |
| #endif |
| return 1; |
| } |
| |
| static int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return dma_addr == DIRECT_MAPPING_ERROR; |
| } |
| |
| const struct dma_map_ops dma_direct_ops = { |
| .alloc = dma_direct_alloc, |
| .free = dma_direct_free, |
| .map_page = dma_direct_map_page, |
| .map_sg = dma_direct_map_sg, |
| .dma_supported = dma_direct_supported, |
| .mapping_error = dma_direct_mapping_error, |
| .is_phys = 1, |
| }; |
| EXPORT_SYMBOL(dma_direct_ops); |