| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * libata-core.c - helper library for ATA |
| * |
| * Maintained by: Tejun Heo <tj@kernel.org> |
| * Please ALWAYS copy linux-ide@vger.kernel.org |
| * on emails. |
| * |
| * Copyright 2003-2004 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2004 Jeff Garzik |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/driver-api/libata.rst |
| * |
| * Hardware documentation available from http://www.t13.org/ and |
| * http://www.sata-io.org/ |
| * |
| * Standards documents from: |
| * http://www.t13.org (ATA standards, PCI DMA IDE spec) |
| * http://www.t10.org (SCSI MMC - for ATAPI MMC) |
| * http://www.sata-io.org (SATA) |
| * http://www.compactflash.org (CF) |
| * http://www.qic.org (QIC157 - Tape and DSC) |
| * http://www.ce-ata.org (CE-ATA: not supported) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/timer.h> |
| #include <linux/time.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/suspend.h> |
| #include <linux/workqueue.h> |
| #include <linux/scatterlist.h> |
| #include <linux/io.h> |
| #include <linux/async.h> |
| #include <linux/log2.h> |
| #include <linux/slab.h> |
| #include <linux/glob.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <linux/libata.h> |
| #include <asm/byteorder.h> |
| #include <asm/unaligned.h> |
| #include <linux/cdrom.h> |
| #include <linux/ratelimit.h> |
| #include <linux/leds.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/platform_device.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/libata.h> |
| |
| #include "libata.h" |
| #include "libata-transport.h" |
| |
| /* debounce timing parameters in msecs { interval, duration, timeout } */ |
| const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; |
| const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; |
| const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; |
| |
| const struct ata_port_operations ata_base_port_ops = { |
| .prereset = ata_std_prereset, |
| .postreset = ata_std_postreset, |
| .error_handler = ata_std_error_handler, |
| .sched_eh = ata_std_sched_eh, |
| .end_eh = ata_std_end_eh, |
| }; |
| |
| const struct ata_port_operations sata_port_ops = { |
| .inherits = &ata_base_port_ops, |
| |
| .qc_defer = ata_std_qc_defer, |
| .hardreset = sata_std_hardreset, |
| }; |
| |
| static unsigned int ata_dev_init_params(struct ata_device *dev, |
| u16 heads, u16 sectors); |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev); |
| static void ata_dev_xfermask(struct ata_device *dev); |
| static unsigned long ata_dev_blacklisted(const struct ata_device *dev); |
| |
| atomic_t ata_print_id = ATOMIC_INIT(0); |
| |
| struct ata_force_param { |
| const char *name; |
| unsigned int cbl; |
| int spd_limit; |
| unsigned long xfer_mask; |
| unsigned int horkage_on; |
| unsigned int horkage_off; |
| unsigned int lflags; |
| }; |
| |
| struct ata_force_ent { |
| int port; |
| int device; |
| struct ata_force_param param; |
| }; |
| |
| static struct ata_force_ent *ata_force_tbl; |
| static int ata_force_tbl_size; |
| |
| static char ata_force_param_buf[PAGE_SIZE] __initdata; |
| /* param_buf is thrown away after initialization, disallow read */ |
| module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); |
| MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); |
| |
| static int atapi_enabled = 1; |
| module_param(atapi_enabled, int, 0444); |
| MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); |
| |
| static int atapi_dmadir = 0; |
| module_param(atapi_dmadir, int, 0444); |
| MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); |
| |
| int atapi_passthru16 = 1; |
| module_param(atapi_passthru16, int, 0444); |
| MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); |
| |
| int libata_fua = 0; |
| module_param_named(fua, libata_fua, int, 0444); |
| MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); |
| |
| static int ata_ignore_hpa; |
| module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); |
| MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); |
| |
| static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; |
| module_param_named(dma, libata_dma_mask, int, 0444); |
| MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); |
| |
| static int ata_probe_timeout; |
| module_param(ata_probe_timeout, int, 0444); |
| MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); |
| |
| int libata_noacpi = 0; |
| module_param_named(noacpi, libata_noacpi, int, 0444); |
| MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); |
| |
| int libata_allow_tpm = 0; |
| module_param_named(allow_tpm, libata_allow_tpm, int, 0444); |
| MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); |
| |
| static int atapi_an; |
| module_param(atapi_an, int, 0444); |
| MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); |
| |
| MODULE_AUTHOR("Jeff Garzik"); |
| MODULE_DESCRIPTION("Library module for ATA devices"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| |
| static bool ata_sstatus_online(u32 sstatus) |
| { |
| return (sstatus & 0xf) == 0x3; |
| } |
| |
| /** |
| * ata_link_next - link iteration helper |
| * @link: the previous link, NULL to start |
| * @ap: ATA port containing links to iterate |
| * @mode: iteration mode, one of ATA_LITER_* |
| * |
| * LOCKING: |
| * Host lock or EH context. |
| * |
| * RETURNS: |
| * Pointer to the next link. |
| */ |
| struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, |
| enum ata_link_iter_mode mode) |
| { |
| BUG_ON(mode != ATA_LITER_EDGE && |
| mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); |
| |
| /* NULL link indicates start of iteration */ |
| if (!link) |
| switch (mode) { |
| case ATA_LITER_EDGE: |
| case ATA_LITER_PMP_FIRST: |
| if (sata_pmp_attached(ap)) |
| return ap->pmp_link; |
| /* fall through */ |
| case ATA_LITER_HOST_FIRST: |
| return &ap->link; |
| } |
| |
| /* we just iterated over the host link, what's next? */ |
| if (link == &ap->link) |
| switch (mode) { |
| case ATA_LITER_HOST_FIRST: |
| if (sata_pmp_attached(ap)) |
| return ap->pmp_link; |
| /* fall through */ |
| case ATA_LITER_PMP_FIRST: |
| if (unlikely(ap->slave_link)) |
| return ap->slave_link; |
| /* fall through */ |
| case ATA_LITER_EDGE: |
| return NULL; |
| } |
| |
| /* slave_link excludes PMP */ |
| if (unlikely(link == ap->slave_link)) |
| return NULL; |
| |
| /* we were over a PMP link */ |
| if (++link < ap->pmp_link + ap->nr_pmp_links) |
| return link; |
| |
| if (mode == ATA_LITER_PMP_FIRST) |
| return &ap->link; |
| |
| return NULL; |
| } |
| |
| /** |
| * ata_dev_next - device iteration helper |
| * @dev: the previous device, NULL to start |
| * @link: ATA link containing devices to iterate |
| * @mode: iteration mode, one of ATA_DITER_* |
| * |
| * LOCKING: |
| * Host lock or EH context. |
| * |
| * RETURNS: |
| * Pointer to the next device. |
| */ |
| struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, |
| enum ata_dev_iter_mode mode) |
| { |
| BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && |
| mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); |
| |
| /* NULL dev indicates start of iteration */ |
| if (!dev) |
| switch (mode) { |
| case ATA_DITER_ENABLED: |
| case ATA_DITER_ALL: |
| dev = link->device; |
| goto check; |
| case ATA_DITER_ENABLED_REVERSE: |
| case ATA_DITER_ALL_REVERSE: |
| dev = link->device + ata_link_max_devices(link) - 1; |
| goto check; |
| } |
| |
| next: |
| /* move to the next one */ |
| switch (mode) { |
| case ATA_DITER_ENABLED: |
| case ATA_DITER_ALL: |
| if (++dev < link->device + ata_link_max_devices(link)) |
| goto check; |
| return NULL; |
| case ATA_DITER_ENABLED_REVERSE: |
| case ATA_DITER_ALL_REVERSE: |
| if (--dev >= link->device) |
| goto check; |
| return NULL; |
| } |
| |
| check: |
| if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && |
| !ata_dev_enabled(dev)) |
| goto next; |
| return dev; |
| } |
| |
| /** |
| * ata_dev_phys_link - find physical link for a device |
| * @dev: ATA device to look up physical link for |
| * |
| * Look up physical link which @dev is attached to. Note that |
| * this is different from @dev->link only when @dev is on slave |
| * link. For all other cases, it's the same as @dev->link. |
| * |
| * LOCKING: |
| * Don't care. |
| * |
| * RETURNS: |
| * Pointer to the found physical link. |
| */ |
| struct ata_link *ata_dev_phys_link(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| |
| if (!ap->slave_link) |
| return dev->link; |
| if (!dev->devno) |
| return &ap->link; |
| return ap->slave_link; |
| } |
| |
| /** |
| * ata_force_cbl - force cable type according to libata.force |
| * @ap: ATA port of interest |
| * |
| * Force cable type according to libata.force and whine about it. |
| * The last entry which has matching port number is used, so it |
| * can be specified as part of device force parameters. For |
| * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the |
| * same effect. |
| * |
| * LOCKING: |
| * EH context. |
| */ |
| void ata_force_cbl(struct ata_port *ap) |
| { |
| int i; |
| |
| for (i = ata_force_tbl_size - 1; i >= 0; i--) { |
| const struct ata_force_ent *fe = &ata_force_tbl[i]; |
| |
| if (fe->port != -1 && fe->port != ap->print_id) |
| continue; |
| |
| if (fe->param.cbl == ATA_CBL_NONE) |
| continue; |
| |
| ap->cbl = fe->param.cbl; |
| ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); |
| return; |
| } |
| } |
| |
| /** |
| * ata_force_link_limits - force link limits according to libata.force |
| * @link: ATA link of interest |
| * |
| * Force link flags and SATA spd limit according to libata.force |
| * and whine about it. When only the port part is specified |
| * (e.g. 1:), the limit applies to all links connected to both |
| * the host link and all fan-out ports connected via PMP. If the |
| * device part is specified as 0 (e.g. 1.00:), it specifies the |
| * first fan-out link not the host link. Device number 15 always |
| * points to the host link whether PMP is attached or not. If the |
| * controller has slave link, device number 16 points to it. |
| * |
| * LOCKING: |
| * EH context. |
| */ |
| static void ata_force_link_limits(struct ata_link *link) |
| { |
| bool did_spd = false; |
| int linkno = link->pmp; |
| int i; |
| |
| if (ata_is_host_link(link)) |
| linkno += 15; |
| |
| for (i = ata_force_tbl_size - 1; i >= 0; i--) { |
| const struct ata_force_ent *fe = &ata_force_tbl[i]; |
| |
| if (fe->port != -1 && fe->port != link->ap->print_id) |
| continue; |
| |
| if (fe->device != -1 && fe->device != linkno) |
| continue; |
| |
| /* only honor the first spd limit */ |
| if (!did_spd && fe->param.spd_limit) { |
| link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; |
| ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", |
| fe->param.name); |
| did_spd = true; |
| } |
| |
| /* let lflags stack */ |
| if (fe->param.lflags) { |
| link->flags |= fe->param.lflags; |
| ata_link_notice(link, |
| "FORCE: link flag 0x%x forced -> 0x%x\n", |
| fe->param.lflags, link->flags); |
| } |
| } |
| } |
| |
| /** |
| * ata_force_xfermask - force xfermask according to libata.force |
| * @dev: ATA device of interest |
| * |
| * Force xfer_mask according to libata.force and whine about it. |
| * For consistency with link selection, device number 15 selects |
| * the first device connected to the host link. |
| * |
| * LOCKING: |
| * EH context. |
| */ |
| static void ata_force_xfermask(struct ata_device *dev) |
| { |
| int devno = dev->link->pmp + dev->devno; |
| int alt_devno = devno; |
| int i; |
| |
| /* allow n.15/16 for devices attached to host port */ |
| if (ata_is_host_link(dev->link)) |
| alt_devno += 15; |
| |
| for (i = ata_force_tbl_size - 1; i >= 0; i--) { |
| const struct ata_force_ent *fe = &ata_force_tbl[i]; |
| unsigned long pio_mask, mwdma_mask, udma_mask; |
| |
| if (fe->port != -1 && fe->port != dev->link->ap->print_id) |
| continue; |
| |
| if (fe->device != -1 && fe->device != devno && |
| fe->device != alt_devno) |
| continue; |
| |
| if (!fe->param.xfer_mask) |
| continue; |
| |
| ata_unpack_xfermask(fe->param.xfer_mask, |
| &pio_mask, &mwdma_mask, &udma_mask); |
| if (udma_mask) |
| dev->udma_mask = udma_mask; |
| else if (mwdma_mask) { |
| dev->udma_mask = 0; |
| dev->mwdma_mask = mwdma_mask; |
| } else { |
| dev->udma_mask = 0; |
| dev->mwdma_mask = 0; |
| dev->pio_mask = pio_mask; |
| } |
| |
| ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", |
| fe->param.name); |
| return; |
| } |
| } |
| |
| /** |
| * ata_force_horkage - force horkage according to libata.force |
| * @dev: ATA device of interest |
| * |
| * Force horkage according to libata.force and whine about it. |
| * For consistency with link selection, device number 15 selects |
| * the first device connected to the host link. |
| * |
| * LOCKING: |
| * EH context. |
| */ |
| static void ata_force_horkage(struct ata_device *dev) |
| { |
| int devno = dev->link->pmp + dev->devno; |
| int alt_devno = devno; |
| int i; |
| |
| /* allow n.15/16 for devices attached to host port */ |
| if (ata_is_host_link(dev->link)) |
| alt_devno += 15; |
| |
| for (i = 0; i < ata_force_tbl_size; i++) { |
| const struct ata_force_ent *fe = &ata_force_tbl[i]; |
| |
| if (fe->port != -1 && fe->port != dev->link->ap->print_id) |
| continue; |
| |
| if (fe->device != -1 && fe->device != devno && |
| fe->device != alt_devno) |
| continue; |
| |
| if (!(~dev->horkage & fe->param.horkage_on) && |
| !(dev->horkage & fe->param.horkage_off)) |
| continue; |
| |
| dev->horkage |= fe->param.horkage_on; |
| dev->horkage &= ~fe->param.horkage_off; |
| |
| ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", |
| fe->param.name); |
| } |
| } |
| |
| /** |
| * atapi_cmd_type - Determine ATAPI command type from SCSI opcode |
| * @opcode: SCSI opcode |
| * |
| * Determine ATAPI command type from @opcode. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} |
| */ |
| int atapi_cmd_type(u8 opcode) |
| { |
| switch (opcode) { |
| case GPCMD_READ_10: |
| case GPCMD_READ_12: |
| return ATAPI_READ; |
| |
| case GPCMD_WRITE_10: |
| case GPCMD_WRITE_12: |
| case GPCMD_WRITE_AND_VERIFY_10: |
| return ATAPI_WRITE; |
| |
| case GPCMD_READ_CD: |
| case GPCMD_READ_CD_MSF: |
| return ATAPI_READ_CD; |
| |
| case ATA_16: |
| case ATA_12: |
| if (atapi_passthru16) |
| return ATAPI_PASS_THRU; |
| /* fall thru */ |
| default: |
| return ATAPI_MISC; |
| } |
| } |
| |
| /** |
| * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure |
| * @tf: Taskfile to convert |
| * @pmp: Port multiplier port |
| * @is_cmd: This FIS is for command |
| * @fis: Buffer into which data will output |
| * |
| * Converts a standard ATA taskfile to a Serial ATA |
| * FIS structure (Register - Host to Device). |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) |
| { |
| fis[0] = 0x27; /* Register - Host to Device FIS */ |
| fis[1] = pmp & 0xf; /* Port multiplier number*/ |
| if (is_cmd) |
| fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ |
| |
| fis[2] = tf->command; |
| fis[3] = tf->feature; |
| |
| fis[4] = tf->lbal; |
| fis[5] = tf->lbam; |
| fis[6] = tf->lbah; |
| fis[7] = tf->device; |
| |
| fis[8] = tf->hob_lbal; |
| fis[9] = tf->hob_lbam; |
| fis[10] = tf->hob_lbah; |
| fis[11] = tf->hob_feature; |
| |
| fis[12] = tf->nsect; |
| fis[13] = tf->hob_nsect; |
| fis[14] = 0; |
| fis[15] = tf->ctl; |
| |
| fis[16] = tf->auxiliary & 0xff; |
| fis[17] = (tf->auxiliary >> 8) & 0xff; |
| fis[18] = (tf->auxiliary >> 16) & 0xff; |
| fis[19] = (tf->auxiliary >> 24) & 0xff; |
| } |
| |
| /** |
| * ata_tf_from_fis - Convert SATA FIS to ATA taskfile |
| * @fis: Buffer from which data will be input |
| * @tf: Taskfile to output |
| * |
| * Converts a serial ATA FIS structure to a standard ATA taskfile. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) |
| { |
| tf->command = fis[2]; /* status */ |
| tf->feature = fis[3]; /* error */ |
| |
| tf->lbal = fis[4]; |
| tf->lbam = fis[5]; |
| tf->lbah = fis[6]; |
| tf->device = fis[7]; |
| |
| tf->hob_lbal = fis[8]; |
| tf->hob_lbam = fis[9]; |
| tf->hob_lbah = fis[10]; |
| |
| tf->nsect = fis[12]; |
| tf->hob_nsect = fis[13]; |
| } |
| |
| static const u8 ata_rw_cmds[] = { |
| /* pio multi */ |
| ATA_CMD_READ_MULTI, |
| ATA_CMD_WRITE_MULTI, |
| ATA_CMD_READ_MULTI_EXT, |
| ATA_CMD_WRITE_MULTI_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_MULTI_FUA_EXT, |
| /* pio */ |
| ATA_CMD_PIO_READ, |
| ATA_CMD_PIO_WRITE, |
| ATA_CMD_PIO_READ_EXT, |
| ATA_CMD_PIO_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| 0, |
| /* dma */ |
| ATA_CMD_READ, |
| ATA_CMD_WRITE, |
| ATA_CMD_READ_EXT, |
| ATA_CMD_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_FUA_EXT |
| }; |
| |
| /** |
| * ata_rwcmd_protocol - set taskfile r/w commands and protocol |
| * @tf: command to examine and configure |
| * @dev: device tf belongs to |
| * |
| * Examine the device configuration and tf->flags to calculate |
| * the proper read/write commands and protocol to use. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) |
| { |
| u8 cmd; |
| |
| int index, fua, lba48, write; |
| |
| fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; |
| lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; |
| write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| if (dev->flags & ATA_DFLAG_PIO) { |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 8; |
| } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { |
| /* Unable to use DMA due to host limitation */ |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 8; |
| } else { |
| tf->protocol = ATA_PROT_DMA; |
| index = 16; |
| } |
| |
| cmd = ata_rw_cmds[index + fua + lba48 + write]; |
| if (cmd) { |
| tf->command = cmd; |
| return 0; |
| } |
| return -1; |
| } |
| |
| /** |
| * ata_tf_read_block - Read block address from ATA taskfile |
| * @tf: ATA taskfile of interest |
| * @dev: ATA device @tf belongs to |
| * |
| * LOCKING: |
| * None. |
| * |
| * Read block address from @tf. This function can handle all |
| * three address formats - LBA, LBA48 and CHS. tf->protocol and |
| * flags select the address format to use. |
| * |
| * RETURNS: |
| * Block address read from @tf. |
| */ |
| u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) |
| { |
| u64 block = 0; |
| |
| if (tf->flags & ATA_TFLAG_LBA) { |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| block |= (u64)tf->hob_lbah << 40; |
| block |= (u64)tf->hob_lbam << 32; |
| block |= (u64)tf->hob_lbal << 24; |
| } else |
| block |= (tf->device & 0xf) << 24; |
| |
| block |= tf->lbah << 16; |
| block |= tf->lbam << 8; |
| block |= tf->lbal; |
| } else { |
| u32 cyl, head, sect; |
| |
| cyl = tf->lbam | (tf->lbah << 8); |
| head = tf->device & 0xf; |
| sect = tf->lbal; |
| |
| if (!sect) { |
| ata_dev_warn(dev, |
| "device reported invalid CHS sector 0\n"); |
| return U64_MAX; |
| } |
| |
| block = (cyl * dev->heads + head) * dev->sectors + sect - 1; |
| } |
| |
| return block; |
| } |
| |
| /** |
| * ata_build_rw_tf - Build ATA taskfile for given read/write request |
| * @tf: Target ATA taskfile |
| * @dev: ATA device @tf belongs to |
| * @block: Block address |
| * @n_block: Number of blocks |
| * @tf_flags: RW/FUA etc... |
| * @tag: tag |
| * @class: IO priority class |
| * |
| * LOCKING: |
| * None. |
| * |
| * Build ATA taskfile @tf for read/write request described by |
| * @block, @n_block, @tf_flags and @tag on @dev. |
| * |
| * RETURNS: |
| * |
| * 0 on success, -ERANGE if the request is too large for @dev, |
| * -EINVAL if the request is invalid. |
| */ |
| int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, |
| u64 block, u32 n_block, unsigned int tf_flags, |
| unsigned int tag, int class) |
| { |
| tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf->flags |= tf_flags; |
| |
| if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { |
| /* yay, NCQ */ |
| if (!lba_48_ok(block, n_block)) |
| return -ERANGE; |
| |
| tf->protocol = ATA_PROT_NCQ; |
| tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; |
| |
| if (tf->flags & ATA_TFLAG_WRITE) |
| tf->command = ATA_CMD_FPDMA_WRITE; |
| else |
| tf->command = ATA_CMD_FPDMA_READ; |
| |
| tf->nsect = tag << 3; |
| tf->hob_feature = (n_block >> 8) & 0xff; |
| tf->feature = n_block & 0xff; |
| |
| tf->hob_lbah = (block >> 40) & 0xff; |
| tf->hob_lbam = (block >> 32) & 0xff; |
| tf->hob_lbal = (block >> 24) & 0xff; |
| tf->lbah = (block >> 16) & 0xff; |
| tf->lbam = (block >> 8) & 0xff; |
| tf->lbal = block & 0xff; |
| |
| tf->device = ATA_LBA; |
| if (tf->flags & ATA_TFLAG_FUA) |
| tf->device |= 1 << 7; |
| |
| if (dev->flags & ATA_DFLAG_NCQ_PRIO) { |
| if (class == IOPRIO_CLASS_RT) |
| tf->hob_nsect |= ATA_PRIO_HIGH << |
| ATA_SHIFT_PRIO; |
| } |
| } else if (dev->flags & ATA_DFLAG_LBA) { |
| tf->flags |= ATA_TFLAG_LBA; |
| |
| if (lba_28_ok(block, n_block)) { |
| /* use LBA28 */ |
| tf->device |= (block >> 24) & 0xf; |
| } else if (lba_48_ok(block, n_block)) { |
| if (!(dev->flags & ATA_DFLAG_LBA48)) |
| return -ERANGE; |
| |
| /* use LBA48 */ |
| tf->flags |= ATA_TFLAG_LBA48; |
| |
| tf->hob_nsect = (n_block >> 8) & 0xff; |
| |
| tf->hob_lbah = (block >> 40) & 0xff; |
| tf->hob_lbam = (block >> 32) & 0xff; |
| tf->hob_lbal = (block >> 24) & 0xff; |
| } else |
| /* request too large even for LBA48 */ |
| return -ERANGE; |
| |
| if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) |
| return -EINVAL; |
| |
| tf->nsect = n_block & 0xff; |
| |
| tf->lbah = (block >> 16) & 0xff; |
| tf->lbam = (block >> 8) & 0xff; |
| tf->lbal = block & 0xff; |
| |
| tf->device |= ATA_LBA; |
| } else { |
| /* CHS */ |
| u32 sect, head, cyl, track; |
| |
| /* The request -may- be too large for CHS addressing. */ |
| if (!lba_28_ok(block, n_block)) |
| return -ERANGE; |
| |
| if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) |
| return -EINVAL; |
| |
| /* Convert LBA to CHS */ |
| track = (u32)block / dev->sectors; |
| cyl = track / dev->heads; |
| head = track % dev->heads; |
| sect = (u32)block % dev->sectors + 1; |
| |
| DPRINTK("block %u track %u cyl %u head %u sect %u\n", |
| (u32)block, track, cyl, head, sect); |
| |
| /* Check whether the converted CHS can fit. |
| Cylinder: 0-65535 |
| Head: 0-15 |
| Sector: 1-255*/ |
| if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) |
| return -ERANGE; |
| |
| tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ |
| tf->lbal = sect; |
| tf->lbam = cyl; |
| tf->lbah = cyl >> 8; |
| tf->device |= head; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask |
| * @pio_mask: pio_mask |
| * @mwdma_mask: mwdma_mask |
| * @udma_mask: udma_mask |
| * |
| * Pack @pio_mask, @mwdma_mask and @udma_mask into a single |
| * unsigned int xfer_mask. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Packed xfer_mask. |
| */ |
| unsigned long ata_pack_xfermask(unsigned long pio_mask, |
| unsigned long mwdma_mask, |
| unsigned long udma_mask) |
| { |
| return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | |
| ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | |
| ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); |
| } |
| |
| /** |
| * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks |
| * @xfer_mask: xfer_mask to unpack |
| * @pio_mask: resulting pio_mask |
| * @mwdma_mask: resulting mwdma_mask |
| * @udma_mask: resulting udma_mask |
| * |
| * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. |
| * Any NULL destination masks will be ignored. |
| */ |
| void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, |
| unsigned long *mwdma_mask, unsigned long *udma_mask) |
| { |
| if (pio_mask) |
| *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; |
| if (mwdma_mask) |
| *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; |
| if (udma_mask) |
| *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; |
| } |
| |
| static const struct ata_xfer_ent { |
| int shift, bits; |
| u8 base; |
| } ata_xfer_tbl[] = { |
| { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, |
| { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, |
| { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, |
| { -1, }, |
| }; |
| |
| /** |
| * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask |
| * @xfer_mask: xfer_mask of interest |
| * |
| * Return matching XFER_* value for @xfer_mask. Only the highest |
| * bit of @xfer_mask is considered. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching XFER_* value, 0xff if no match found. |
| */ |
| u8 ata_xfer_mask2mode(unsigned long xfer_mask) |
| { |
| int highbit = fls(xfer_mask) - 1; |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (highbit >= ent->shift && highbit < ent->shift + ent->bits) |
| return ent->base + highbit - ent->shift; |
| return 0xff; |
| } |
| |
| /** |
| * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* |
| * @xfer_mode: XFER_* of interest |
| * |
| * Return matching xfer_mask for @xfer_mode. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching xfer_mask, 0 if no match found. |
| */ |
| unsigned long ata_xfer_mode2mask(u8 xfer_mode) |
| { |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) |
| return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) |
| & ~((1 << ent->shift) - 1); |
| return 0; |
| } |
| |
| /** |
| * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* |
| * @xfer_mode: XFER_* of interest |
| * |
| * Return matching xfer_shift for @xfer_mode. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching xfer_shift, -1 if no match found. |
| */ |
| int ata_xfer_mode2shift(unsigned long xfer_mode) |
| { |
| const struct ata_xfer_ent *ent; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) |
| return ent->shift; |
| return -1; |
| } |
| |
| /** |
| * ata_mode_string - convert xfer_mask to string |
| * @xfer_mask: mask of bits supported; only highest bit counts. |
| * |
| * Determine string which represents the highest speed |
| * (highest bit in @modemask). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Constant C string representing highest speed listed in |
| * @mode_mask, or the constant C string "<n/a>". |
| */ |
| const char *ata_mode_string(unsigned long xfer_mask) |
| { |
| static const char * const xfer_mode_str[] = { |
| "PIO0", |
| "PIO1", |
| "PIO2", |
| "PIO3", |
| "PIO4", |
| "PIO5", |
| "PIO6", |
| "MWDMA0", |
| "MWDMA1", |
| "MWDMA2", |
| "MWDMA3", |
| "MWDMA4", |
| "UDMA/16", |
| "UDMA/25", |
| "UDMA/33", |
| "UDMA/44", |
| "UDMA/66", |
| "UDMA/100", |
| "UDMA/133", |
| "UDMA7", |
| }; |
| int highbit; |
| |
| highbit = fls(xfer_mask) - 1; |
| if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) |
| return xfer_mode_str[highbit]; |
| return "<n/a>"; |
| } |
| |
| const char *sata_spd_string(unsigned int spd) |
| { |
| static const char * const spd_str[] = { |
| "1.5 Gbps", |
| "3.0 Gbps", |
| "6.0 Gbps", |
| }; |
| |
| if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) |
| return "<unknown>"; |
| return spd_str[spd - 1]; |
| } |
| |
| /** |
| * ata_dev_classify - determine device type based on ATA-spec signature |
| * @tf: ATA taskfile register set for device to be identified |
| * |
| * Determine from taskfile register contents whether a device is |
| * ATA or ATAPI, as per "Signature and persistence" section |
| * of ATA/PI spec (volume 1, sect 5.14). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, |
| * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. |
| */ |
| unsigned int ata_dev_classify(const struct ata_taskfile *tf) |
| { |
| /* Apple's open source Darwin code hints that some devices only |
| * put a proper signature into the LBA mid/high registers, |
| * So, we only check those. It's sufficient for uniqueness. |
| * |
| * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate |
| * signatures for ATA and ATAPI devices attached on SerialATA, |
| * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA |
| * spec has never mentioned about using different signatures |
| * for ATA/ATAPI devices. Then, Serial ATA II: Port |
| * Multiplier specification began to use 0x69/0x96 to identify |
| * port multpliers and 0x3c/0xc3 to identify SEMB device. |
| * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and |
| * 0x69/0x96 shortly and described them as reserved for |
| * SerialATA. |
| * |
| * We follow the current spec and consider that 0x69/0x96 |
| * identifies a port multiplier and 0x3c/0xc3 a SEMB device. |
| * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports |
| * SEMB signature. This is worked around in |
| * ata_dev_read_id(). |
| */ |
| if ((tf->lbam == 0) && (tf->lbah == 0)) { |
| DPRINTK("found ATA device by sig\n"); |
| return ATA_DEV_ATA; |
| } |
| |
| if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { |
| DPRINTK("found ATAPI device by sig\n"); |
| return ATA_DEV_ATAPI; |
| } |
| |
| if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { |
| DPRINTK("found PMP device by sig\n"); |
| return ATA_DEV_PMP; |
| } |
| |
| if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { |
| DPRINTK("found SEMB device by sig (could be ATA device)\n"); |
| return ATA_DEV_SEMB; |
| } |
| |
| if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { |
| DPRINTK("found ZAC device by sig\n"); |
| return ATA_DEV_ZAC; |
| } |
| |
| DPRINTK("unknown device\n"); |
| return ATA_DEV_UNKNOWN; |
| } |
| |
| /** |
| * ata_id_string - Convert IDENTIFY DEVICE page into string |
| * @id: IDENTIFY DEVICE results we will examine |
| * @s: string into which data is output |
| * @ofs: offset into identify device page |
| * @len: length of string to return. must be an even number. |
| * |
| * The strings in the IDENTIFY DEVICE page are broken up into |
| * 16-bit chunks. Run through the string, and output each |
| * 8-bit chunk linearly, regardless of platform. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_id_string(const u16 *id, unsigned char *s, |
| unsigned int ofs, unsigned int len) |
| { |
| unsigned int c; |
| |
| BUG_ON(len & 1); |
| |
| while (len > 0) { |
| c = id[ofs] >> 8; |
| *s = c; |
| s++; |
| |
| c = id[ofs] & 0xff; |
| *s = c; |
| s++; |
| |
| ofs++; |
| len -= 2; |
| } |
| } |
| |
| /** |
| * ata_id_c_string - Convert IDENTIFY DEVICE page into C string |
| * @id: IDENTIFY DEVICE results we will examine |
| * @s: string into which data is output |
| * @ofs: offset into identify device page |
| * @len: length of string to return. must be an odd number. |
| * |
| * This function is identical to ata_id_string except that it |
| * trims trailing spaces and terminates the resulting string with |
| * null. @len must be actual maximum length (even number) + 1. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| void ata_id_c_string(const u16 *id, unsigned char *s, |
| unsigned int ofs, unsigned int len) |
| { |
| unsigned char *p; |
| |
| ata_id_string(id, s, ofs, len - 1); |
| |
| p = s + strnlen(s, len - 1); |
| while (p > s && p[-1] == ' ') |
| p--; |
| *p = '\0'; |
| } |
| |
| static u64 ata_id_n_sectors(const u16 *id) |
| { |
| if (ata_id_has_lba(id)) { |
| if (ata_id_has_lba48(id)) |
| return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); |
| else |
| return ata_id_u32(id, ATA_ID_LBA_CAPACITY); |
| } else { |
| if (ata_id_current_chs_valid(id)) |
| return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * |
| id[ATA_ID_CUR_SECTORS]; |
| else |
| return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * |
| id[ATA_ID_SECTORS]; |
| } |
| } |
| |
| u64 ata_tf_to_lba48(const struct ata_taskfile *tf) |
| { |
| u64 sectors = 0; |
| |
| sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; |
| sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; |
| sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; |
| sectors |= (tf->lbah & 0xff) << 16; |
| sectors |= (tf->lbam & 0xff) << 8; |
| sectors |= (tf->lbal & 0xff); |
| |
| return sectors; |
| } |
| |
| u64 ata_tf_to_lba(const struct ata_taskfile *tf) |
| { |
| u64 sectors = 0; |
| |
| sectors |= (tf->device & 0x0f) << 24; |
| sectors |= (tf->lbah & 0xff) << 16; |
| sectors |= (tf->lbam & 0xff) << 8; |
| sectors |= (tf->lbal & 0xff); |
| |
| return sectors; |
| } |
| |
| /** |
| * ata_read_native_max_address - Read native max address |
| * @dev: target device |
| * @max_sectors: out parameter for the result native max address |
| * |
| * Perform an LBA48 or LBA28 native size query upon the device in |
| * question. |
| * |
| * RETURNS: |
| * 0 on success, -EACCES if command is aborted by the drive. |
| * -EIO on other errors. |
| */ |
| static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) |
| { |
| unsigned int err_mask; |
| struct ata_taskfile tf; |
| int lba48 = ata_id_has_lba48(dev->id); |
| |
| ata_tf_init(dev, &tf); |
| |
| /* always clear all address registers */ |
| tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; |
| |
| if (lba48) { |
| tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; |
| tf.flags |= ATA_TFLAG_LBA48; |
| } else |
| tf.command = ATA_CMD_READ_NATIVE_MAX; |
| |
| tf.protocol = ATA_PROT_NODATA; |
| tf.device |= ATA_LBA; |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); |
| if (err_mask) { |
| ata_dev_warn(dev, |
| "failed to read native max address (err_mask=0x%x)\n", |
| err_mask); |
| if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) |
| return -EACCES; |
| return -EIO; |
| } |
| |
| if (lba48) |
| *max_sectors = ata_tf_to_lba48(&tf) + 1; |
| else |
| *max_sectors = ata_tf_to_lba(&tf) + 1; |
| if (dev->horkage & ATA_HORKAGE_HPA_SIZE) |
| (*max_sectors)--; |
| return 0; |
| } |
| |
| /** |
| * ata_set_max_sectors - Set max sectors |
| * @dev: target device |
| * @new_sectors: new max sectors value to set for the device |
| * |
| * Set max sectors of @dev to @new_sectors. |
| * |
| * RETURNS: |
| * 0 on success, -EACCES if command is aborted or denied (due to |
| * previous non-volatile SET_MAX) by the drive. -EIO on other |
| * errors. |
| */ |
| static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) |
| { |
| unsigned int err_mask; |
| struct ata_taskfile tf; |
| int lba48 = ata_id_has_lba48(dev->id); |
| |
| new_sectors--; |
| |
| ata_tf_init(dev, &tf); |
| |
| tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; |
| |
| if (lba48) { |
| tf.command = ATA_CMD_SET_MAX_EXT; |
| tf.flags |= ATA_TFLAG_LBA48; |
| |
| tf.hob_lbal = (new_sectors >> 24) & 0xff; |
| tf.hob_lbam = (new_sectors >> 32) & 0xff; |
| tf.hob_lbah = (new_sectors >> 40) & 0xff; |
| } else { |
| tf.command = ATA_CMD_SET_MAX; |
| |
| tf.device |= (new_sectors >> 24) & 0xf; |
| } |
| |
| tf.protocol = ATA_PROT_NODATA; |
| tf.device |= ATA_LBA; |
| |
| tf.lbal = (new_sectors >> 0) & 0xff; |
| tf.lbam = (new_sectors >> 8) & 0xff; |
| tf.lbah = (new_sectors >> 16) & 0xff; |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); |
| if (err_mask) { |
| ata_dev_warn(dev, |
| "failed to set max address (err_mask=0x%x)\n", |
| err_mask); |
| if (err_mask == AC_ERR_DEV && |
| (tf.feature & (ATA_ABORTED | ATA_IDNF))) |
| return -EACCES; |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_hpa_resize - Resize a device with an HPA set |
| * @dev: Device to resize |
| * |
| * Read the size of an LBA28 or LBA48 disk with HPA features and resize |
| * it if required to the full size of the media. The caller must check |
| * the drive has the HPA feature set enabled. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| static int ata_hpa_resize(struct ata_device *dev) |
| { |
| struct ata_eh_context *ehc = &dev->link->eh_context; |
| int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; |
| bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; |
| u64 sectors = ata_id_n_sectors(dev->id); |
| u64 native_sectors; |
| int rc; |
| |
| /* do we need to do it? */ |
| if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || |
| !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || |
| (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) |
| return 0; |
| |
| /* read native max address */ |
| rc = ata_read_native_max_address(dev, &native_sectors); |
| if (rc) { |
| /* If device aborted the command or HPA isn't going to |
| * be unlocked, skip HPA resizing. |
| */ |
| if (rc == -EACCES || !unlock_hpa) { |
| ata_dev_warn(dev, |
| "HPA support seems broken, skipping HPA handling\n"); |
| dev->horkage |= ATA_HORKAGE_BROKEN_HPA; |
| |
| /* we can continue if device aborted the command */ |
| if (rc == -EACCES) |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| dev->n_native_sectors = native_sectors; |
| |
| /* nothing to do? */ |
| if (native_sectors <= sectors || !unlock_hpa) { |
| if (!print_info || native_sectors == sectors) |
| return 0; |
| |
| if (native_sectors > sectors) |
| ata_dev_info(dev, |
| "HPA detected: current %llu, native %llu\n", |
| (unsigned long long)sectors, |
| (unsigned long long)native_sectors); |
| else if (native_sectors < sectors) |
| ata_dev_warn(dev, |
| "native sectors (%llu) is smaller than sectors (%llu)\n", |
| (unsigned long long)native_sectors, |
| (unsigned long long)sectors); |
| return 0; |
| } |
| |
| /* let's unlock HPA */ |
| rc = ata_set_max_sectors(dev, native_sectors); |
| if (rc == -EACCES) { |
| /* if device aborted the command, skip HPA resizing */ |
| ata_dev_warn(dev, |
| "device aborted resize (%llu -> %llu), skipping HPA handling\n", |
| (unsigned long long)sectors, |
| (unsigned long long)native_sectors); |
| dev->horkage |= ATA_HORKAGE_BROKEN_HPA; |
| return 0; |
| } else if (rc) |
| return rc; |
| |
| /* re-read IDENTIFY data */ |
| rc = ata_dev_reread_id(dev, 0); |
| if (rc) { |
| ata_dev_err(dev, |
| "failed to re-read IDENTIFY data after HPA resizing\n"); |
| return rc; |
| } |
| |
| if (print_info) { |
| u64 new_sectors = ata_id_n_sectors(dev->id); |
| ata_dev_info(dev, |
| "HPA unlocked: %llu -> %llu, native %llu\n", |
| (unsigned long long)sectors, |
| (unsigned long long)new_sectors, |
| (unsigned long long)native_sectors); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_dump_id - IDENTIFY DEVICE info debugging output |
| * @id: IDENTIFY DEVICE page to dump |
| * |
| * Dump selected 16-bit words from the given IDENTIFY DEVICE |
| * page. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static inline void ata_dump_id(const u16 *id) |
| { |
| DPRINTK("49==0x%04x " |
| "53==0x%04x " |
| "63==0x%04x " |
| "64==0x%04x " |
| "75==0x%04x \n", |
| id[49], |
| id[53], |
| id[63], |
| id[64], |
| id[75]); |
| DPRINTK("80==0x%04x " |
| "81==0x%04x " |
| "82==0x%04x " |
| "83==0x%04x " |
| "84==0x%04x \n", |
| id[80], |
| id[81], |
| id[82], |
| id[83], |
| id[84]); |
| DPRINTK("88==0x%04x " |
| "93==0x%04x\n", |
| id[88], |
| id[93]); |
| } |
| |
| /** |
| * ata_id_xfermask - Compute xfermask from the given IDENTIFY data |
| * @id: IDENTIFY data to compute xfer mask from |
| * |
| * Compute the xfermask for this device. This is not as trivial |
| * as it seems if we must consider early devices correctly. |
| * |
| * FIXME: pre IDE drive timing (do we care ?). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Computed xfermask |
| */ |
| unsigned long ata_id_xfermask(const u16 *id) |
| { |
| unsigned long pio_mask, mwdma_mask, udma_mask; |
| |
| /* Usual case. Word 53 indicates word 64 is valid */ |
| if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { |
| pio_mask = id[ATA_ID_PIO_MODES] & 0x03; |
| pio_mask <<= 3; |
| pio_mask |= 0x7; |
| } else { |
| /* If word 64 isn't valid then Word 51 high byte holds |
| * the PIO timing number for the maximum. Turn it into |
| * a mask. |
| */ |
| u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; |
| if (mode < 5) /* Valid PIO range */ |
| pio_mask = (2 << mode) - 1; |
| else |
| pio_mask = 1; |
| |
| /* But wait.. there's more. Design your standards by |
| * committee and you too can get a free iordy field to |
| * process. However its the speeds not the modes that |
| * are supported... Note drivers using the timing API |
| * will get this right anyway |
| */ |
| } |
| |
| mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; |
| |
| if (ata_id_is_cfa(id)) { |
| /* |
| * Process compact flash extended modes |
| */ |
| int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; |
| int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; |
| |
| if (pio) |
| pio_mask |= (1 << 5); |
| if (pio > 1) |
| pio_mask |= (1 << 6); |
| if (dma) |
| mwdma_mask |= (1 << 3); |
| if (dma > 1) |
| mwdma_mask |= (1 << 4); |
| } |
| |
| udma_mask = 0; |
| if (id[ATA_ID_FIELD_VALID] & (1 << 2)) |
| udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; |
| |
| return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); |
| } |
| |
| static void ata_qc_complete_internal(struct ata_queued_cmd *qc) |
| { |
| struct completion *waiting = qc->private_data; |
| |
| complete(waiting); |
| } |
| |
| /** |
| * ata_exec_internal_sg - execute libata internal command |
| * @dev: Device to which the command is sent |
| * @tf: Taskfile registers for the command and the result |
| * @cdb: CDB for packet command |
| * @dma_dir: Data transfer direction of the command |
| * @sgl: sg list for the data buffer of the command |
| * @n_elem: Number of sg entries |
| * @timeout: Timeout in msecs (0 for default) |
| * |
| * Executes libata internal command with timeout. @tf contains |
| * command on entry and result on return. Timeout and error |
| * conditions are reported via return value. No recovery action |
| * is taken after a command times out. It's caller's duty to |
| * clean up after timeout. |
| * |
| * LOCKING: |
| * None. Should be called with kernel context, might sleep. |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned ata_exec_internal_sg(struct ata_device *dev, |
| struct ata_taskfile *tf, const u8 *cdb, |
| int dma_dir, struct scatterlist *sgl, |
| unsigned int n_elem, unsigned long timeout) |
| { |
| struct ata_link *link = dev->link; |
| struct ata_port *ap = link->ap; |
| u8 command = tf->command; |
| int auto_timeout = 0; |
| struct ata_queued_cmd *qc; |
| unsigned int preempted_tag; |
| u32 preempted_sactive; |
| u64 preempted_qc_active; |
| int preempted_nr_active_links; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| unsigned long flags; |
| unsigned int err_mask; |
| int rc; |
| |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* no internal command while frozen */ |
| if (ap->pflags & ATA_PFLAG_FROZEN) { |
| spin_unlock_irqrestore(ap->lock, flags); |
| return AC_ERR_SYSTEM; |
| } |
| |
| /* initialize internal qc */ |
| qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); |
| |
| qc->tag = ATA_TAG_INTERNAL; |
| qc->hw_tag = 0; |
| qc->scsicmd = NULL; |
| qc->ap = ap; |
| qc->dev = dev; |
| ata_qc_reinit(qc); |
| |
| preempted_tag = link->active_tag; |
| preempted_sactive = link->sactive; |
| preempted_qc_active = ap->qc_active; |
| preempted_nr_active_links = ap->nr_active_links; |
| link->active_tag = ATA_TAG_POISON; |
| link->sactive = 0; |
| ap->qc_active = 0; |
| ap->nr_active_links = 0; |
| |
| /* prepare & issue qc */ |
| qc->tf = *tf; |
| if (cdb) |
| memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); |
| |
| /* some SATA bridges need us to indicate data xfer direction */ |
| if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && |
| dma_dir == DMA_FROM_DEVICE) |
| qc->tf.feature |= ATAPI_DMADIR; |
| |
| qc->flags |= ATA_QCFLAG_RESULT_TF; |
| qc->dma_dir = dma_dir; |
| if (dma_dir != DMA_NONE) { |
| unsigned int i, buflen = 0; |
| struct scatterlist *sg; |
| |
| for_each_sg(sgl, sg, n_elem, i) |
| buflen += sg->length; |
| |
| ata_sg_init(qc, sgl, n_elem); |
| qc->nbytes = buflen; |
| } |
| |
| qc->private_data = &wait; |
| qc->complete_fn = ata_qc_complete_internal; |
| |
| ata_qc_issue(qc); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if (!timeout) { |
| if (ata_probe_timeout) |
| timeout = ata_probe_timeout * 1000; |
| else { |
| timeout = ata_internal_cmd_timeout(dev, command); |
| auto_timeout = 1; |
| } |
| } |
| |
| if (ap->ops->error_handler) |
| ata_eh_release(ap); |
| |
| rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); |
| |
| if (ap->ops->error_handler) |
| ata_eh_acquire(ap); |
| |
| ata_sff_flush_pio_task(ap); |
| |
| if (!rc) { |
| spin_lock_irqsave(ap->lock, flags); |
| |
| /* We're racing with irq here. If we lose, the |
| * following test prevents us from completing the qc |
| * twice. If we win, the port is frozen and will be |
| * cleaned up by ->post_internal_cmd(). |
| */ |
| if (qc->flags & ATA_QCFLAG_ACTIVE) { |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| |
| if (ap->ops->error_handler) |
| ata_port_freeze(ap); |
| else |
| ata_qc_complete(qc); |
| |
| if (ata_msg_warn(ap)) |
| ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", |
| command); |
| } |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| } |
| |
| /* do post_internal_cmd */ |
| if (ap->ops->post_internal_cmd) |
| ap->ops->post_internal_cmd(qc); |
| |
| /* perform minimal error analysis */ |
| if (qc->flags & ATA_QCFLAG_FAILED) { |
| if (qc->result_tf.command & (ATA_ERR | ATA_DF)) |
| qc->err_mask |= AC_ERR_DEV; |
| |
| if (!qc->err_mask) |
| qc->err_mask |= AC_ERR_OTHER; |
| |
| if (qc->err_mask & ~AC_ERR_OTHER) |
| qc->err_mask &= ~AC_ERR_OTHER; |
| } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { |
| qc->result_tf.command |= ATA_SENSE; |
| } |
| |
| /* finish up */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| *tf = qc->result_tf; |
| err_mask = qc->err_mask; |
| |
| ata_qc_free(qc); |
| link->active_tag = preempted_tag; |
| link->sactive = preempted_sactive; |
| ap->qc_active = preempted_qc_active; |
| ap->nr_active_links = preempted_nr_active_links; |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) |
| ata_internal_cmd_timed_out(dev, command); |
| |
| return err_mask; |
| } |
| |
| /** |
| * ata_exec_internal - execute libata internal command |
| * @dev: Device to which the command is sent |
| * @tf: Taskfile registers for the command and the result |
| * @cdb: CDB for packet command |
| * @dma_dir: Data transfer direction of the command |
| * @buf: Data buffer of the command |
| * @buflen: Length of data buffer |
| * @timeout: Timeout in msecs (0 for default) |
| * |
| * Wrapper around ata_exec_internal_sg() which takes simple |
| * buffer instead of sg list. |
| * |
| * LOCKING: |
| * None. Should be called with kernel context, might sleep. |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| unsigned ata_exec_internal(struct ata_device *dev, |
| struct ata_taskfile *tf, const u8 *cdb, |
| int dma_dir, void *buf, unsigned int buflen, |
| unsigned long timeout) |
| { |
| struct scatterlist *psg = NULL, sg; |
| unsigned int n_elem = 0; |
| |
| if (dma_dir != DMA_NONE) { |
| WARN_ON(!buf); |
| sg_init_one(&sg, buf, buflen); |
| psg = &sg; |
| n_elem++; |
| } |
| |
| return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, |
| timeout); |
| } |
| |
| /** |
| * ata_pio_need_iordy - check if iordy needed |
| * @adev: ATA device |
| * |
| * Check if the current speed of the device requires IORDY. Used |
| * by various controllers for chip configuration. |
| */ |
| unsigned int ata_pio_need_iordy(const struct ata_device *adev) |
| { |
| /* Don't set IORDY if we're preparing for reset. IORDY may |
| * lead to controller lock up on certain controllers if the |
| * port is not occupied. See bko#11703 for details. |
| */ |
| if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) |
| return 0; |
| /* Controller doesn't support IORDY. Probably a pointless |
| * check as the caller should know this. |
| */ |
| if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) |
| return 0; |
| /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ |
| if (ata_id_is_cfa(adev->id) |
| && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) |
| return 0; |
| /* PIO3 and higher it is mandatory */ |
| if (adev->pio_mode > XFER_PIO_2) |
| return 1; |
| /* We turn it on when possible */ |
| if (ata_id_has_iordy(adev->id)) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * ata_pio_mask_no_iordy - Return the non IORDY mask |
| * @adev: ATA device |
| * |
| * Compute the highest mode possible if we are not using iordy. Return |
| * -1 if no iordy mode is available. |
| */ |
| static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) |
| { |
| /* If we have no drive specific rule, then PIO 2 is non IORDY */ |
| if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ |
| u16 pio = adev->id[ATA_ID_EIDE_PIO]; |
| /* Is the speed faster than the drive allows non IORDY ? */ |
| if (pio) { |
| /* This is cycle times not frequency - watch the logic! */ |
| if (pio > 240) /* PIO2 is 240nS per cycle */ |
| return 3 << ATA_SHIFT_PIO; |
| return 7 << ATA_SHIFT_PIO; |
| } |
| } |
| return 3 << ATA_SHIFT_PIO; |
| } |
| |
| /** |
| * ata_do_dev_read_id - default ID read method |
| * @dev: device |
| * @tf: proposed taskfile |
| * @id: data buffer |
| * |
| * Issue the identify taskfile and hand back the buffer containing |
| * identify data. For some RAID controllers and for pre ATA devices |
| * this function is wrapped or replaced by the driver |
| */ |
| unsigned int ata_do_dev_read_id(struct ata_device *dev, |
| struct ata_taskfile *tf, u16 *id) |
| { |
| return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, |
| id, sizeof(id[0]) * ATA_ID_WORDS, 0); |
| } |
| |
| /** |
| * ata_dev_read_id - Read ID data from the specified device |
| * @dev: target device |
| * @p_class: pointer to class of the target device (may be changed) |
| * @flags: ATA_READID_* flags |
| * @id: buffer to read IDENTIFY data into |
| * |
| * Read ID data from the specified device. ATA_CMD_ID_ATA is |
| * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI |
| * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS |
| * for pre-ATA4 drives. |
| * |
| * FIXME: ATA_CMD_ID_ATA is optional for early drives and right |
| * now we abort if we hit that case. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, |
| unsigned int flags, u16 *id) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int class = *p_class; |
| struct ata_taskfile tf; |
| unsigned int err_mask = 0; |
| const char *reason; |
| bool is_semb = class == ATA_DEV_SEMB; |
| int may_fallback = 1, tried_spinup = 0; |
| int rc; |
| |
| if (ata_msg_ctl(ap)) |
| ata_dev_dbg(dev, "%s: ENTER\n", __func__); |
| |
| retry: |
| ata_tf_init(dev, &tf); |
| |
| switch (class) { |
| case ATA_DEV_SEMB: |
| class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ |
| /* fall through */ |
| case ATA_DEV_ATA: |
| case ATA_DEV_ZAC: |
| tf.command = ATA_CMD_ID_ATA; |
| break; |
| case ATA_DEV_ATAPI: |
| tf.command = ATA_CMD_ID_ATAPI; |
| break; |
| default: |
| rc = -ENODEV; |
| reason = "unsupported class"; |
| goto err_out; |
| } |
| |
| tf.protocol = ATA_PROT_PIO; |
| |
| /* Some devices choke if TF registers contain garbage. Make |
| * sure those are properly initialized. |
| */ |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| |
| /* Device presence detection is unreliable on some |
| * controllers. Always poll IDENTIFY if available. |
| */ |
| tf.flags |= ATA_TFLAG_POLLING; |
| |
| if (ap->ops->read_id) |
| err_mask = ap->ops->read_id(dev, &tf, id); |
| else |
| err_mask = ata_do_dev_read_id(dev, &tf, id); |
| |
| if (err_mask) { |
| if (err_mask & AC_ERR_NODEV_HINT) { |
| ata_dev_dbg(dev, "NODEV after polling detection\n"); |
| return -ENOENT; |
| } |
| |
| if (is_semb) { |
| ata_dev_info(dev, |
| "IDENTIFY failed on device w/ SEMB sig, disabled\n"); |
| /* SEMB is not supported yet */ |
| *p_class = ATA_DEV_SEMB_UNSUP; |
| return 0; |
| } |
| |
| if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { |
| /* Device or controller might have reported |
| * the wrong device class. Give a shot at the |
| * other IDENTIFY if the current one is |
| * aborted by the device. |
| */ |
| if (may_fallback) { |
| may_fallback = 0; |
| |
| if (class == ATA_DEV_ATA) |
| class = ATA_DEV_ATAPI; |
| else |
| class = ATA_DEV_ATA; |
| goto retry; |
| } |
| |
| /* Control reaches here iff the device aborted |
| * both flavors of IDENTIFYs which happens |
| * sometimes with phantom devices. |
| */ |
| ata_dev_dbg(dev, |
| "both IDENTIFYs aborted, assuming NODEV\n"); |
| return -ENOENT; |
| } |
| |
| rc = -EIO; |
| reason = "I/O error"; |
| goto err_out; |
| } |
| |
| if (dev->horkage & ATA_HORKAGE_DUMP_ID) { |
| ata_dev_dbg(dev, "dumping IDENTIFY data, " |
| "class=%d may_fallback=%d tried_spinup=%d\n", |
| class, may_fallback, tried_spinup); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, |
| 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); |
| } |
| |
| /* Falling back doesn't make sense if ID data was read |
| * successfully at least once. |
| */ |
| may_fallback = 0; |
| |
| swap_buf_le16(id, ATA_ID_WORDS); |
| |
| /* sanity check */ |
| rc = -EINVAL; |
| reason = "device reports invalid type"; |
| |
| if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { |
| if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) |
| goto err_out; |
| if (ap->host->flags & ATA_HOST_IGNORE_ATA && |
| ata_id_is_ata(id)) { |
| ata_dev_dbg(dev, |
| "host indicates ignore ATA devices, ignored\n"); |
| return -ENOENT; |
| } |
| } else { |
| if (ata_id_is_ata(id)) |
| goto err_out; |
| } |
| |
| if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { |
| tried_spinup = 1; |
| /* |
| * Drive powered-up in standby mode, and requires a specific |
| * SET_FEATURES spin-up subcommand before it will accept |
| * anything other than the original IDENTIFY command. |
| */ |
| err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); |
| if (err_mask && id[2] != 0x738c) { |
| rc = -EIO; |
| reason = "SPINUP failed"; |
| goto err_out; |
| } |
| /* |
| * If the drive initially returned incomplete IDENTIFY info, |
| * we now must reissue the IDENTIFY command. |
| */ |
| if (id[2] == 0x37c8) |
| goto retry; |
| } |
| |
| if ((flags & ATA_READID_POSTRESET) && |
| (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { |
| /* |
| * The exact sequence expected by certain pre-ATA4 drives is: |
| * SRST RESET |
| * IDENTIFY (optional in early ATA) |
| * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) |
| * anything else.. |
| * Some drives were very specific about that exact sequence. |
| * |
| * Note that ATA4 says lba is mandatory so the second check |
| * should never trigger. |
| */ |
| if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { |
| err_mask = ata_dev_init_params(dev, id[3], id[6]); |
| if (err_mask) { |
| rc = -EIO; |
| reason = "INIT_DEV_PARAMS failed"; |
| goto err_out; |
| } |
| |
| /* current CHS translation info (id[53-58]) might be |
| * changed. reread the identify device info. |
| */ |
| flags &= ~ATA_READID_POSTRESET; |
| goto retry; |
| } |
| } |
| |
| *p_class = class; |
| |
| return 0; |
| |
| err_out: |
| if (ata_msg_warn(ap)) |
| ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", |
| reason, err_mask); |
| return rc; |
| } |
| |
| /** |
| * ata_read_log_page - read a specific log page |
| * @dev: target device |
| * @log: log to read |
| * @page: page to read |
| * @buf: buffer to store read page |
| * @sectors: number of sectors to read |
| * |
| * Read log page using READ_LOG_EXT command. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| unsigned int ata_read_log_page(struct ata_device *dev, u8 log, |
| u8 page, void *buf, unsigned int sectors) |
| { |
| unsigned long ap_flags = dev->link->ap->flags; |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| bool dma = false; |
| |
| DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); |
| |
| /* |
| * Return error without actually issuing the command on controllers |
| * which e.g. lockup on a read log page. |
| */ |
| if (ap_flags & ATA_FLAG_NO_LOG_PAGE) |
| return AC_ERR_DEV; |
| |
| retry: |
| ata_tf_init(dev, &tf); |
| if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && |
| !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { |
| tf.command = ATA_CMD_READ_LOG_DMA_EXT; |
| tf.protocol = ATA_PROT_DMA; |
| dma = true; |
| } else { |
| tf.command = ATA_CMD_READ_LOG_EXT; |
| tf.protocol = ATA_PROT_PIO; |
| dma = false; |
| } |
| tf.lbal = log; |
| tf.lbam = page; |
| tf.nsect = sectors; |
| tf.hob_nsect = sectors >> 8; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, |
| buf, sectors * ATA_SECT_SIZE, 0); |
| |
| if (err_mask && dma) { |
| dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; |
| ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); |
| goto retry; |
| } |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| |
| static bool ata_log_supported(struct ata_device *dev, u8 log) |
| { |
| struct ata_port *ap = dev->link->ap; |
| |
| if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) |
| return false; |
| return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; |
| } |
| |
| static bool ata_identify_page_supported(struct ata_device *dev, u8 page) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int err, i; |
| |
| if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { |
| ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); |
| return false; |
| } |
| |
| /* |
| * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is |
| * supported. |
| */ |
| err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, |
| 1); |
| if (err) { |
| ata_dev_info(dev, |
| "failed to get Device Identify Log Emask 0x%x\n", |
| err); |
| return false; |
| } |
| |
| for (i = 0; i < ap->sector_buf[8]; i++) { |
| if (ap->sector_buf[9 + i] == page) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int ata_do_link_spd_horkage(struct ata_device *dev) |
| { |
| struct ata_link *plink = ata_dev_phys_link(dev); |
| u32 target, target_limit; |
| |
| if (!sata_scr_valid(plink)) |
| return 0; |
| |
| if (dev->horkage & ATA_HORKAGE_1_5_GBPS) |
| target = 1; |
| else |
| return 0; |
| |
| target_limit = (1 << target) - 1; |
| |
| /* if already on stricter limit, no need to push further */ |
| if (plink->sata_spd_limit <= target_limit) |
| return 0; |
| |
| plink->sata_spd_limit = target_limit; |
| |
| /* Request another EH round by returning -EAGAIN if link is |
| * going faster than the target speed. Forward progress is |
| * guaranteed by setting sata_spd_limit to target_limit above. |
| */ |
| if (plink->sata_spd > target) { |
| ata_dev_info(dev, "applying link speed limit horkage to %s\n", |
| sata_spd_string(target)); |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static inline u8 ata_dev_knobble(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| |
| if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) |
| return 0; |
| |
| return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); |
| } |
| |
| static void ata_dev_config_ncq_send_recv(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int err_mask; |
| |
| if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { |
| ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); |
| return; |
| } |
| err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, |
| 0, ap->sector_buf, 1); |
| if (err_mask) { |
| ata_dev_dbg(dev, |
| "failed to get NCQ Send/Recv Log Emask 0x%x\n", |
| err_mask); |
| } else { |
| u8 *cmds = dev->ncq_send_recv_cmds; |
| |
| dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; |
| memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); |
| |
| if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { |
| ata_dev_dbg(dev, "disabling queued TRIM support\n"); |
| cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= |
| ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; |
| } |
| } |
| } |
| |
| static void ata_dev_config_ncq_non_data(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int err_mask; |
| |
| if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { |
| ata_dev_warn(dev, |
| "NCQ Send/Recv Log not supported\n"); |
| return; |
| } |
| err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, |
| 0, ap->sector_buf, 1); |
| if (err_mask) { |
| ata_dev_dbg(dev, |
| "failed to get NCQ Non-Data Log Emask 0x%x\n", |
| err_mask); |
| } else { |
| u8 *cmds = dev->ncq_non_data_cmds; |
| |
| memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); |
| } |
| } |
| |
| static void ata_dev_config_ncq_prio(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int err_mask; |
| |
| if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { |
| dev->flags &= ~ATA_DFLAG_NCQ_PRIO; |
| return; |
| } |
| |
| err_mask = ata_read_log_page(dev, |
| ATA_LOG_IDENTIFY_DEVICE, |
| ATA_LOG_SATA_SETTINGS, |
| ap->sector_buf, |
| 1); |
| if (err_mask) { |
| ata_dev_dbg(dev, |
| "failed to get Identify Device data, Emask 0x%x\n", |
| err_mask); |
| return; |
| } |
| |
| if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { |
| dev->flags |= ATA_DFLAG_NCQ_PRIO; |
| } else { |
| dev->flags &= ~ATA_DFLAG_NCQ_PRIO; |
| ata_dev_dbg(dev, "SATA page does not support priority\n"); |
| } |
| |
| } |
| |
| static int ata_dev_config_ncq(struct ata_device *dev, |
| char *desc, size_t desc_sz) |
| { |
| struct ata_port *ap = dev->link->ap; |
| int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); |
| unsigned int err_mask; |
| char *aa_desc = ""; |
| |
| if (!ata_id_has_ncq(dev->id)) { |
| desc[0] = '\0'; |
| return 0; |
| } |
| if (dev->horkage & ATA_HORKAGE_NONCQ) { |
| snprintf(desc, desc_sz, "NCQ (not used)"); |
| return 0; |
| } |
| if (ap->flags & ATA_FLAG_NCQ) { |
| hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); |
| dev->flags |= ATA_DFLAG_NCQ; |
| } |
| |
| if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && |
| (ap->flags & ATA_FLAG_FPDMA_AA) && |
| ata_id_has_fpdma_aa(dev->id)) { |
| err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, |
| SATA_FPDMA_AA); |
| if (err_mask) { |
| ata_dev_err(dev, |
| "failed to enable AA (error_mask=0x%x)\n", |
| err_mask); |
| if (err_mask != AC_ERR_DEV) { |
| dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; |
| return -EIO; |
| } |
| } else |
| aa_desc = ", AA"; |
| } |
| |
| if (hdepth >= ddepth) |
| snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); |
| else |
| snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, |
| ddepth, aa_desc); |
| |
| if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { |
| if (ata_id_has_ncq_send_and_recv(dev->id)) |
| ata_dev_config_ncq_send_recv(dev); |
| if (ata_id_has_ncq_non_data(dev->id)) |
| ata_dev_config_ncq_non_data(dev); |
| if (ata_id_has_ncq_prio(dev->id)) |
| ata_dev_config_ncq_prio(dev); |
| } |
| |
| return 0; |
| } |
| |
| static void ata_dev_config_sense_reporting(struct ata_device *dev) |
| { |
| unsigned int err_mask; |
| |
| if (!ata_id_has_sense_reporting(dev->id)) |
| return; |
| |
| if (ata_id_sense_reporting_enabled(dev->id)) |
| return; |
| |
| err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); |
| if (err_mask) { |
| ata_dev_dbg(dev, |
| "failed to enable Sense Data Reporting, Emask 0x%x\n", |
| err_mask); |
| } |
| } |
| |
| static void ata_dev_config_zac(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| unsigned int err_mask; |
| u8 *identify_buf = ap->sector_buf; |
| |
| dev->zac_zones_optimal_open = U32_MAX; |
| dev->zac_zones_optimal_nonseq = U32_MAX; |
| dev->zac_zones_max_open = U32_MAX; |
| |
| /* |
| * Always set the 'ZAC' flag for Host-managed devices. |
| */ |
| if (dev->class == ATA_DEV_ZAC) |
| dev->flags |= ATA_DFLAG_ZAC; |
| else if (ata_id_zoned_cap(dev->id) == 0x01) |
| /* |
| * Check for host-aware devices. |
| */ |
| dev->flags |= ATA_DFLAG_ZAC; |
| |
| if (!(dev->flags & ATA_DFLAG_ZAC)) |
| return; |
| |
| if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { |
| ata_dev_warn(dev, |
| "ATA Zoned Information Log not supported\n"); |
| return; |
| } |
| |
| /* |
| * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) |
| */ |
| err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, |
| ATA_LOG_ZONED_INFORMATION, |
| identify_buf, 1); |
| if (!err_mask) { |
| u64 zoned_cap, opt_open, opt_nonseq, max_open; |
| |
| zoned_cap = get_unaligned_le64(&identify_buf[8]); |
| if ((zoned_cap >> 63)) |
| dev->zac_zoned_cap = (zoned_cap & 1); |
| opt_open = get_unaligned_le64(&identify_buf[24]); |
| if ((opt_open >> 63)) |
| dev->zac_zones_optimal_open = (u32)opt_open; |
| opt_nonseq = get_unaligned_le64(&identify_buf[32]); |
| if ((opt_nonseq >> 63)) |
| dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; |
| max_open = get_unaligned_le64(&identify_buf[40]); |
| if ((max_open >> 63)) |
| dev->zac_zones_max_open = (u32)max_open; |
| } |
| } |
| |
| static void ata_dev_config_trusted(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| u64 trusted_cap; |
| unsigned int err; |
| |
| if (!ata_id_has_trusted(dev->id)) |
| return; |
| |
| if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { |
| ata_dev_warn(dev, |
| "Security Log not supported\n"); |
| return; |
| } |
| |
| err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, |
| ap->sector_buf, 1); |
| if (err) { |
| ata_dev_dbg(dev, |
| "failed to read Security Log, Emask 0x%x\n", err); |
| return; |
| } |
| |
| trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); |
| if (!(trusted_cap & (1ULL << 63))) { |
| ata_dev_dbg(dev, |
| "Trusted Computing capability qword not valid!\n"); |
| return; |
| } |
| |
| if (trusted_cap & (1 << 0)) |
| dev->flags |= ATA_DFLAG_TRUSTED; |
| } |
| |
| /** |
| * ata_dev_configure - Configure the specified ATA/ATAPI device |
| * @dev: Target device to configure |
| * |
| * Configure @dev according to @dev->id. Generic and low-level |
| * driver specific fixups are also applied. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise |
| */ |
| int ata_dev_configure(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct ata_eh_context *ehc = &dev->link->eh_context; |
| int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; |
| const u16 *id = dev->id; |
| unsigned long xfer_mask; |
| unsigned int err_mask; |
| char revbuf[7]; /* XYZ-99\0 */ |
| char fwrevbuf[ATA_ID_FW_REV_LEN+1]; |
| char modelbuf[ATA_ID_PROD_LEN+1]; |
| int rc; |
| |
| if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { |
| ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); |
| return 0; |
| } |
| |
| if (ata_msg_probe(ap)) |
| ata_dev_dbg(dev, "%s: ENTER\n", __func__); |
| |
| /* set horkage */ |
| dev->horkage |= ata_dev_blacklisted(dev); |
| ata_force_horkage(dev); |
| |
| if (dev->horkage & ATA_HORKAGE_DISABLE) { |
| ata_dev_info(dev, "unsupported device, disabling\n"); |
| ata_dev_disable(dev); |
| return 0; |
| } |
| |
| if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && |
| dev->class == ATA_DEV_ATAPI) { |
| ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", |
| atapi_enabled ? "not supported with this driver" |
| : "disabled"); |
| ata_dev_disable(dev); |
| return 0; |
| } |
| |
| rc = ata_do_link_spd_horkage(dev); |
| if (rc) |
| return rc; |
| |
| /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ |
| if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && |
| (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) |
| dev->horkage |= ATA_HORKAGE_NOLPM; |
| |
| if (ap->flags & ATA_FLAG_NO_LPM) |
| dev->horkage |= ATA_HORKAGE_NOLPM; |
| |
| if (dev->horkage & ATA_HORKAGE_NOLPM) { |
| ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); |
| dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; |
| } |
| |
| /* let ACPI work its magic */ |
| rc = ata_acpi_on_devcfg(dev); |
| if (rc) |
| return rc; |
| |
| /* massage HPA, do it early as it might change IDENTIFY data */ |
| rc = ata_hpa_resize(dev); |
| if (rc) |
| return rc; |
| |
| /* print device capabilities */ |
| if (ata_msg_probe(ap)) |
| ata_dev_dbg(dev, |
| "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " |
| "85:%04x 86:%04x 87:%04x 88:%04x\n", |
| __func__, |
| id[49], id[82], id[83], id[84], |
| id[85], id[86], id[87], id[88]); |
| |
| /* initialize to-be-configured parameters */ |
| dev->flags &= ~ATA_DFLAG_CFG_MASK; |
| dev->max_sectors = 0; |
| dev->cdb_len = 0; |
| dev->n_sectors = 0; |
| dev->cylinders = 0; |
| dev->heads = 0; |
| dev->sectors = 0; |
| dev->multi_count = 0; |
| |
| /* |
| * common ATA, ATAPI feature tests |
| */ |
| |
| /* find max transfer mode; for printk only */ |
| xfer_mask = ata_id_xfermask(id); |
| |
| if (ata_msg_probe(ap)) |
| ata_dump_id(id); |
| |
| /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ |
| ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, |
| sizeof(fwrevbuf)); |
| |
| ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, |
| sizeof(modelbuf)); |
| |
| /* ATA-specific feature tests */ |
| if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { |
| if (ata_id_is_cfa(id)) { |
| /* CPRM may make this media unusable */ |
| if (id[ATA_ID_CFA_KEY_MGMT] & 1) |
| ata_dev_warn(dev, |
| "supports DRM functions and may not be fully accessible\n"); |
| snprintf(revbuf, 7, "CFA"); |
| } else { |
| snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); |
| /* Warn the user if the device has TPM extensions */ |
| if (ata_id_has_tpm(id)) |
| ata_dev_warn(dev, |
| "supports DRM functions and may not be fully accessible\n"); |
| } |
| |
| dev->n_sectors = ata_id_n_sectors(id); |
| |
| /* get current R/W Multiple count setting */ |
| if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { |
| unsigned int max = dev->id[47] & 0xff; |
| unsigned int cnt = dev->id[59] & 0xff; |
| /* only recognize/allow powers of two here */ |
| if (is_power_of_2(max) && is_power_of_2(cnt)) |
| if (cnt <= max) |
| dev->multi_count = cnt; |
| } |
| |
| if (ata_id_has_lba(id)) { |
| const char *lba_desc; |
| char ncq_desc[24]; |
| |
| lba_desc = "LBA"; |
| dev->flags |= ATA_DFLAG_LBA; |
| if (ata_id_has_lba48(id)) { |
| dev->flags |= ATA_DFLAG_LBA48; |
| lba_desc = "LBA48"; |
| |
| if (dev->n_sectors >= (1UL << 28) && |
| ata_id_has_flush_ext(id)) |
| dev->flags |= ATA_DFLAG_FLUSH_EXT; |
| } |
| |
| /* config NCQ */ |
| rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); |
| if (rc) |
| return rc; |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) { |
| ata_dev_info(dev, "%s: %s, %s, max %s\n", |
| revbuf, modelbuf, fwrevbuf, |
| ata_mode_string(xfer_mask)); |
| ata_dev_info(dev, |
| "%llu sectors, multi %u: %s %s\n", |
| (unsigned long long)dev->n_sectors, |
| dev->multi_count, lba_desc, ncq_desc); |
| } |
| } else { |
| /* CHS */ |
| |
| /* Default translation */ |
| dev->cylinders = id[1]; |
| dev->heads = id[3]; |
| dev->sectors = id[6]; |
| |
| if (ata_id_current_chs_valid(id)) { |
| /* Current CHS translation is valid. */ |
| dev->cylinders = id[54]; |
| dev->heads = id[55]; |
| dev->sectors = id[56]; |
| } |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) { |
| ata_dev_info(dev, "%s: %s, %s, max %s\n", |
| revbuf, modelbuf, fwrevbuf, |
| ata_mode_string(xfer_mask)); |
| ata_dev_info(dev, |
| "%llu sectors, multi %u, CHS %u/%u/%u\n", |
| (unsigned long long)dev->n_sectors, |
| dev->multi_count, dev->cylinders, |
| dev->heads, dev->sectors); |
| } |
| } |
| |
| /* Check and mark DevSlp capability. Get DevSlp timing variables |
| * from SATA Settings page of Identify Device Data Log. |
| */ |
| if (ata_id_has_devslp(dev->id)) { |
| u8 *sata_setting = ap->sector_buf; |
| int i, j; |
| |
| dev->flags |= ATA_DFLAG_DEVSLP; |
| err_mask = ata_read_log_page(dev, |
| ATA_LOG_IDENTIFY_DEVICE, |
| ATA_LOG_SATA_SETTINGS, |
| sata_setting, |
| 1); |
| if (err_mask) |
| ata_dev_dbg(dev, |
| "failed to get Identify Device Data, Emask 0x%x\n", |
| err_mask); |
| else |
| for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { |
| j = ATA_LOG_DEVSLP_OFFSET + i; |
| dev->devslp_timing[i] = sata_setting[j]; |
| } |
| } |
| ata_dev_config_sense_reporting(dev); |
| ata_dev_config_zac(dev); |
| ata_dev_config_trusted(dev); |
| dev->cdb_len = 32; |
| } |
| |
| /* ATAPI-specific feature tests */ |
| else if (dev->class == ATA_DEV_ATAPI) { |
| const char *cdb_intr_string = ""; |
| const char *atapi_an_string = ""; |
| const char *dma_dir_string = ""; |
| u32 sntf; |
| |
| rc = atapi_cdb_len(id); |
| if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { |
| if (ata_msg_warn(ap)) |
| ata_dev_warn(dev, "unsupported CDB len\n"); |
| rc = -EINVAL; |
| goto err_out_nosup; |
| } |
| dev->cdb_len = (unsigned int) rc; |
| |
| /* Enable ATAPI AN if both the host and device have |
| * the support. If PMP is attached, SNTF is required |
| * to enable ATAPI AN to discern between PHY status |
| * changed notifications and ATAPI ANs. |
| */ |
| if (atapi_an && |
| (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && |
| (!sata_pmp_attached(ap) || |
| sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { |
| /* issue SET feature command to turn this on */ |
| err_mask = ata_dev_set_feature(dev, |
| SETFEATURES_SATA_ENABLE, SATA_AN); |
| if (err_mask) |
| ata_dev_err(dev, |
| "failed to enable ATAPI AN (err_mask=0x%x)\n", |
| err_mask); |
| else { |
| dev->flags |= ATA_DFLAG_AN; |
| atapi_an_string = ", ATAPI AN"; |
| } |
| } |
| |
| if (ata_id_cdb_intr(dev->id)) { |
| dev->flags |= ATA_DFLAG_CDB_INTR; |
| cdb_intr_string = ", CDB intr"; |
| } |
| |
| if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { |
| dev->flags |= ATA_DFLAG_DMADIR; |
| dma_dir_string = ", DMADIR"; |
| } |
| |
| if (ata_id_has_da(dev->id)) { |
| dev->flags |= ATA_DFLAG_DA; |
| zpodd_init(dev); |
| } |
| |
| /* print device info to dmesg */ |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_info(dev, |
| "ATAPI: %s, %s, max %s%s%s%s\n", |
| modelbuf, fwrevbuf, |
| ata_mode_string(xfer_mask), |
| cdb_intr_string, atapi_an_string, |
| dma_dir_string); |
| } |
| |
| /* determine max_sectors */ |
| dev->max_sectors = ATA_MAX_SECTORS; |
| if (dev->flags & ATA_DFLAG_LBA48) |
| dev->max_sectors = ATA_MAX_SECTORS_LBA48; |
| |
| /* Limit PATA drive on SATA cable bridge transfers to udma5, |
| 200 sectors */ |
| if (ata_dev_knobble(dev)) { |
| if (ata_msg_drv(ap) && print_info) |
| ata_dev_info(dev, "applying bridge limits\n"); |
| dev->udma_mask &= ATA_UDMA5; |
| dev->max_sectors = ATA_MAX_SECTORS; |
| } |
| |
| if ((dev->class == ATA_DEV_ATAPI) && |
| (atapi_command_packet_set(id) == TYPE_TAPE)) { |
| dev->max_sectors = ATA_MAX_SECTORS_TAPE; |
| dev->horkage |= ATA_HORKAGE_STUCK_ERR; |
| } |
| |
| if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) |
| dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, |
| dev->max_sectors); |
| |
| if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) |
| dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, |
| dev->max_sectors); |
| |
| if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) |
| dev->max_sectors = ATA_MAX_SECTORS_LBA48; |
| |
| if (ap->ops->dev_config) |
| ap->ops->dev_config(dev); |
| |
| if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { |
| /* Let the user know. We don't want to disallow opens for |
| rescue purposes, or in case the vendor is just a blithering |
| idiot. Do this after the dev_config call as some controllers |
| with buggy firmware may want to avoid reporting false device |
| bugs */ |
| |
| if (print_info) { |
| ata_dev_warn(dev, |
| "Drive reports diagnostics failure. This may indicate a drive\n"); |
| ata_dev_warn(dev, |
| "fault or invalid emulation. Contact drive vendor for information.\n"); |
| } |
| } |
| |
| if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { |
| ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); |
| ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); |
| } |
| |
| return 0; |
| |
| err_out_nosup: |
| if (ata_msg_probe(ap)) |
| ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); |
| return rc; |
| } |
| |
| /** |
| * ata_cable_40wire - return 40 wire cable type |
| * @ap: port |
| * |
| * Helper method for drivers which want to hardwire 40 wire cable |
| * detection. |
| */ |
| |
| int ata_cable_40wire(struct ata_port *ap) |
| { |
| return ATA_CBL_PATA40; |
| } |
| |
| /** |
| * ata_cable_80wire - return 80 wire cable type |
| * @ap: port |
| * |
| * Helper method for drivers which want to hardwire 80 wire cable |
| * detection. |
| */ |
| |
| int ata_cable_80wire(struct ata_port *ap) |
| { |
| return ATA_CBL_PATA80; |
| } |
| |
| /** |
| * ata_cable_unknown - return unknown PATA cable. |
| * @ap: port |
| * |
| * Helper method for drivers which have no PATA cable detection. |
| */ |
| |
| int ata_cable_unknown(struct ata_port *ap) |
| { |
| return ATA_CBL_PATA_UNK; |
| } |
| |
| /** |
| * ata_cable_ignore - return ignored PATA cable. |
| * @ap: port |
| * |
| * Helper method for drivers which don't use cable type to limit |
| * transfer mode. |
| */ |
| int ata_cable_ignore(struct ata_port *ap) |
| { |
| return ATA_CBL_PATA_IGN; |
| } |
| |
| /** |
| * ata_cable_sata - return SATA cable type |
| * @ap: port |
| * |
| * Helper method for drivers which have SATA cables |
| */ |
| |
| int ata_cable_sata(struct ata_port *ap) |
| { |
| return ATA_CBL_SATA; |
| } |
| |
| /** |
| * ata_bus_probe - Reset and probe ATA bus |
| * @ap: Bus to probe |
| * |
| * Master ATA bus probing function. Initiates a hardware-dependent |
| * bus reset, then attempts to identify any devices found on |
| * the bus. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Zero on success, negative errno otherwise. |
| */ |
| |
| int ata_bus_probe(struct ata_port *ap) |
| { |
| unsigned int classes[ATA_MAX_DEVICES]; |
| int tries[ATA_MAX_DEVICES]; |
| int rc; |
| struct ata_device *dev; |
| |
| ata_for_each_dev(dev, &ap->link, ALL) |
| tries[dev->devno] = ATA_PROBE_MAX_TRIES; |
| |
| retry: |
| ata_for_each_dev(dev, &ap->link, ALL) { |
| /* If we issue an SRST then an ATA drive (not ATAPI) |
| * may change configuration and be in PIO0 timing. If |
| * we do a hard reset (or are coming from power on) |
| * this is true for ATA or ATAPI. Until we've set a |
| * suitable controller mode we should not touch the |
| * bus as we may be talking too fast. |
| */ |
| dev->pio_mode = XFER_PIO_0; |
| dev->dma_mode = 0xff; |
| |
| /* If the controller has a pio mode setup function |
| * then use it to set the chipset to rights. Don't |
| * touch the DMA setup as that will be dealt with when |
| * configuring devices. |
| */ |
| if (ap->ops->set_piomode) |
| ap->ops->set_piomode(ap, dev); |
| } |
| |
| /* reset and determine device classes */ |
| ap->ops->phy_reset(ap); |
| |
| ata_for_each_dev(dev, &ap->link, ALL) { |
| if (dev->class != ATA_DEV_UNKNOWN) |
| classes[dev->devno] = dev->class; |
| else |
| classes[dev->devno] = ATA_DEV_NONE; |
| |
| dev->class = ATA_DEV_UNKNOWN; |
| } |
| |
| /* read IDENTIFY page and configure devices. We have to do the identify |
| specific sequence bass-ackwards so that PDIAG- is released by |
| the slave device */ |
| |
| ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { |
| if (tries[dev->devno]) |
| dev->class = classes[dev->devno]; |
| |
| if (!ata_dev_enabled(dev)) |
| continue; |
| |
| rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, |
| dev->id); |
| if (rc) |
| goto fail; |
| } |
| |
| /* Now ask for the cable type as PDIAG- should have been released */ |
| if (ap->ops->cable_detect) |
| ap->cbl = ap->ops->cable_detect(ap); |
| |
| /* We may have SATA bridge glue hiding here irrespective of |
| * the reported cable types and sensed types. When SATA |
| * drives indicate we have a bridge, we don't know which end |
| * of the link the bridge is which is a problem. |
| */ |
| ata_for_each_dev(dev, &ap->link, ENABLED) |
| if (ata_id_is_sata(dev->id)) |
| ap->cbl = ATA_CBL_SATA; |
| |
| /* After the identify sequence we can now set up the devices. We do |
| this in the normal order so that the user doesn't get confused */ |
| |
| ata_for_each_dev(dev, &ap->link, ENABLED) { |
| ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; |
| rc = ata_dev_configure(dev); |
| ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; |
| if (rc) |
| goto fail; |
| } |
| |
| /* configure transfer mode */ |
| rc = ata_set_mode(&ap->link, &dev); |
| if (rc) |
| goto fail; |
| |
| ata_for_each_dev(dev, &ap->link, ENABLED) |
| return 0; |
| |
| return -ENODEV; |
| |
| fail: |
| tries[dev->devno]--; |
| |
| switch (rc) { |
| case -EINVAL: |
| /* eeek, something went very wrong, give up */ |
| tries[dev->devno] = 0; |
| break; |
| |
| case -ENODEV: |
| /* give it just one more chance */ |
| tries[dev->devno] = min(tries[dev->devno], 1); |
| /* fall through */ |
| case -EIO: |
| if (tries[dev->devno] == 1) { |
| /* This is the last chance, better to slow |
| * down than lose it. |
| */ |
| sata_down_spd_limit(&ap->link, 0); |
| ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); |
| } |
| } |
| |
| if (!tries[dev->devno]) |
| ata_dev_disable(dev); |
| |
| goto retry; |
| } |
| |
| /** |
| * sata_print_link_status - Print SATA link status |
| * @link: SATA link to printk link status about |
| * |
| * This function prints link speed and status of a SATA link. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void sata_print_link_status(struct ata_link *link) |
| { |
| u32 sstatus, scontrol, tmp; |
| |
| if (sata_scr_read(link, SCR_STATUS, &sstatus)) |
| return; |
| sata_scr_read(link, SCR_CONTROL, &scontrol); |
| |
| if (ata_phys_link_online(link)) { |
| tmp = (sstatus >> 4) & 0xf; |
| ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", |
| sata_spd_string(tmp), sstatus, scontrol); |
| } else { |
| ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", |
| sstatus, scontrol); |
| } |
| } |
| |
| /** |
| * ata_dev_pair - return other device on cable |
| * @adev: device |
| * |
| * Obtain the other device on the same cable, or if none is |
| * present NULL is returned |
| */ |
| |
| struct ata_device *ata_dev_pair(struct ata_device *adev) |
| { |
| struct ata_link *link = adev->link; |
| struct ata_device *pair = &link->device[1 - adev->devno]; |
| if (!ata_dev_enabled(pair)) |
| return NULL; |
| return pair; |
| } |
| |
| /** |
| * sata_down_spd_limit - adjust SATA spd limit downward |
| * @link: Link to adjust SATA spd limit for |
| * @spd_limit: Additional limit |
| * |
| * Adjust SATA spd limit of @link downward. Note that this |
| * function only adjusts the limit. The change must be applied |
| * using sata_set_spd(). |
| * |
| * If @spd_limit is non-zero, the speed is limited to equal to or |
| * lower than @spd_limit if such speed is supported. If |
| * @spd_limit is slower than any supported speed, only the lowest |
| * supported speed is allowed. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure |
| */ |
| int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) |
| { |
| u32 sstatus, spd, mask; |
| int rc, bit; |
| |
| if (!sata_scr_valid(link)) |
| return -EOPNOTSUPP; |
| |
| /* If SCR can be read, use it to determine the current SPD. |
| * If not, use cached value in link->sata_spd. |
| */ |
| rc = sata_scr_read(link, SCR_STATUS, &sstatus); |
| if (rc == 0 && ata_sstatus_online(sstatus)) |
| spd = (sstatus >> 4) & 0xf; |
| else |
| spd = link->sata_spd; |
| |
| mask = link->sata_spd_limit; |
| if (mask <= 1) |
| return -EINVAL; |
| |
| /* unconditionally mask off the highest bit */ |
| bit = fls(mask) - 1; |
| mask &= ~(1 << bit); |
| |
| /* |
| * Mask off all speeds higher than or equal to the current one. At |
| * this point, if current SPD is not available and we previously |
| * recorded the link speed from SStatus, the driver has already |
| * masked off the highest bit so mask should already be 1 or 0. |
| * Otherwise, we should not force 1.5Gbps on a link where we have |
| * not previously recorded speed from SStatus. Just return in this |
| * case. |
| */ |
| if (spd > 1) |
| mask &= (1 << (spd - 1)) - 1; |
| else |
| return -EINVAL; |
| |
| /* were we already at the bottom? */ |
| if (!mask) |
| return -EINVAL; |
| |
| if (spd_limit) { |
| if (mask & ((1 << spd_limit) - 1)) |
| mask &= (1 << spd_limit) - 1; |
| else { |
| bit = ffs(mask) - 1; |
| mask = 1 << bit; |
| } |
| } |
| |
| link->sata_spd_limit = mask; |
| |
| ata_link_warn(link, "limiting SATA link speed to %s\n", |
| sata_spd_string(fls(mask))); |
| |
| return 0; |
| } |
| |
| static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) |
| { |
| struct ata_link *host_link = &link->ap->link; |
| u32 limit, target, spd; |
| |
| limit = link->sata_spd_limit; |
| |
| /* Don't configure downstream link faster than upstream link. |
| * It doesn't speed up anything and some PMPs choke on such |
| * configuration. |
| */ |
| if (!ata_is_host_link(link) && host_link->sata_spd) |
| limit &= (1 << host_link->sata_spd) - 1; |
| |
| if (limit == UINT_MAX) |
| target = 0; |
| else |
| target = fls(limit); |
| |
| spd = (*scontrol >> 4) & 0xf; |
| *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); |
| |
| return spd != target; |
| } |
| |
| /** |
| * sata_set_spd_needed - is SATA spd configuration needed |
| * @link: Link in question |
| * |
| * Test whether the spd limit in SControl matches |
| * @link->sata_spd_limit. This function is used to determine |
| * whether hardreset is necessary to apply SATA spd |
| * configuration. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 1 if SATA spd configuration is needed, 0 otherwise. |
| */ |
| static int sata_set_spd_needed(struct ata_link *link) |
| { |
| u32 scontrol; |
| |
| if (sata_scr_read(link, SCR_CONTROL, &scontrol)) |
| return 1; |
| |
| return __sata_set_spd_needed(link, &scontrol); |
| } |
| |
| /** |
| * sata_set_spd - set SATA spd according to spd limit |
| * @link: Link to set SATA spd for |
| * |
| * Set SATA spd of @link according to sata_spd_limit. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 if spd doesn't need to be changed, 1 if spd has been |
| * changed. Negative errno if SCR registers are inaccessible. |
| */ |
| int sata_set_spd(struct ata_link *link) |
| { |
| u32 scontrol; |
| int rc; |
| |
| if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) |
| return rc; |
| |
| if (!__sata_set_spd_needed(link, &scontrol)) |
| return 0; |
| |
| if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) |
| return rc; |
| |
| return 1; |
| } |
| |
| /* |
| * This mode timing computation functionality is ported over from |
| * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik |
| */ |
| /* |
| * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). |
| * These were taken from ATA/ATAPI-6 standard, rev 0a, except |
| * for UDMA6, which is currently supported only by Maxtor drives. |
| * |
| * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. |
| */ |
| |
| static const struct ata_timing ata_timing[] = { |
| /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ |
| { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, |
| { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, |
| { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, |
| { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, |
| { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, |
| { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, |
| { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, |
| |
| { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, |
| { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, |
| { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, |
| |
| { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, |
| { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, |
| { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, |
| { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, |
| { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, |
| |
| /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ |
| { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, |
| { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, |
| { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, |
| { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, |
| { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, |
| { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, |
| { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, |
| |
| { 0xFF } |
| }; |
| |
| #define ENOUGH(v, unit) (((v)-1)/(unit)+1) |
| #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) |
| |
| static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) |
| { |
| q->setup = EZ(t->setup, T); |
| q->act8b = EZ(t->act8b, T); |
| q->rec8b = EZ(t->rec8b, T); |
| q->cyc8b = EZ(t->cyc8b, T); |
| q->active = EZ(t->active, T); |
| q->recover = EZ(t->recover, T); |
| q->dmack_hold = EZ(t->dmack_hold, T); |
| q->cycle = EZ(t->cycle, T); |
| q->udma = EZ(t->udma, UT); |
| } |
| |
| void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, |
| struct ata_timing *m, unsigned int what) |
| { |
| if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); |
| if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); |
| if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); |
| if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); |
| if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); |
| if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); |
| if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); |
| if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); |
| if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); |
| } |
| |
| const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) |
| { |
| const struct ata_timing *t = ata_timing; |
| |
| while (xfer_mode > t->mode) |
| t++; |
| |
| if (xfer_mode == t->mode) |
| return t; |
| |
| WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", |
| __func__, xfer_mode); |
| |
| return NULL; |
| } |
| |
| int ata_timing_compute(struct ata_device *adev, unsigned short speed, |
| struct ata_timing *t, int T, int UT) |
| { |
| const u16 *id = adev->id; |
| const struct ata_timing *s; |
| struct ata_timing p; |
| |
| /* |
| * Find the mode. |
| */ |
| |
| if (!(s = ata_timing_find_mode(speed))) |
| return -EINVAL; |
| |
| memcpy(t, s, sizeof(*s)); |
| |
| /* |
| * If the drive is an EIDE drive, it can tell us it needs extended |
| * PIO/MW_DMA cycle timing. |
| */ |
| |
| if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ |
| memset(&p, 0, sizeof(p)); |
| |
| if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { |
| if (speed <= XFER_PIO_2) |
| p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; |
| else if ((speed <= XFER_PIO_4) || |
| (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) |
| p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; |
| } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) |
| p.cycle = id[ATA_ID_EIDE_DMA_MIN]; |
| |
| ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); |
| } |
| |
| /* |
| * Convert the timing to bus clock counts. |
| */ |
| |
| ata_timing_quantize(t, t, T, UT); |
| |
| /* |
| * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, |
| * S.M.A.R.T * and some other commands. We have to ensure that the |
| * DMA cycle timing is slower/equal than the fastest PIO timing. |
| */ |
| |
| if (speed > XFER_PIO_6) { |
| ata_timing_compute(adev, adev->pio_mode, &p, T, UT); |
| ata_timing_merge(&p, t, t, ATA_TIMING_ALL); |
| } |
| |
| /* |
| * Lengthen active & recovery time so that cycle time is correct. |
| */ |
| |
| if (t->act8b + t->rec8b < t->cyc8b) { |
| t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; |
| t->rec8b = t->cyc8b - t->act8b; |
| } |
| |
| if (t->active + t->recover < t->cycle) { |
| t->active += (t->cycle - (t->active + t->recover)) / 2; |
| t->recover = t->cycle - t->active; |
| } |
| |
| /* In a few cases quantisation may produce enough errors to |
| leave t->cycle too low for the sum of active and recovery |
| if so we must correct this */ |
| if (t->active + t->recover > t->cycle) |
| t->cycle = t->active + t->recover; |
| |
| return 0; |
| } |
| |
| /** |
| * ata_timing_cycle2mode - find xfer mode for the specified cycle duration |
| * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. |
| * @cycle: cycle duration in ns |
| * |
| * Return matching xfer mode for @cycle. The returned mode is of |
| * the transfer type specified by @xfer_shift. If @cycle is too |
| * slow for @xfer_shift, 0xff is returned. If @cycle is faster |
| * than the fastest known mode, the fasted mode is returned. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Matching xfer_mode, 0xff if no match found. |
| */ |
| u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) |
| { |
| u8 base_mode = 0xff, last_mode = 0xff; |
| const struct ata_xfer_ent *ent; |
| const struct ata_timing *t; |
| |
| for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) |
| if (ent->shift == xfer_shift) |
| base_mode = ent->base; |
| |
| for (t = ata_timing_find_mode(base_mode); |
| t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { |
| unsigned short this_cycle; |
| |
| switch (xfer_shift) { |
| case ATA_SHIFT_PIO: |
| case ATA_SHIFT_MWDMA: |
| this_cycle = t->cycle; |
| break; |
| case ATA_SHIFT_UDMA: |
| this_cycle = t->udma; |
| break; |
| default: |
| return 0xff; |
| } |
| |
| if (cycle > this_cycle) |
| break; |
| |
| last_mode = t->mode; |
| } |
| |
| return last_mode; |
| } |
| |
| /** |
| * ata_down_xfermask_limit - adjust dev xfer masks downward |
| * @dev: Device to adjust xfer masks |
| * @sel: ATA_DNXFER_* selector |
| * |
| * Adjust xfer masks of @dev downward. Note that this function |
| * does not apply the change. Invoking ata_set_mode() afterwards |
| * will apply the limit. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure |
| */ |
| int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) |
| { |
| char buf[32]; |
| unsigned long orig_mask, xfer_mask; |
| unsigned long pio_mask, mwdma_mask, udma_mask; |
| int quiet, highbit; |
| |
| quiet = !!(sel & ATA_DNXFER_QUIET); |
| sel &= ~ATA_DNXFER_QUIET; |
| |
| xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, |
| dev->mwdma_mask, |
| dev->udma_mask); |
| ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); |
| |
| switch (sel) { |
| case ATA_DNXFER_PIO: |
| highbit = fls(pio_mask) - 1; |
| pio_mask &= ~(1 << highbit); |
| break; |
| |
| case ATA_DNXFER_DMA: |
| if (udma_mask) { |
| highbit = fls(udma_mask) - 1; |
| udma_mask &= ~(1 << highbit); |
| if (!udma_mask) |
| return -ENOENT; |
| } else if (mwdma_mask) { |
| highbit = fls(mwdma_mask) - 1; |
| mwdma_mask &= ~(1 << highbit); |
| if (!mwdma_mask) |
| return -ENOENT; |
| } |
| break; |
| |
| case ATA_DNXFER_40C: |
| udma_mask &= ATA_UDMA_MASK_40C; |
| break; |
| |
| case ATA_DNXFER_FORCE_PIO0: |
| pio_mask &= 1; |
| /* fall through */ |
| case ATA_DNXFER_FORCE_PIO: |
| mwdma_mask = 0; |
| udma_mask = 0; |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); |
| |
| if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) |
| return -ENOENT; |
| |
| if (!quiet) { |
| if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) |
| snprintf(buf, sizeof(buf), "%s:%s", |
| ata_mode_string(xfer_mask), |
| ata_mode_string(xfer_mask & ATA_MASK_PIO)); |
| else |
| snprintf(buf, sizeof(buf), "%s", |
| ata_mode_string(xfer_mask)); |
| |
| ata_dev_warn(dev, "limiting speed to %s\n", buf); |
| } |
| |
| ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, |
| &dev->udma_mask); |
| |
| return 0; |
| } |
| |
| static int ata_dev_set_mode(struct ata_device *dev) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct ata_eh_context *ehc = &dev->link->eh_context; |
| const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; |
| const char *dev_err_whine = ""; |
| int ign_dev_err = 0; |
| unsigned int err_mask = 0; |
| int rc; |
| |
| dev->flags &= ~ATA_DFLAG_PIO; |
| if (dev->xfer_shift == ATA_SHIFT_PIO) |
| dev->flags |= ATA_DFLAG_PIO; |
| |
| if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) |
| dev_err_whine = " (SET_XFERMODE skipped)"; |
| else { |
| if (nosetxfer) |
| ata_dev_warn(dev, |
| "NOSETXFER but PATA detected - can't " |
| "skip SETXFER, might malfunction\n"); |
| err_mask = ata_dev_set_xfermode(dev); |
| } |
| |
| if (err_mask & ~AC_ERR_DEV) |
| goto fail; |
| |
| /* revalidate */ |
| ehc->i.flags |= ATA_EHI_POST_SETMODE; |
| rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); |
| ehc->i.flags &= ~ATA_EHI_POST_SETMODE; |
| if (rc) |
| return rc; |
| |
| if (dev->xfer_shift == ATA_SHIFT_PIO) { |
| /* Old CFA may refuse this command, which is just fine */ |
| if (ata_id_is_cfa(dev->id)) |
| ign_dev_err = 1; |
| /* Catch several broken garbage emulations plus some pre |
| ATA devices */ |
| if (ata_id_major_version(dev->id) == 0 && |
| dev->pio_mode <= XFER_PIO_2) |
| ign_dev_err = 1; |
| /* Some very old devices and some bad newer ones fail |
| any kind of SET_XFERMODE request but support PIO0-2 |
| timings and no IORDY */ |
| if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) |
| ign_dev_err = 1; |
| } |
| /* Early MWDMA devices do DMA but don't allow DMA mode setting. |
| Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ |
| if (dev->xfer_shift == ATA_SHIFT_MWDMA && |
| dev->dma_mode == XFER_MW_DMA_0 && |
| (dev->id[63] >> 8) & 1) |
| ign_dev_err = 1; |
| |
| /* if the device is actually configured correctly, ignore dev err */ |
| if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) |
| ign_dev_err = 1; |
| |
| if (err_mask & AC_ERR_DEV) { |
| if (!ign_dev_err) |
| goto fail; |
| else |
| dev_err_whine = " (device error ignored)"; |
| } |
| |
| DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", |
| dev->xfer_shift, (int)dev->xfer_mode); |
| |
| if (!(ehc->i.flags & ATA_EHI_QUIET) || |
| ehc->i.flags & ATA_EHI_DID_HARDRESET) |
| ata_dev_info(dev, "configured for %s%s\n", |
| ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), |
| dev_err_whine); |
| |
| return 0; |
| |
| fail: |
| ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); |
| return -EIO; |
| } |
| |
| /** |
| * ata_do_set_mode - Program timings and issue SET FEATURES - XFER |
| * @link: link on which timings will be programmed |
| * @r_failed_dev: out parameter for failed device |
| * |
| * Standard implementation of the function used to tune and set |
| * ATA device disk transfer mode (PIO3, UDMA6, etc.). If |
| * ata_dev_set_mode() fails, pointer to the failing device is |
| * returned in @r_failed_dev. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * 0 on success, negative errno otherwise |
| */ |
| |
| int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) |
| { |
| struct ata_port *ap = link->ap; |
| struct ata_device *dev; |
| int rc = 0, used_dma = 0, found = 0; |
| |
| /* step 1: calculate xfer_mask */ |
| ata_for_each_dev(dev, link, ENABLED) { |
| unsigned long pio_mask, dma_mask; |
| unsigned int mode_mask; |
| |
| mode_mask = ATA_DMA_MASK_ATA; |
| if (dev->class == ATA_DEV_ATAPI) |
| mode_mask = ATA_DMA_MASK_ATAPI; |
| else if (ata_id_is_cfa(dev->id)) |
| mode_mask = ATA_DMA_MASK_CFA; |
| |
| ata_dev_xfermask(dev); |
| ata_force_xfermask(dev); |
| |
| pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); |
| |
| if (libata_dma_mask & mode_mask) |
| dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, |
| dev->udma_mask); |
| else |
| dma_mask = 0; |
| |
| dev->pio_mode = ata_xfer_mask2mode(pio_mask); |
| dev->dma_mode = ata_xfer_mask2mode(dma_mask); |
| |
| found = 1; |
| if (ata_dma_enabled(dev)) |
| used_dma = 1; |
| } |
| if (!found) |
| goto out; |
| |
| /* step 2: always set host PIO timings */ |
| ata_for_each_dev(dev, link, ENABLED) { |
| if (dev->pio_mode == 0xff) { |
| ata_dev_warn(dev, "no PIO support\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| dev->xfer_mode = dev->pio_mode; |
| dev->xfer_shift = ATA_SHIFT_PIO; |
| if (ap->ops->set_piomode) |
| ap->ops->set_piomode(ap, dev); |
| } |
| |
| /* step 3: set host DMA timings */ |
| ata_for_each_dev(dev, link, ENABLED) { |
| if (!ata_dma_enabled(dev)) |
| continue; |
| |
| dev->xfer_mode = dev->dma_mode; |
| dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); |
| if (ap->ops->set_dmamode) |
| ap->ops->set_dmamode(ap, dev); |
| } |
| |
| /* step 4: update devices' xfer mode */ |
| ata_for_each_dev(dev, link, ENABLED) { |
| rc = ata_dev_set_mode(dev); |
| if (rc) |
| goto out; |
| } |
| |
| /* Record simplex status. If we selected DMA then the other |
| * host channels are not permitted to do so. |
| */ |
| if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) |
| ap->host->simplex_claimed = ap; |
| |
| out: |
| if (rc) |
| *r_failed_dev = dev; |
| return rc; |
| } |
| |
| /** |
| * ata_wait_ready - wait for link to become ready |
| * @link: link to be waited on |
| * @deadline: deadline jiffies for the operation |
| * @check_ready: callback to check link readiness |
| * |
| * Wait for @link to become ready. @check_ready should return |
| * positive number if @link is ready, 0 if it isn't, -ENODEV if |
| * link doesn't seem to be occupied, other errno for other error |
| * conditions. |
| * |
| * Transient -ENODEV conditions are allowed for |
| * ATA_TMOUT_FF_WAIT. |
| * |
| * LOCKING: |
| * EH context. |
| * |
| * RETURNS: |
| * 0 if @link is ready before @deadline; otherwise, -errno. |
| */ |
| int ata_wait_ready(struct ata_link *link, unsigned long deadline, |
| int (*check_ready)(struct ata_link *link)) |
| { |
| unsigned long start = jiffies; |
| unsigned long nodev_deadline; |
| int warned = 0; |
| |
| /* choose which 0xff timeout to use, read comment in libata.h */ |
| if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) |
| nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); |
| else |
| nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); |
| |
| /* Slave readiness can't be tested separately from master. On |
| * M/S emulation configuration, this function should be called |
| * only on the master and it will handle both master and slave. |
| */ |
| WARN_ON(link == link->ap->slave_link); |
| |
| if (time_after(nodev_deadline, deadline)) |
| nodev_deadline = deadline; |
| |
| while (1) { |
| unsigned long now = jiffies; |
| int ready, tmp; |
| |
| ready = tmp = check_ready(link); |
| if (ready > 0) |
| return 0; |
| |
| /* |
| * -ENODEV could be transient. Ignore -ENODEV if link |
| * is online. Also, some SATA devices take a long |
| * time to clear 0xff after reset. Wait for |
| * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't |
| * offline. |
| * |
| * Note that some PATA controllers (pata_ali) explode |
| * if status register is read more than once when |
| * there's no device attached. |
| */ |
| if (ready == -ENODEV) { |
| if (ata_link_online(link)) |
| ready = 0; |
| else if ((link->ap->flags & ATA_FLAG_SATA) && |
| !ata_link_offline(link) && |
| time_before(now, nodev_deadline)) |
| ready = 0; |
| } |
| |
| if (ready) |
| return ready; |
| if (time_after(now, deadline)) |
| return -EBUSY; |
| |
| if (!warned && time_after(now, start + 5 * HZ) && |
| (deadline - now > 3 * HZ)) { |
| ata_link_warn(link, |
| "link is slow to respond, please be patient " |
| "(ready=%d)\n", tmp); |
| warned = 1; |
| } |
| |
| ata_msleep(link->ap, 50); |
| } |
| } |
| |
| /** |
| * ata_wait_after_reset - wait for link to become ready after reset |
| * @link: link to be waited on |
| * @deadline: deadline jiffies for the operation |
| * @check_ready: callback to check link readiness |
| * |
| * Wait for @link to become ready after reset. |
| * |
| * LOCKING: |
| * EH context. |
| * |
| * RETURNS: |
| * 0 if @link is ready before @deadline; otherwise, -errno. |
| */ |
| int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, |
| int (*check_ready)(struct ata_link *link)) |
| { |
| ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); |
| |
| return ata_wait_ready(link, deadline, check_ready); |
| } |
| |
| /** |
| * sata_link_debounce - debounce SATA phy status |
| * @link: ATA link to debounce SATA phy status for |
| * @params: timing parameters { interval, duration, timeout } in msec |
| * @deadline: deadline jiffies for the operation |
| * |
| * Make sure SStatus of @link reaches stable state, determined by |
| * holding the same value where DET is not 1 for @duration polled |
| * every @interval, before @timeout. Timeout constraints the |
| * beginning of the stable state. Because DET gets stuck at 1 on |
| * some controllers after hot unplugging, this functions waits |
| * until timeout then returns 0 if DET is stable at 1. |
| * |
| * @timeout is further limited by @deadline. The sooner of the |
| * two is used. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int sata_link_debounce(struct ata_link *link, const unsigned long *params, |
| unsigned long deadline) |
| { |
| unsigned long interval = params[0]; |
| unsigned long duration = params[1]; |
| unsigned long last_jiffies, t; |
| u32 last, cur; |
| int rc; |
| |
| t = ata_deadline(jiffies, params[2]); |
| if (time_before(t, deadline)) |
| deadline = t; |
| |
| if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) |
| return rc; |
| cur &= 0xf; |
| |
| last = cur; |
| last_jiffies = jiffies; |
| |
| while (1) { |
| ata_msleep(link->ap, interval); |
| if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) |
| return rc; |
| cur &= 0xf; |
| |
| /* DET stable? */ |
| if (cur == last) { |
| if (cur == 1 && time_before(jiffies, deadline)) |
| continue; |
| if (time_after(jiffies, |
| ata_deadline(last_jiffies, duration))) |
| return 0; |
| continue; |
| } |
| |
| /* unstable, start over */ |
| last = cur; |
| last_jiffies = jiffies; |
| |
| /* Check deadline. If debouncing failed, return |
| * -EPIPE to tell upper layer to lower link speed. |
| */ |
| if (time_after(jiffies, deadline)) |
| return -EPIPE; |
| } |
| } |
| |
| /** |
| * sata_link_resume - resume SATA link |
| * @link: ATA link to resume SATA |
| * @params: timing parameters { interval, duration, timeout } in msec |
| * @deadline: deadline jiffies for the operation |
| * |
| * Resume SATA phy @link and debounce it. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int sata_link_resume(struct ata_link *link, const unsigned long *params, |
| unsigned long deadline) |
| { |
| int tries = ATA_LINK_RESUME_TRIES; |
| u32 scontrol, serror; |
| int rc; |
| |
| if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) |
| return rc; |
| |
| /* |
| * Writes to SControl sometimes get ignored under certain |
| * controllers (ata_piix SIDPR). Make sure DET actually is |
| * cleared. |
| */ |
| do { |
| scontrol = (scontrol & 0x0f0) | 0x300; |
| if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) |
| return rc; |
| /* |
| * Some PHYs react badly if SStatus is pounded |
| * immediately after resuming. Delay 200ms before |
| * debouncing. |
| */ |
| if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) |
| ata_msleep(link->ap, 200); |
| |
| /* is SControl restored correctly? */ |
| if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) |
| return rc; |
| } while ((scontrol & 0xf0f) != 0x300 && --tries); |
| |
| if ((scontrol & 0xf0f) != 0x300) { |
| ata_link_warn(link, "failed to resume link (SControl %X)\n", |
| scontrol); |
| return 0; |
| } |
| |
| if (tries < ATA_LINK_RESUME_TRIES) |
| ata_link_warn(link, "link resume succeeded after %d retries\n", |
| ATA_LINK_RESUME_TRIES - tries); |
| |
| if ((rc = sata_link_debounce(link, params, deadline))) |
| return rc; |
| |
| /* clear SError, some PHYs require this even for SRST to work */ |
| if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) |
| rc = sata_scr_write(link, SCR_ERROR, serror); |
| |
| return rc != -EINVAL ? rc : 0; |
| } |
| |
| /** |
| * sata_link_scr_lpm - manipulate SControl IPM and SPM fields |
| * @link: ATA link to manipulate SControl for |
| * @policy: LPM policy to configure |
| * @spm_wakeup: initiate LPM transition to active state |
| * |
| * Manipulate the IPM field of the SControl register of @link |
| * according to @policy. If @policy is ATA_LPM_MAX_POWER and |
| * @spm_wakeup is %true, the SPM field is manipulated to wake up |
| * the link. This function also clears PHYRDY_CHG before |
| * returning. |
| * |
| * LOCKING: |
| * EH context. |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, |
| bool spm_wakeup) |
| { |
| struct ata_eh_context *ehc = &link->eh_context; |
| bool woken_up = false; |
| u32 scontrol; |
| int rc; |
| |
| rc = sata_scr_read(link, SCR_CONTROL, &scontrol); |
| if (rc) |
| return rc; |
| |
| switch (policy) { |
| case ATA_LPM_MAX_POWER: |
| /* disable all LPM transitions */ |
| scontrol |= (0x7 << 8); |
| /* initiate transition to active state */ |
| if (spm_wakeup) { |
| scontrol |= (0x4 << 12); |
| woken_up = true; |
| } |
| break; |
| case ATA_LPM_MED_POWER: |
| /* allow LPM to PARTIAL */ |
| scontrol &= ~(0x1 << 8); |
| scontrol |= (0x6 << 8); |
| break; |
| case ATA_LPM_MED_POWER_WITH_DIPM: |
| case ATA_LPM_MIN_POWER_WITH_PARTIAL: |
| case ATA_LPM_MIN_POWER: |
| if (ata_link_nr_enabled(link) > 0) |
| /* no restrictions on LPM transitions */ |
| scontrol &= ~(0x7 << 8); |
| else { |
| /* empty port, power off */ |
| scontrol &= ~0xf; |
| scontrol |= (0x1 << 2); |
| } |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| rc = sata_scr_write(link, SCR_CONTROL, scontrol); |
| if (rc) |
| return rc; |
| |
| /* give the link time to transit out of LPM state */ |
| if (woken_up) |
| msleep(10); |
| |
| /* clear PHYRDY_CHG from SError */ |
| ehc->i.serror &= ~SERR_PHYRDY_CHG; |
| return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); |
| } |
| |
| /** |
| * ata_std_prereset - prepare for reset |
| * @link: ATA link to be reset |
| * @deadline: deadline jiffies for the operation |
| * |
| * @link is about to be reset. Initialize it. Failure from |
| * prereset makes libata abort whole reset sequence and give up |
| * that port, so prereset should be best-effort. It does its |
| * best to prepare for reset sequence but if things go wrong, it |
| * should just whine, not fail. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_std_prereset(struct ata_link *link, unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| struct ata_eh_context *ehc = &link->eh_context; |
| const unsigned long *timing = sata_ehc_deb_timing(ehc); |
| int rc; |
| |
| /* if we're about to do hardreset, nothing more to do */ |
| if (ehc->i.action & ATA_EH_HARDRESET) |
| return 0; |
| |
| /* if SATA, resume link */ |
| if (ap->flags & ATA_FLAG_SATA) { |
| rc = sata_link_resume(link, timing, deadline); |
| /* whine about phy resume failure but proceed */ |
| if (rc && rc != -EOPNOTSUPP) |
| ata_link_warn(link, |
| "failed to resume link for reset (errno=%d)\n", |
| rc); |
| } |
| |
| /* no point in trying softreset on offline link */ |
| if (ata_phys_link_offline(link)) |
| ehc->i.action &= ~ATA_EH_SOFTRESET; |
| |
| return 0; |
| } |
| |
| /** |
| * sata_link_hardreset - reset link via SATA phy reset |
| * @link: link to reset |
| * @timing: timing parameters { interval, duration, timeout } in msec |
| * @deadline: deadline jiffies for the operation |
| * @online: optional out parameter indicating link onlineness |
| * @check_ready: optional callback to check link readiness |
| * |
| * SATA phy-reset @link using DET bits of SControl register. |
| * After hardreset, link readiness is waited upon using |
| * ata_wait_ready() if @check_ready is specified. LLDs are |
| * allowed to not specify @check_ready and wait itself after this |
| * function returns. Device classification is LLD's |
| * responsibility. |
| * |
| * *@online is set to one iff reset succeeded and @link is online |
| * after reset. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, |
| unsigned long deadline, |
| bool *online, int (*check_ready)(struct ata_link *)) |
| { |
| u32 scontrol; |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (online) |
| *online = false; |
| |
| if (sata_set_spd_needed(link)) { |
| /* SATA spec says nothing about how to reconfigure |
| * spd. To be on the safe side, turn off phy during |
| * reconfiguration. This works for at least ICH7 AHCI |
| * and Sil3124. |
| */ |
| if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) |
| goto out; |
| |
| scontrol = (scontrol & 0x0f0) | 0x304; |
| |
| if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) |
| goto out; |
| |
| sata_set_spd(link); |
| } |
| |
| /* issue phy wake/reset */ |
| if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) |
| goto out; |
| |
| scontrol = (scontrol & 0x0f0) | 0x301; |
| |
| if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) |
| goto out; |
| |
| /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 |
| * 10.4.2 says at least 1 ms. |
| */ |
| ata_msleep(link->ap, 1); |
| |
| /* bring link back */ |
| rc = sata_link_resume(link, timing, deadline); |
| if (rc) |
| goto out; |
| /* if link is offline nothing more to do */ |
| if (ata_phys_link_offline(link)) |
| goto out; |
| |
| /* Link is online. From this point, -ENODEV too is an error. */ |
| if (online) |
| *online = true; |
| |
| if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { |
| /* If PMP is supported, we have to do follow-up SRST. |
| * Some PMPs don't send D2H Reg FIS after hardreset if |
| * the first port is empty. Wait only for |
| * ATA_TMOUT_PMP_SRST_WAIT. |
| */ |
| if (check_ready) { |
| unsigned long pmp_deadline; |
| |
| pmp_deadline = ata_deadline(jiffies, |
| ATA_TMOUT_PMP_SRST_WAIT); |
| if (time_after(pmp_deadline, deadline)) |
| pmp_deadline = deadline; |
| ata_wait_ready(link, pmp_deadline, check_ready); |
| } |
| rc = -EAGAIN; |
| goto out; |
| } |
| |
| rc = 0; |
| if (check_ready) |
| rc = ata_wait_ready(link, deadline, check_ready); |
| out: |
| if (rc && rc != -EAGAIN) { |
| /* online is set iff link is online && reset succeeded */ |
| if (online) |
| *online = false; |
| ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); |
| } |
| DPRINTK("EXIT, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /** |
| * sata_std_hardreset - COMRESET w/o waiting or classification |
| * @link: link to reset |
| * @class: resulting class of attached device |
| * @deadline: deadline jiffies for the operation |
| * |
| * Standard SATA COMRESET w/o waiting or classification. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 if link offline, -EAGAIN if link online, -errno on errors. |
| */ |
| int sata_std_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); |
| bool online; |
| int rc; |
| |
| /* do hardreset */ |
| rc = sata_link_hardreset(link, timing, deadline, &online, NULL); |
| return online ? -EAGAIN : rc; |
| } |
| |
| /** |
| * ata_std_postreset - standard postreset callback |
| * @link: the target ata_link |
| * @classes: classes of attached devices |
| * |
| * This function is invoked after a successful reset. Note that |
| * the device might have been reset more than once using |
| * different reset methods before postreset is invoked. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_std_postreset(struct ata_link *link, unsigned int *classes) |
| { |
| u32 serror; |
| |
| DPRINTK("ENTER\n"); |
| |
| /* reset complete, clear SError */ |
| if (!sata_scr_read(link, SCR_ERROR, &serror)) |
| sata_scr_write(link, SCR_ERROR, serror); |
| |
| /* print link status */ |
| sata_print_link_status(link); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_dev_same_device - Determine whether new ID matches configured device |
| * @dev: device to compare against |
| * @new_class: class of the new device |
| * @new_id: IDENTIFY page of the new device |
| * |
| * Compare @new_class and @new_id against @dev and determine |
| * whether @dev is the device indicated by @new_class and |
| * @new_id. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if @dev matches @new_class and @new_id, 0 otherwise. |
| */ |
| static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, |
| const u16 *new_id) |
| { |
| const u16 *old_id = dev->id; |
| unsigned char model[2][ATA_ID_PROD_LEN + 1]; |
| unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; |
| |
| if (dev->class != new_class) { |
| ata_dev_info(dev, "class mismatch %d != %d\n", |
| dev->class, new_class); |
| return 0; |
| } |
| |
| ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); |
| ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); |
| ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); |
| ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); |
| |
| if (strcmp(model[0], model[1])) { |
| ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", |
| model[0], model[1]); |
| return 0; |
| } |
| |
| if (strcmp(serial[0], serial[1])) { |
| ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", |
| serial[0], serial[1]); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * ata_dev_reread_id - Re-read IDENTIFY data |
| * @dev: target ATA device |
| * @readid_flags: read ID flags |
| * |
| * Re-read IDENTIFY page and make sure @dev is still attached to |
| * the port. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, negative errno otherwise |
| */ |
| int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) |
| { |
| unsigned int class = dev->class; |
| u16 *id = (void *)dev->link->ap->sector_buf; |
| int rc; |
| |
| /* read ID data */ |
| rc = ata_dev_read_id(dev, &class, readid_flags, id); |
| if (rc) |
| return rc; |
| |
| /* is the device still there? */ |
| if (!ata_dev_same_device(dev, class, id)) |
| return -ENODEV; |
| |
| memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); |
| return 0; |
| } |
| |
| /** |
| * ata_dev_revalidate - Revalidate ATA device |
| * @dev: device to revalidate |
| * @new_class: new class code |
| * @readid_flags: read ID flags |
| * |
| * Re-read IDENTIFY page, make sure @dev is still attached to the |
| * port and reconfigure it according to the new IDENTIFY page. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, negative errno otherwise |
| */ |
| int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, |
| unsigned int readid_flags) |
| { |
| u64 n_sectors = dev->n_sectors; |
| u64 n_native_sectors = dev->n_native_sectors; |
| int rc; |
| |
| if (!ata_dev_enabled(dev)) |
| return -ENODEV; |
| |
| /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ |
| if (ata_class_enabled(new_class) && |
| new_class != ATA_DEV_ATA && |
| new_class != ATA_DEV_ATAPI && |
| new_class != ATA_DEV_ZAC && |
| new_class != ATA_DEV_SEMB) { |
| ata_dev_info(dev, "class mismatch %u != %u\n", |
| dev->class, new_class); |
| rc = -ENODEV; |
| goto fail; |
| } |
| |
| /* re-read ID */ |
| rc = ata_dev_reread_id(dev, readid_flags); |
| if (rc) |
| goto fail; |
| |
| /* configure device according to the new ID */ |
| rc = ata_dev_configure(dev); |
| if (rc) |
| goto fail; |
| |
| /* verify n_sectors hasn't changed */ |
| if (dev->class != ATA_DEV_ATA || !n_sectors || |
| dev->n_sectors == n_sectors) |
| return 0; |
| |
| /* n_sectors has changed */ |
| ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", |
| (unsigned long long)n_sectors, |
| (unsigned long long)dev->n_sectors); |
| |
| /* |
| * Something could have caused HPA to be unlocked |
| * involuntarily. If n_native_sectors hasn't changed and the |
| * new size matches it, keep the device. |
| */ |
| if (dev->n_native_sectors == n_native_sectors && |
| dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { |
| ata_dev_warn(dev, |
| "new n_sectors matches native, probably " |
| "late HPA unlock, n_sectors updated\n"); |
| /* use the larger n_sectors */ |
| return 0; |
| } |
| |
| /* |
| * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try |
| * unlocking HPA in those cases. |
| * |
| * https://bugzilla.kernel.org/show_bug.cgi?id=15396 |
| */ |
| if (dev->n_native_sectors == n_native_sectors && |
| dev->n_sectors < n_sectors && n_sectors == n_native_sectors && |
| !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { |
| ata_dev_warn(dev, |
| "old n_sectors matches native, probably " |
| "late HPA lock, will try to unlock HPA\n"); |
| /* try unlocking HPA */ |
| dev->flags |= ATA_DFLAG_UNLOCK_HPA; |
| rc = -EIO; |
| } else |
| rc = -ENODEV; |
| |
| /* restore original n_[native_]sectors and fail */ |
| dev->n_native_sectors = n_native_sectors; |
| dev->n_sectors = n_sectors; |
| fail: |
| ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); |
| return rc; |
| } |
| |
| struct ata_blacklist_entry { |
| const char *model_num; |
| const char *model_rev; |
| unsigned long horkage; |
| }; |
| |
| static const struct ata_blacklist_entry ata_device_blacklist [] = { |
| /* Devices with DMA related problems under Linux */ |
| { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, |
| { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, |
| { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, |
| { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, |
| { "CRD-84", NULL, ATA_HORKAGE_NODMA }, |
| { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, |
| { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, |
| { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, |
| { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, |
| { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, |
| { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, |
| { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, |
| { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, |
| { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, |
| { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, |
| { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, |
| { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, |
| { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, |
| { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, |
| { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, |
| { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, |
| { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, |
| /* Odd clown on sil3726/4726 PMPs */ |
| { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, |
| |
| /* Weird ATAPI devices */ |
| { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, |
| { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, |
| { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, |
| { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, |
| |
| /* |
| * Causes silent data corruption with higher max sects. |
| * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com |
| */ |
| { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, |
| |
| /* |
| * These devices time out with higher max sects. |
| * https://bugzilla.kernel.org/show_bug.cgi?id=121671 |
| */ |
| { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, |
| { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, |
| |
| /* Devices we expect to fail diagnostics */ |
| |
| /* Devices where NCQ should be avoided */ |
| /* NCQ is slow */ |
| { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, |
| { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, |
| /* http://thread.gmane.org/gmane.linux.ide/14907 */ |
| { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, |
| /* NCQ is broken */ |
| { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, |
| { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, |
| { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, |
| { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, |
| { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, |
| |
| /* Seagate NCQ + FLUSH CACHE firmware bug */ |
| { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | |
| ATA_HORKAGE_FIRMWARE_WARN }, |
| |
| { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | |
| ATA_HORKAGE_FIRMWARE_WARN }, |
| |
| { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | |
| ATA_HORKAGE_FIRMWARE_WARN }, |
| |
| { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | |
| ATA_HORKAGE_FIRMWARE_WARN }, |
| |
| /* drives which fail FPDMA_AA activation (some may freeze afterwards) |
| the ST disks also have LPM issues */ |
| { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | |
| ATA_HORKAGE_NOLPM, }, |
| { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, |
| |
| /* Blacklist entries taken from Silicon Image 3124/3132 |
| Windows driver .inf file - also several Linux problem reports */ |
| { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, |
| { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, |
| { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, |
| |
| /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ |
| { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, |
| |
| /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on |
| SD7SN6S256G and SD8SN8U256G */ |
| { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, }, |
| |
| /* devices which puke on READ_NATIVE_MAX */ |
| { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, |
| { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, |
| { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, |
| { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, |
| |
| /* this one allows HPA unlocking but fails IOs on the area */ |
| { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, |
| |
| /* Devices which report 1 sector over size HPA */ |
| { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, |
| { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, |
| { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, |
| |
| /* Devices which get the IVB wrong */ |
| { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, |
| /* Maybe we should just blacklist TSSTcorp... */ |
| { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, |
| |
| /* Devices that do not need bridging limits applied */ |
| { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, |
| { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, |
| |
| /* Devices which aren't very happy with higher link speeds */ |
| { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, |
| { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, |
| |
| /* |
| * Devices which choke on SETXFER. Applies only if both the |
| * device and controller are SATA. |
| */ |
| { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, |
| { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, |
| { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, |
| { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, |
| { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, |
| |
| /* Crucial BX100 SSD 500GB has broken LPM support */ |
| { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, |
| |
| /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ |
| { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM | |
| ATA_HORKAGE_NOLPM, }, |
| /* 512GB MX100 with newer firmware has only LPM issues */ |
| { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | |
| ATA_HORKAGE_NOLPM, }, |
| |
| /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ |
| { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM | |
| ATA_HORKAGE_NOLPM, }, |
| { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM | |
| ATA_HORKAGE_NOLPM, }, |
| |
| /* These specific Samsung models/firmware-revs do not handle LPM well */ |
| { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, |
| { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, |
| { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, |
| { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, |
| |
| /* devices that don't properly handle queued TRIM commands */ |
| { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | |
| ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| |
| /* devices that don't properly handle TRIM commands */ |
| { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, |
| |
| /* |
| * As defined, the DRAT (Deterministic Read After Trim) and RZAT |
| * (Return Zero After Trim) flags in the ATA Command Set are |
| * unreliable in the sense that they only define what happens if |
| * the device successfully executed the DSM TRIM command. TRIM |
| * is only advisory, however, and the device is free to silently |
| * ignore all or parts of the request. |
| * |
| * Whitelist drives that are known to reliably return zeroes |
| * after TRIM. |
| */ |
| |
| /* |
| * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude |
| * that model before whitelisting all other intel SSDs. |
| */ |
| { "INTEL*SSDSC2MH*", NULL, 0, }, |
| |
| { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, |
| |
| /* |
| * Some WD SATA-I drives spin up and down erratically when the link |
| * is put into the slumber mode. We don't have full list of the |
| * affected devices. Disable LPM if the device matches one of the |
| * known prefixes and is SATA-1. As a side effect LPM partial is |
| * lost too. |
| * |
| * https://bugzilla.kernel.org/show_bug.cgi?id=57211 |
| */ |
| { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, |
| |
| /* End Marker */ |
| { } |
| }; |
| |
| static unsigned long ata_dev_blacklisted(const struct ata_device *dev) |
| { |
| unsigned char model_num[ATA_ID_PROD_LEN + 1]; |
| unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; |
| const struct ata_blacklist_entry *ad = ata_device_blacklist; |
| |
| ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); |
| ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); |
| |
| while (ad->model_num) { |
| if (glob_match(ad->model_num, model_num)) { |
| if (ad->model_rev == NULL) |
| return ad->horkage; |
| if (glob_match(ad->model_rev, model_rev)) |
| return ad->horkage; |
| } |
| ad++; |
| } |
| return 0; |
| } |
| |
| static int ata_dma_blacklisted(const struct ata_device *dev) |
| { |
| /* We don't support polling DMA. |
| * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) |
| * if the LLDD handles only interrupts in the HSM_ST_LAST state. |
| */ |
| if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && |
| (dev->flags & ATA_DFLAG_CDB_INTR)) |
| return 1; |
| return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; |
| } |
| |
| /** |
| * ata_is_40wire - check drive side detection |
| * @dev: device |
| * |
| * Perform drive side detection decoding, allowing for device vendors |
| * who can't follow the documentation. |
| */ |
| |
| static int ata_is_40wire(struct ata_device *dev) |
| { |
| if (dev->horkage & ATA_HORKAGE_IVB) |
| return ata_drive_40wire_relaxed(dev->id); |
| return ata_drive_40wire(dev->id); |
| } |
| |
| /** |
| * cable_is_40wire - 40/80/SATA decider |
| * @ap: port to consider |
| * |
| * This function encapsulates the policy for speed management |
| * in one place. At the moment we don't cache the result but |
| * there is a good case for setting ap->cbl to the result when |
| * we are called with unknown cables (and figuring out if it |
| * impacts hotplug at all). |
| * |
| * Return 1 if the cable appears to be 40 wire. |
| */ |
| |
| static int cable_is_40wire(struct ata_port *ap) |
| { |
| struct ata_link *link; |
| struct ata_device *dev; |
| |
| /* If the controller thinks we are 40 wire, we are. */ |
| if (ap->cbl == ATA_CBL_PATA40) |
| return 1; |
| |
| /* If the controller thinks we are 80 wire, we are. */ |
| if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) |
| return 0; |
| |
| /* If the system is known to be 40 wire short cable (eg |
| * laptop), then we allow 80 wire modes even if the drive |
| * isn't sure. |
| */ |
| if (ap->cbl == ATA_CBL_PATA40_SHORT) |
| return 0; |
| |
| /* If the controller doesn't know, we scan. |
| * |
| * Note: We look for all 40 wire detects at this point. Any |
| * 80 wire detect is taken to be 80 wire cable because |
| * - in many setups only the one drive (slave if present) will |
| * give a valid detect |
| * - if you have a non detect capable drive you don't want it |
| * to colour the choice |
| */ |
| ata_for_each_link(link, ap, EDGE) { |
| ata_for_each_dev(dev, link, ENABLED) { |
| if (!ata_is_40wire(dev)) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /** |
| * ata_dev_xfermask - Compute supported xfermask of the given device |
| * @dev: Device to compute xfermask for |
| * |
| * Compute supported xfermask of @dev and store it in |
| * dev->*_mask. This function is responsible for applying all |
| * known limits including host controller limits, device |
| * blacklist, etc... |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void ata_dev_xfermask(struct ata_device *dev) |
| { |
| struct ata_link *link = dev->link; |
| struct ata_port *ap = link->ap; |
| struct ata_host *host = ap->host; |
| unsigned long xfer_mask; |
| |
| /* controller modes available */ |
| xfer_mask = ata_pack_xfermask(ap->pio_mask, |
| ap->mwdma_mask, ap->udma_mask); |
| |
| /* drive modes available */ |
| xfer_mask &= ata_pack_xfermask(dev->pio_mask, |
| dev->mwdma_mask, dev->udma_mask); |
| xfer_mask &= ata_id_xfermask(dev->id); |
| |
| /* |
| * CFA Advanced TrueIDE timings are not allowed on a shared |
| * cable |
| */ |
| if (ata_dev_pair(dev)) { |
| /* No PIO5 or PIO6 */ |
| xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); |
| /* No MWDMA3 or MWDMA 4 */ |
| xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); |
| } |
| |
| if (ata_dma_blacklisted(dev)) { |
| xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); |
| ata_dev_warn(dev, |
| "device is on DMA blacklist, disabling DMA\n"); |
| } |
| |
| if ((host->flags & ATA_HOST_SIMPLEX) && |
| host->simplex_claimed && host->simplex_claimed != ap) { |
| xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); |
| ata_dev_warn(dev, |
| "simplex DMA is claimed by other device, disabling DMA\n"); |
| } |
| |
| if (ap->flags & ATA_FLAG_NO_IORDY) |
| xfer_mask &= ata_pio_mask_no_iordy(dev); |
| |
| if (ap->ops->mode_filter) |
| xfer_mask = ap->ops->mode_filter(dev, xfer_mask); |
| |
| /* Apply cable rule here. Don't apply it early because when |
| * we handle hot plug the cable type can itself change. |
| * Check this last so that we know if the transfer rate was |
| * solely limited by the cable. |
| * Unknown or 80 wire cables reported host side are checked |
| * drive side as well. Cases where we know a 40wire cable |
| * is used safely for 80 are not checked here. |
| */ |
| if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) |
| /* UDMA/44 or higher would be available */ |
| if (cable_is_40wire(ap)) { |
| ata_dev_warn(dev, |
| "limited to UDMA/33 due to 40-wire cable\n"); |
| xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); |
| } |
| |
| ata_unpack_xfermask(xfer_mask, &dev->pio_mask, |
| &dev->mwdma_mask, &dev->udma_mask); |
| } |
| |
| /** |
| * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command |
| * @dev: Device to which command will be sent |
| * |
| * Issue SET FEATURES - XFER MODE command to device @dev |
| * on port @ap. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| |
| static unsigned int ata_dev_set_xfermode(struct ata_device *dev) |
| { |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| |
| /* set up set-features taskfile */ |
| DPRINTK("set features - xfer mode\n"); |
| |
| /* Some controllers and ATAPI devices show flaky interrupt |
| * behavior after setting xfer mode. Use polling instead. |
| */ |
| ata_tf_init(dev, &tf); |
| tf.command = ATA_CMD_SET_FEATURES; |
| tf.feature = SETFEATURES_XFER; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; |
| tf.protocol = ATA_PROT_NODATA; |
| /* If we are using IORDY we must send the mode setting command */ |
| if (ata_pio_need_iordy(dev)) |
| tf.nsect = dev->xfer_mode; |
| /* If the device has IORDY and the controller does not - turn it off */ |
| else if (ata_id_has_iordy(dev->id)) |
| tf.nsect = 0x01; |
| else /* In the ancient relic department - skip all of this */ |
| return 0; |
| |
| /* On some disks, this command causes spin-up, so we need longer timeout */ |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| |
| /** |
| * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES |
| * @dev: Device to which command will be sent |
| * @enable: Whether to enable or disable the feature |
| * @feature: The sector count represents the feature to set |
| * |
| * Issue SET FEATURES - SATA FEATURES command to device @dev |
| * on port @ap with sector count |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) |
| { |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| unsigned long timeout = 0; |
| |
| /* set up set-features taskfile */ |
| DPRINTK("set features - SATA features\n"); |
| |
| ata_tf_init(dev, &tf); |
| tf.command = ATA_CMD_SET_FEATURES; |
| tf.feature = enable; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = feature; |
| |
| if (enable == SETFEATURES_SPINUP) |
| timeout = ata_probe_timeout ? |
| ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| EXPORT_SYMBOL_GPL(ata_dev_set_feature); |
| |
| /** |
| * ata_dev_init_params - Issue INIT DEV PARAMS command |
| * @dev: Device to which command will be sent |
| * @heads: Number of heads (taskfile parameter) |
| * @sectors: Number of sectors (taskfile parameter) |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, AC_ERR_* mask otherwise. |
| */ |
| static unsigned int ata_dev_init_params(struct ata_device *dev, |
| u16 heads, u16 sectors) |
| { |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| |
| /* Number of sectors per track 1-255. Number of heads 1-16 */ |
| if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) |
| return AC_ERR_INVALID; |
| |
| /* set up init dev params taskfile */ |
| DPRINTK("init dev params \n"); |
| |
| ata_tf_init(dev, &tf); |
| tf.command = ATA_CMD_INIT_DEV_PARAMS; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = sectors; |
| tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ |
| |
| err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); |
| /* A clean abort indicates an original or just out of spec drive |
| and we should continue as we issue the setup based on the |
| drive reported working geometry */ |
| if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) |
| err_mask = 0; |
| |
| DPRINTK("EXIT, err_mask=%x\n", err_mask); |
| return err_mask; |
| } |
| |
| /** |
| * atapi_check_dma - Check whether ATAPI DMA can be supported |
| * @qc: Metadata associated with taskfile to check |
| * |
| * Allow low-level driver to filter ATA PACKET commands, returning |
| * a status indicating whether or not it is OK to use DMA for the |
| * supplied PACKET command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: 0 when ATAPI DMA can be used |
| * nonzero otherwise |
| */ |
| int atapi_check_dma(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a |
| * few ATAPI devices choke on such DMA requests. |
| */ |
| if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && |
| unlikely(qc->nbytes & 15)) |
| return 1; |
| |
| if (ap->ops->check_atapi_dma) |
| return ap->ops->check_atapi_dma(qc); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_std_qc_defer - Check whether a qc needs to be deferred |
| * @qc: ATA command in question |
| * |
| * Non-NCQ commands cannot run with any other command, NCQ or |
| * not. As upper layer only knows the queue depth, we are |
| * responsible for maintaining exclusion. This function checks |
| * whether a new command @qc can be issued. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * ATA_DEFER_* if deferring is needed, 0 otherwise. |
| */ |
| int ata_std_qc_defer(struct ata_queued_cmd *qc) |
| { |
| struct ata_link *link = qc->dev->link; |
| |
| if (ata_is_ncq(qc->tf.protocol)) { |
| if (!ata_tag_valid(link->active_tag)) |
| return 0; |
| } else { |
| if (!ata_tag_valid(link->active_tag) && !link->sactive) |
| return 0; |
| } |
| |
| return ATA_DEFER_LINK; |
| } |
| |
| void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } |
| |
| /** |
| * ata_sg_init - Associate command with scatter-gather table. |
| * @qc: Command to be associated |
| * @sg: Scatter-gather table. |
| * @n_elem: Number of elements in s/g table. |
| * |
| * Initialize the data-related elements of queued_cmd @qc |
| * to point to a scatter-gather table @sg, containing @n_elem |
| * elements. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, |
| unsigned int n_elem) |
| { |
| qc->sg = sg; |
| qc->n_elem = n_elem; |
| qc->cursg = qc->sg; |
| } |
| |
| #ifdef CONFIG_HAS_DMA |
| |
| /** |
| * ata_sg_clean - Unmap DMA memory associated with command |
| * @qc: Command containing DMA memory to be released |
| * |
| * Unmap all mapped DMA memory associated with this command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| static void ata_sg_clean(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg = qc->sg; |
| int dir = qc->dma_dir; |
| |
| WARN_ON_ONCE(sg == NULL); |
| |
| VPRINTK("unmapping %u sg elements\n", qc->n_elem); |
| |
| if (qc->n_elem) |
| dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); |
| |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| qc->sg = NULL; |
| } |
| |
| /** |
| * ata_sg_setup - DMA-map the scatter-gather table associated with a command. |
| * @qc: Command with scatter-gather table to be mapped. |
| * |
| * DMA-map the scatter-gather table associated with queued_cmd @qc. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| * |
| */ |
| static int ata_sg_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int n_elem; |
| |
| VPRINTK("ENTER, ata%u\n", ap->print_id); |
| |
| n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); |
| if (n_elem < 1) |
| return -1; |
| |
| VPRINTK("%d sg elements mapped\n", n_elem); |
| qc->orig_n_elem = qc->n_elem; |
| qc->n_elem = n_elem; |
| qc->flags |= ATA_QCFLAG_DMAMAP; |
| |
| return 0; |
| } |
| |
| #else /* !CONFIG_HAS_DMA */ |
| |
| static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} |
| static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } |
| |
| #endif /* !CONFIG_HAS_DMA */ |
| |
| /** |
| * swap_buf_le16 - swap halves of 16-bit words in place |
| * @buf: Buffer to swap |
| * @buf_words: Number of 16-bit words in buffer. |
| * |
| * Swap halves of 16-bit words if needed to convert from |
| * little-endian byte order to native cpu byte order, or |
| * vice-versa. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void swap_buf_le16(u16 *buf, unsigned int buf_words) |
| { |
| #ifdef __BIG_ENDIAN |
| unsigned int i; |
| |
| for (i = 0; i < buf_words; i++) |
| buf[i] = le16_to_cpu(buf[i]); |
| #endif /* __BIG_ENDIAN */ |
| } |
| |
| /** |
| * ata_qc_new_init - Request an available ATA command, and initialize it |
| * @dev: Device from whom we request an available command structure |
| * @tag: tag |
| * |
| * LOCKING: |
| * None. |
| */ |
| |
| struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) |
| { |
| struct ata_port *ap = dev->link->ap; |
| struct ata_queued_cmd *qc; |
| |
| /* no command while frozen */ |
| if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) |
| return NULL; |
| |
| /* libsas case */ |
| if (ap->flags & ATA_FLAG_SAS_HOST) { |
| tag = ata_sas_allocate_tag(ap); |
| if (tag < 0) |
| return NULL; |
| } |
| |
| qc = __ata_qc_from_tag(ap, tag); |
| qc->tag = qc->hw_tag = tag; |
| qc->scsicmd = NULL; |
| qc->ap = ap; |
| qc->dev = dev; |
| |
| ata_qc_reinit(qc); |
| |
| return qc; |
| } |
| |
| /** |
| * ata_qc_free - free unused ata_queued_cmd |
| * @qc: Command to complete |
| * |
| * Designed to free unused ata_queued_cmd object |
| * in case something prevents using it. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_free(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap; |
| unsigned int tag; |
| |
| WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ |
| ap = qc->ap; |
| |
| qc->flags = 0; |
| tag = qc->tag; |
| if (ata_tag_valid(tag)) { |
| qc->tag = ATA_TAG_POISON; |
| if (ap->flags & ATA_FLAG_SAS_HOST) |
| ata_sas_free_tag(tag, ap); |
| } |
| } |
| |
| void __ata_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap; |
| struct ata_link *link; |
| |
| WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ |
| WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); |
| ap = qc->ap; |
| link = qc->dev->link; |
| |
| if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) |
| ata_sg_clean(qc); |
| |
| /* command should be marked inactive atomically with qc completion */ |
| if (ata_is_ncq(qc->tf.protocol)) { |
| link->sactive &= ~(1 << qc->hw_tag); |
| if (!link->sactive) |
| ap->nr_active_links--; |
| } else { |
| link->active_tag = ATA_TAG_POISON; |
| ap->nr_active_links--; |
| } |
| |
| /* clear exclusive status */ |
| if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && |
| ap->excl_link == link)) |
| ap->excl_link = NULL; |
| |
| /* atapi: mark qc as inactive to prevent the interrupt handler |
| * from completing the command twice later, before the error handler |
| * is called. (when rc != 0 and atapi request sense is needed) |
| */ |
| qc->flags &= ~ATA_QCFLAG_ACTIVE; |
| ap->qc_active &= ~(1ULL << qc->tag); |
| |
| /* call completion callback */ |
| qc->complete_fn(qc); |
| } |
| |
| static void fill_result_tf(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| qc->result_tf.flags = qc->tf.flags; |
| ap->ops->qc_fill_rtf(qc); |
| } |
| |
| static void ata_verify_xfer(struct ata_queued_cmd *qc) |
| { |
| struct ata_device *dev = qc->dev; |
| |
| if (!ata_is_data(qc->tf.protocol)) |
| return; |
| |
| if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) |
| return; |
| |
| dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; |
| } |
| |
| /** |
| * ata_qc_complete - Complete an active ATA command |
| * @qc: Command to complete |
| * |
| * Indicate to the mid and upper layers that an ATA command has |
| * completed, with either an ok or not-ok status. |
| * |
| * Refrain from calling this function multiple times when |
| * successfully completing multiple NCQ commands. |
| * ata_qc_complete_multiple() should be used instead, which will |
| * properly update IRQ expect state. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| /* Trigger the LED (if available) */ |
| ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); |
| |
| /* XXX: New EH and old EH use different mechanisms to |
| * synchronize EH with regular execution path. |
| * |
| * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. |
| * Normal execution path is responsible for not accessing a |
| * failed qc. libata core enforces the rule by returning NULL |
| * from ata_qc_from_tag() for failed qcs. |
| * |
| * Old EH depends on ata_qc_complete() nullifying completion |
| * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does |
| * not synchronize with interrupt handler. Only PIO task is |
| * taken care of. |
| */ |
| if (ap->ops->error_handler) { |
| struct ata_device *dev = qc->dev; |
| struct ata_eh_info *ehi = &dev->link->eh_info; |
| |
| if (unlikely(qc->err_mask)) |
| qc->flags |= ATA_QCFLAG_FAILED; |
| |
| /* |
| * Finish internal commands without any further processing |
| * and always with the result TF filled. |
| */ |
| if (unlikely(ata_tag_internal(qc->tag))) { |
| fill_result_tf(qc); |
| trace_ata_qc_complete_internal(qc); |
| __ata_qc_complete(qc); |
| return; |
| } |
| |
| /* |
| * Non-internal qc has failed. Fill the result TF and |
| * summon EH. |
| */ |
| if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { |
| fill_result_tf(qc); |
| trace_ata_qc_complete_failed(qc); |
| ata_qc_schedule_eh(qc); |
| return; |
| } |
| |
| WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); |
| |
| /* read result TF if requested */ |
| if (qc->flags & ATA_QCFLAG_RESULT_TF) |
| fill_result_tf(qc); |
| |
| trace_ata_qc_complete_done(qc); |
| /* Some commands need post-processing after successful |
| * completion. |
| */ |
| switch (qc->tf.command) { |
| case ATA_CMD_SET_FEATURES: |
| if (qc->tf.feature != SETFEATURES_WC_ON && |
| qc->tf.feature != SETFEATURES_WC_OFF && |
| qc->tf.feature != SETFEATURES_RA_ON && |
| qc->tf.feature != SETFEATURES_RA_OFF) |
| break; |
| /* fall through */ |
| case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ |
| case ATA_CMD_SET_MULTI: /* multi_count changed */ |
| /* revalidate device */ |
| ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; |
| ata_port_schedule_eh(ap); |
| break; |
| |
| case ATA_CMD_SLEEP: |
| dev->flags |= ATA_DFLAG_SLEEPING; |
| break; |
| } |
| |
| if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) |
| ata_verify_xfer(qc); |
| |
| __ata_qc_complete(qc); |
| } else { |
| if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) |
| return; |
| |
| /* read result TF if failed or requested */ |
| if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) |
| fill_result_tf(qc); |
| |
| __ata_qc_complete(qc); |
| } |
| } |
| |
| /** |
| * ata_qc_get_active - get bitmask of active qcs |
| * @ap: port in question |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Bitmask of active qcs |
| */ |
| u64 ata_qc_get_active(struct ata_port *ap) |
| { |
| u64 qc_active = ap->qc_active; |
| |
| /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ |
| if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { |
| qc_active |= (1 << 0); |
| qc_active &= ~(1ULL << ATA_TAG_INTERNAL); |
| } |
| |
| return qc_active; |
| } |
| EXPORT_SYMBOL_GPL(ata_qc_get_active); |
| |
| /** |
| * ata_qc_complete_multiple - Complete multiple qcs successfully |
| * @ap: port in question |
| * @qc_active: new qc_active mask |
| * |
| * Complete in-flight commands. This functions is meant to be |
| * called from low-level driver's interrupt routine to complete |
| * requests normally. ap->qc_active and @qc_active is compared |
| * and commands are completed accordingly. |
| * |
| * Always use this function when completing multiple NCQ commands |
| * from IRQ handlers instead of calling ata_qc_complete() |
| * multiple times to keep IRQ expect status properly in sync. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| * RETURNS: |
| * Number of completed commands on success, -errno otherwise. |
| */ |
| int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) |
| { |
| u64 done_mask, ap_qc_active = ap->qc_active; |
| int nr_done = 0; |
| |
| /* |
| * If the internal tag is set on ap->qc_active, then we care about |
| * bit0 on the passed in qc_active mask. Move that bit up to match |
| * the internal tag. |
| */ |
| if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { |
| qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; |
| qc_active ^= qc_active & 0x01; |
| } |
| |
| done_mask = ap_qc_active ^ qc_active; |
| |
| if (unlikely(done_mask & qc_active)) { |
| ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", |
| ap->qc_active, qc_active); |
| return -EINVAL; |
| } |
| |
| while (done_mask) { |
| struct ata_queued_cmd *qc; |
| unsigned int tag = __ffs64(done_mask); |
| |
| qc = ata_qc_from_tag(ap, tag); |
| if (qc) { |
| ata_qc_complete(qc); |
| nr_done++; |
| } |
| done_mask &= ~(1ULL << tag); |
| } |
| |
| return nr_done; |
| } |
| |
| /** |
| * ata_qc_issue - issue taskfile to device |
| * @qc: command to issue to device |
| * |
| * Prepare an ATA command to submission to device. |
| * This includes mapping the data into a DMA-able |
| * area, filling in the S/G table, and finally |
| * writing the taskfile to hardware, starting the command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| */ |
| void ata_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_link *link = qc->dev->link; |
| u8 prot = qc->tf.protocol; |
| |
| /* Make sure only one non-NCQ command is outstanding. The |
| * check is skipped for old EH because it reuses active qc to |
| * request ATAPI sense. |
| */ |
| WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); |
| |
| if (ata_is_ncq(prot)) { |
| WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); |
| |
| if (!link->sactive) |
| ap->nr_active_links++; |
| link->sactive |= 1 << qc->hw_tag; |
| } else { |
| WARN_ON_ONCE(link->sactive); |
| |
| ap->nr_active_links++; |
| link->active_tag = qc->tag; |
| } |
| |
| qc->flags |= ATA_QCFLAG_ACTIVE; |
| ap->qc_active |= 1ULL << qc->tag; |
| |
| /* |
| * We guarantee to LLDs that they will have at least one |
| * non-zero sg if the command is a data command. |
| */ |
| if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) |
| goto sys_err; |
| |
| if (ata_is_dma(prot) || (ata_is_pio(prot) && |
| (ap->flags & ATA_FLAG_PIO_DMA))) |
| if (ata_sg_setup(qc)) |
| goto sys_err; |
| |
| /* if device is sleeping, schedule reset and abort the link */ |
| if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { |
| link->eh_info.action |= ATA_EH_RESET; |
| ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); |
| ata_link_abort(link); |
| return; |
| } |
| |
| ap->ops->qc_prep(qc); |
| trace_ata_qc_issue(qc); |
| qc->err_mask |= ap->ops->qc_issue(qc); |
| if (unlikely(qc->err_mask)) |
| goto err; |
| return; |
| |
| sys_err: |
| qc->err_mask |= AC_ERR_SYSTEM; |
| err: |
| ata_qc_complete(qc); |
| } |
| |
| /** |
| * sata_scr_valid - test whether SCRs are accessible |
| * @link: ATA link to test SCR accessibility for |
| * |
| * Test whether SCRs are accessible for @link. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * 1 if SCRs are accessible, 0 otherwise. |
| */ |
| int sata_scr_valid(struct ata_link *link) |
| { |
| struct ata_port *ap = link->ap; |
| |
| return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; |
| } |
| |
| /** |
| * sata_scr_read - read SCR register of the specified port |
| * @link: ATA link to read SCR for |
| * @reg: SCR to read |
| * @val: Place to store read value |
| * |
| * Read SCR register @reg of @link into *@val. This function is |
| * guaranteed to succeed if @link is ap->link, the cable type of |
| * the port is SATA and the port implements ->scr_read. |
| * |
| * LOCKING: |
| * None if @link is ap->link. Kernel thread context otherwise. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_read(struct ata_link *link, int reg, u32 *val) |
| { |
| if (ata_is_host_link(link)) { |
| if (sata_scr_valid(link)) |
| return link->ap->ops->scr_read(link, reg, val); |
| return -EOPNOTSUPP; |
| } |
| |
| return sata_pmp_scr_read(link, reg, val); |
| } |
| |
| /** |
| * sata_scr_write - write SCR register of the specified port |
| * @link: ATA link to write SCR for |
| * @reg: SCR to write |
| * @val: value to write |
| * |
| * Write @val to SCR register @reg of @link. This function is |
| * guaranteed to succeed if @link is ap->link, the cable type of |
| * the port is SATA and the port implements ->scr_read. |
| * |
| * LOCKING: |
| * None if @link is ap->link. Kernel thread context otherwise. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_write(struct ata_link *link, int reg, u32 val) |
| { |
| if (ata_is_host_link(link)) { |
| if (sata_scr_valid(link)) |
| return link->ap->ops->scr_write(link, reg, val); |
| return -EOPNOTSUPP; |
| } |
| |
| return sata_pmp_scr_write(link, reg, val); |
| } |
| |
| /** |
| * sata_scr_write_flush - write SCR register of the specified port and flush |
| * @link: ATA link to write SCR for |
| * @reg: SCR to write |
| * @val: value to write |
| * |
| * This function is identical to sata_scr_write() except that this |
| * function performs flush after writing to the register. |
| * |
| * LOCKING: |
| * None if @link is ap->link. Kernel thread context otherwise. |
| * |
| * RETURNS: |
| * 0 on success, negative errno on failure. |
| */ |
| int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) |
| { |
| if (ata_is_host_link(link)) { |
| int rc; |
| |
| if (sata_scr_valid(link)) { |
| rc = link->ap->ops->scr_write(link, reg, val); |
| if (rc == 0) |
| rc = link->ap->ops->scr_read(link, reg, &val); |
| return rc; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| return sata_pmp_scr_write(link, reg, val); |
| } |
| |
| /** |
| * ata_phys_link_online - test whether the given link is online |
| * @link: ATA link to test |
| * |
| * Test whether @link is online. Note that this function returns |
| * 0 if online status of @link cannot be obtained, so |
| * ata_link_online(link) != !ata_link_offline(link). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * True if the port online status is available and online. |
| */ |
| bool ata_phys_link_online(struct ata_link *link) |
| { |
| u32 sstatus; |
| |
| if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && |
| ata_sstatus_online(sstatus)) |
| return true; |
| return false; |
| } |
| |
| /** |
| * ata_phys_link_offline - test whether the given link is offline |
| * @link: ATA link to test |
| * |
| * Test whether @link is offline. Note that this function |
| * returns 0 if offline status of @link cannot be obtained, so |
| * ata_link_online(link) != !ata_link_offline(link). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * True if the port offline status is available and offline. |
| */ |
| bool ata_phys_link_offline(struct ata_link *link) |
| { |
| u32 sstatus; |
| |
| if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && |
| !ata_sstatus_online(sstatus)) |
| return true; |
| return false; |
| } |
| |
| /** |
| * ata_link_online - test whether the given link is online |
| * @link: ATA link to test |
| * |
| * Test whether @link is online. This is identical to |
| * ata_phys_link_online() when there's no slave link. When |
| * there's a slave link, this function should only be called on |
| * the master link and will return true if any of M/S links is |
| * online. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * True if the port online status is available and online. |
| */ |
| bool ata_link_online(struct ata_link *link) |
| { |
| struct ata_link *slave = link->ap->slave_link; |
| |
| WARN_ON(link == slave); /* shouldn't be called on slave link */ |
| |
| return ata_phys_link_online(link) || |
| (slave && ata_phys_link_online(slave)); |
| } |
| |
| /** |
| * ata_link_offline - test whether the given link is offline |
| * @link: ATA link to test |
| * |
| * Test whether @link is offline. This is identical to |
| * ata_phys_link_offline() when there's no slave link. When |
| * there's a slave link, this function should only be called on |
| * the master link and will return true if both M/S links are |
| * offline. |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * True if the port offline status is available and offline. |
| */ |
| bool ata_link_offline(struct ata_link *link) |
| { |
| struct ata_link *slave = link->ap->slave_link; |
| |
| WARN_ON(link == slave); /* shouldn't be called on slave link */ |
| |
| return ata_phys_link_offline(link) && |
| (!slave || ata_phys_link_offline(slave)); |
| } |
| |
| #ifdef CONFIG_PM |
| static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, |
| unsigned int action, unsigned int ehi_flags, |
| bool async) |
| { |
| struct ata_link *link; |
| unsigned long flags; |
| |
| /* Previous resume operation might still be in |
| * progress. Wait for PM_PENDING to clear. |
| */ |
| if (ap->pflags & ATA_PFLAG_PM_PENDING) { |
| ata_port_wait_eh(ap); |
| WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); |
| } |
| |
| /* request PM ops to EH */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ap->pm_mesg = mesg; |
| ap->pflags |= ATA_PFLAG_PM_PENDING; |
| ata_for_each_link(link, ap, HOST_FIRST) { |
| link->eh_info.action |= action; |
| link->eh_info.flags |= ehi_flags; |
| } |
| |
| ata_port_schedule_eh(ap); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| if (!async) { |
| ata_port_wait_eh(ap); |
| WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); |
| } |
| } |
| |
| /* |
| * On some hardware, device fails to respond after spun down for suspend. As |
| * the device won't be used before being resumed, we don't need to touch the |
| * device. Ask EH to skip the usual stuff and proceed directly to suspend. |
| * |
| * http://thread.gmane.org/gmane.linux.ide/46764 |
| */ |
| static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET |
| | ATA_EHI_NO_AUTOPSY |
| | ATA_EHI_NO_RECOVERY; |
| |
| static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) |
| { |
| ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); |
| } |
| |
| static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) |
| { |
| ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); |
| } |
| |
| static int ata_port_pm_suspend(struct device *dev) |
| { |
| struct ata_port *ap = to_ata_port(dev); |
| |
| if (pm_runtime_suspended(dev)) |
| return 0; |
| |
| ata_port_suspend(ap, PMSG_SUSPEND); |
| return 0; |
| } |
| |
| static int ata_port_pm_freeze(struct device *dev) |
| { |
| struct ata_port *ap = to_ata_port(dev); |
| |
| if (pm_runtime_suspended(dev)) |
| return 0; |
| |
| ata_port_suspend(ap, PMSG_FREEZE); |
| return 0; |
| } |
| |
| static int ata_port_pm_poweroff(struct device *dev) |
| { |
| ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); |
| return 0; |
| } |
| |
| static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY |
| | ATA_EHI_QUIET; |
| |
| static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) |
| { |
| ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); |
| } |
| |
| static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) |
| { |
| ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); |
| } |
| |
| static int ata_port_pm_resume(struct device *dev) |
| { |
| ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); |
| pm_runtime_disable(dev); |
| pm_runtime_set_active(dev); |
| pm_runtime_enable(dev); |
| return 0; |
| } |
| |
| /* |
| * For ODDs, the upper layer will poll for media change every few seconds, |
| * which will make it enter and leave suspend state every few seconds. And |
| * as each suspend will cause a hard/soft reset, the gain of runtime suspend |
| * is very little and the ODD may malfunction after constantly being reset. |
| * So the idle callback here will not proceed to suspend if a non-ZPODD capable |
| * ODD is attached to the port. |
| */ |
| static int ata_port_runtime_idle(struct device *dev) |
| { |
| struct ata_port *ap = to_ata_port(dev); |
| struct ata_link *link; |
| struct ata_device *adev; |
| |
| ata_for_each_link(link, ap, HOST_FIRST) { |
| ata_for_each_dev(adev, link, ENABLED) |
| if (adev->class == ATA_DEV_ATAPI && |
| !zpodd_dev_enabled(adev)) |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static int ata_port_runtime_suspend(struct device *dev) |
| { |
| ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); |
| return 0; |
| } |
| |
| static int ata_port_runtime_resume(struct device *dev) |
| { |
| ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops ata_port_pm_ops = { |
| .suspend = ata_port_pm_suspend, |
| .resume = ata_port_pm_resume, |
| .freeze = ata_port_pm_freeze, |
| .thaw = ata_port_pm_resume, |
| .poweroff = ata_port_pm_poweroff, |
| .restore = ata_port_pm_resume, |
| |
| .runtime_suspend = ata_port_runtime_suspend, |
| .runtime_resume = ata_port_runtime_resume, |
| .runtime_idle = ata_port_runtime_idle, |
| }; |
| |
| /* sas ports don't participate in pm runtime management of ata_ports, |
| * and need to resume ata devices at the domain level, not the per-port |
| * level. sas suspend/resume is async to allow parallel port recovery |
| * since sas has multiple ata_port instances per Scsi_Host. |
| */ |
| void ata_sas_port_suspend(struct ata_port *ap) |
| { |
| ata_port_suspend_async(ap, PMSG_SUSPEND); |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_suspend); |
| |
| void ata_sas_port_resume(struct ata_port *ap) |
| { |
| ata_port_resume_async(ap, PMSG_RESUME); |
| } |
| EXPORT_SYMBOL_GPL(ata_sas_port_resume); |
| |
| /** |
| * ata_host_suspend - suspend host |
| * @host: host to suspend |
| * @mesg: PM message |
| * |
| * Suspend @host. Actual operation is performed by port suspend. |
| */ |
| int ata_host_suspend(struct ata_host *host, pm_message_t mesg) |
| { |
| host->dev->power.power_state = mesg; |
| return 0; |
| } |
| |
| /** |
| * ata_host_resume - resume host |
| * @host: host to resume |
| * |
| * Resume @host. Actual operation is performed by port resume. |
| */ |
| void ata_host_resume(struct ata_host *host) |
| { |
| host->dev->power.power_state = PMSG_ON; |
| } |
| #endif |
| |
| const struct device_type ata_port_type = { |
| .name = "ata_port", |
| #ifdef CONFIG_PM |
| .pm = &ata_port_pm_ops, |
| #endif |
| }; |
| |
| /** |
| * ata_dev_init - Initialize an ata_device structure |
| * @dev: Device structure to initialize |
| * |
| * Initialize @dev in preparation for probing. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void ata_dev_init(struct ata_device *dev) |
| { |
| struct ata_link *link = ata_dev_phys_link(dev); |
| struct ata_port *ap = link->ap; |
| unsigned long flags; |
| |
| /* SATA spd limit is bound to the attached device, reset together */ |
| link->sata_spd_limit = link->hw_sata_spd_limit; |
| link->sata_spd = 0; |
| |
| /* High bits of dev->flags are used to record warm plug |
| * requests which occur asynchronously. Synchronize using |
| * host lock. |
| */ |
| spin_lock_irqsave(ap->lock, flags); |
| dev->flags &= ~ATA_DFLAG_INIT_MASK; |
| dev->horkage = 0; |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, |
| ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); |
| dev->pio_mask = UINT_MAX; |
| dev->mwdma_mask = UINT_MAX; |
| dev->udma_mask = UINT_MAX; |
| } |
| |
| /** |
| * ata_link_init - Initialize an ata_link structure |
| * @ap: ATA port link is attached to |
| * @link: Link structure to initialize |
| * @pmp: Port multiplier port number |
| * |
| * Initialize @link. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) |
| { |
| int i; |
| |
| /* clear everything except for devices */ |
| memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, |
| ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); |
| |
| link->ap = ap; |
| link->pmp = pmp; |
| link->active_tag = ATA_TAG_POISON; |
| link->hw_sata_spd_limit = UINT_MAX; |
| |
| /* can't use iterator, ap isn't initialized yet */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| struct ata_device *dev = &link->device[i]; |
| |
| dev->link = link; |
| dev->devno = dev - link->device; |
| #ifdef CONFIG_ATA_ACPI |
| dev->gtf_filter = ata_acpi_gtf_filter; |
| #endif |
| ata_dev_init(dev); |
| } |
| } |
| |
| /** |
| * sata_link_init_spd - Initialize link->sata_spd_limit |
| * @link: Link to configure sata_spd_limit for |
| * |
| * Initialize @link->[hw_]sata_spd_limit to the currently |
| * configured value. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int sata_link_init_spd(struct ata_link *link) |
| { |
| u8 spd; |
| int rc; |
| |
| rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); |
| if (rc) |
| return rc; |
| |
| spd = (link->saved_scontrol >> 4) & 0xf; |
| if (spd) |
| link->hw_sata_spd_limit &= (1 << spd) - 1; |
| |
| ata_force_link_limits(link); |
| |
| link->sata_spd_limit = link->hw_sata_spd_limit; |
| |
| return 0; |
| } |
| |
| /** |
| * ata_port_alloc - allocate and initialize basic ATA port resources |
| * @host: ATA host this allocated port belongs to |
| * |
| * Allocate and initialize basic ATA port resources. |
| * |
| * RETURNS: |
| * Allocate ATA port on success, NULL on failure. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| struct ata_port *ata_port_alloc(struct ata_host *host) |
| { |
| struct ata_port *ap; |
| |
| DPRINTK("ENTER\n"); |
| |
| ap = kzalloc(sizeof(*ap), GFP_KERNEL); |
| if (!ap) |
| return NULL; |
| |
| ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; |
| ap->lock = &host->lock; |
| ap->print_id = -1; |
| ap->local_port_no = -1; |
| ap->host = host; |
| ap->dev = host->dev; |
| |
| #if defined(ATA_VERBOSE_DEBUG) |
| /* turn on all debugging levels */ |
| ap->msg_enable = 0x00FF; |
| #elif defined(ATA_DEBUG) |
| ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; |
| #else |
| ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; |
| #endif |
| |
| mutex_init(&ap->scsi_scan_mutex); |
| INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); |
| INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); |
| INIT_LIST_HEAD(&ap->eh_done_q); |
| init_waitqueue_head(&ap->eh_wait_q); |
| init_completion(&ap->park_req_pending); |
| timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, |
| TIMER_DEFERRABLE); |
| |
| ap->cbl = ATA_CBL_NONE; |
| |
| ata_link_init(ap, &ap->link, 0); |
| |
| #ifdef ATA_IRQ_TRAP |
| ap->stats.unhandled_irq = 1; |
| ap->stats.idle_irq = 1; |
| #endif |
| ata_sff_port_init(ap); |
| |
| return ap; |
| } |
| |
| static void ata_devres_release(struct device *gendev, void *res) |
| { |
| struct ata_host *host = dev_get_drvdata(gendev); |
| int i; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (!ap) |
| continue; |
| |
| if (ap->scsi_host) |
| scsi_host_put(ap->scsi_host); |
| |
| } |
| |
| dev_set_drvdata(gendev, NULL); |
| ata_host_put(host); |
| } |
| |
| static void ata_host_release(struct kref *kref) |
| { |
| struct ata_host *host = container_of(kref, struct ata_host, kref); |
| int i; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| kfree(ap->pmp_link); |
| kfree(ap->slave_link); |
| kfree(ap); |
| host->ports[i] = NULL; |
| } |
| kfree(host); |
| } |
| |
| void ata_host_get(struct ata_host *host) |
| { |
| kref_get(&host->kref); |
| } |
| |
| void ata_host_put(struct ata_host *host) |
| { |
| kref_put(&host->kref, ata_host_release); |
| } |
| |
| /** |
| * ata_host_alloc - allocate and init basic ATA host resources |
| * @dev: generic device this host is associated with |
| * @max_ports: maximum number of ATA ports associated with this host |
| * |
| * Allocate and initialize basic ATA host resources. LLD calls |
| * this function to allocate a host, initializes it fully and |
| * attaches it using ata_host_register(). |
| * |
| * @max_ports ports are allocated and host->n_ports is |
| * initialized to @max_ports. The caller is allowed to decrease |
| * host->n_ports before calling ata_host_register(). The unused |
| * ports will be automatically freed on registration. |
| * |
| * RETURNS: |
| * Allocate ATA host on success, NULL on failure. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| struct ata_host *ata_host_alloc(struct device *dev, int max_ports) |
| { |
| struct ata_host *host; |
| size_t sz; |
| int i; |
| void *dr; |
| |
| DPRINTK("ENTER\n"); |
| |
| /* alloc a container for our list of ATA ports (buses) */ |
| sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); |
| host = kzalloc(sz, GFP_KERNEL); |
| if (!host) |
| return NULL; |
| |
| if (!devres_open_group(dev, NULL, GFP_KERNEL)) |
| goto err_free; |
| |
| dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); |
| if (!dr) |
| goto err_out; |
| |
| devres_add(dev, dr); |
| dev_set_drvdata(dev, host); |
| |
| spin_lock_init(&host->lock); |
| mutex_init(&host->eh_mutex); |
| host->dev = dev; |
| host->n_ports = max_ports; |
| kref_init(&host->kref); |
| |
| /* allocate ports bound to this host */ |
| for (i = 0; i < max_ports; i++) { |
| struct ata_port *ap; |
| |
| ap = ata_port_alloc(host); |
| if (!ap) |
| goto err_out; |
| |
| ap->port_no = i; |
| host->ports[i] = ap; |
| } |
| |
| devres_remove_group(dev, NULL); |
| return host; |
| |
| err_out: |
| devres_release_group(dev, NULL); |
| err_free: |
| kfree(host); |
| return NULL; |
| } |
| |
| /** |
| * ata_host_alloc_pinfo - alloc host and init with port_info array |
| * @dev: generic device this host is associated with |
| * @ppi: array of ATA port_info to initialize host with |
| * @n_ports: number of ATA ports attached to this host |
| * |
| * Allocate ATA host and initialize with info from @ppi. If NULL |
| * terminated, @ppi may contain fewer entries than @n_ports. The |
| * last entry will be used for the remaining ports. |
| * |
| * RETURNS: |
| * Allocate ATA host on success, NULL on failure. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| struct ata_host *ata_host_alloc_pinfo(struct device *dev, |
| const struct ata_port_info * const * ppi, |
| int n_ports) |
| { |
| const struct ata_port_info *pi; |
| struct ata_host *host; |
| int i, j; |
| |
| host = ata_host_alloc(dev, n_ports); |
| if (!host) |
| return NULL; |
| |
| for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (ppi[j]) |
| pi = ppi[j++]; |
| |
| ap->pio_mask = pi->pio_mask; |
| ap->mwdma_mask = pi->mwdma_mask; |
| ap->udma_mask = pi->udma_mask; |
| ap->flags |= pi->flags; |
| ap->link.flags |= pi->link_flags; |
| ap->ops = pi->port_ops; |
| |
| if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) |
| host->ops = pi->port_ops; |
| } |
| |
| return host; |
| } |
| |
| /** |
| * ata_slave_link_init - initialize slave link |
| * @ap: port to initialize slave link for |
| * |
| * Create and initialize slave link for @ap. This enables slave |
| * link handling on the port. |
| * |
| * In libata, a port contains links and a link contains devices. |
| * There is single host link but if a PMP is attached to it, |
| * there can be multiple fan-out links. On SATA, there's usually |
| * a single device connected to a link but PATA and SATA |
| * controllers emulating TF based interface can have two - master |
| * and slave. |
| * |
| * However, there are a few controllers which don't fit into this |
| * abstraction too well - SATA controllers which emulate TF |
| * interface with both master and slave devices but also have |
| * separate SCR register sets for each device. These controllers |
| * need separate links for physical link handling |
| * (e.g. onlineness, link speed) but should be treated like a |
| * traditional M/S controller for everything else (e.g. command |
| * issue, softreset). |
| * |
| * slave_link is libata's way of handling this class of |
| * controllers without impacting core layer too much. For |
| * anything other than physical link handling, the default host |
| * link is used for both master and slave. For physical link |
| * handling, separate @ap->slave_link is used. All dirty details |
| * are implemented inside libata core layer. From LLD's POV, the |
| * only difference is that prereset, hardreset and postreset are |
| * called once more for the slave link, so the reset sequence |
| * looks like the following. |
| * |
| * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> |
| * softreset(M) -> postreset(M) -> postreset(S) |
| * |
| * Note that softreset is called only for the master. Softreset |
| * resets both M/S by definition, so SRST on master should handle |
| * both (the standard method will work just fine). |
| * |
| * LOCKING: |
| * Should be called before host is registered. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int ata_slave_link_init(struct ata_port *ap) |
| { |
| struct ata_link *link; |
| |
| WARN_ON(ap->slave_link); |
| WARN_ON(ap->flags & ATA_FLAG_PMP); |
| |
| link = kzalloc(sizeof(*link), GFP_KERNEL); |
| if (!link) |
| return -ENOMEM; |
| |
| ata_link_init(ap, link, 1); |
| ap->slave_link = link; |
| return 0; |
| } |
| |
| static void ata_host_stop(struct device *gendev, void *res) |
| { |
| struct ata_host *host = dev_get_drvdata(gendev); |
| int i; |
| |
| WARN_ON(!(host->flags & ATA_HOST_STARTED)); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (ap->ops->port_stop) |
| ap->ops->port_stop(ap); |
| } |
| |
| if (host->ops->host_stop) |
| host->ops->host_stop(host); |
| } |
| |
| /** |
| * ata_finalize_port_ops - finalize ata_port_operations |
| * @ops: ata_port_operations to finalize |
| * |
| * An ata_port_operations can inherit from another ops and that |
| * ops can again inherit from another. This can go on as many |
| * times as necessary as long as there is no loop in the |
| * inheritance chain. |
| * |
| * Ops tables are finalized when the host is started. NULL or |
| * unspecified entries are inherited from the closet ancestor |
| * which has the method and the entry is populated with it. |
| * After finalization, the ops table directly points to all the |
| * methods and ->inherits is no longer necessary and cleared. |
| * |
| * Using ATA_OP_NULL, inheriting ops can force a method to NULL. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void ata_finalize_port_ops(struct ata_port_operations *ops) |
| { |
| static DEFINE_SPINLOCK(lock); |
| const struct ata_port_operations *cur; |
| void **begin = (void **)ops; |
| void **end = (void **)&ops->inherits; |
| void **pp; |
| |
| if (!ops || !ops->inherits) |
| return; |
| |
| spin_lock(&lock); |
| |
| for (cur = ops->inherits; cur; cur = cur->inherits) { |
| void **inherit = (void **)cur; |
| |
| for (pp = begin; pp < end; pp++, inherit++) |
| if (!*pp) |
| *pp = *inherit; |
| } |
| |
| for (pp = begin; pp < end; pp++) |
| if (IS_ERR(*pp)) |
| *pp = NULL; |
| |
| ops->inherits = NULL; |
| |
| spin_unlock(&lock); |
| } |
| |
| /** |
| * ata_host_start - start and freeze ports of an ATA host |
| * @host: ATA host to start ports for |
| * |
| * Start and then freeze ports of @host. Started status is |
| * recorded in host->flags, so this function can be called |
| * multiple times. Ports are guaranteed to get started only |
| * once. If host->ops isn't initialized yet, its set to the |
| * first non-dummy port ops. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 if all ports are started successfully, -errno otherwise. |
| */ |
| int ata_host_start(struct ata_host *host) |
| { |
| int have_stop = 0; |
| void *start_dr = NULL; |
| int i, rc; |
| |
| if (host->flags & ATA_HOST_STARTED) |
| return 0; |
| |
| ata_finalize_port_ops(host->ops); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| ata_finalize_port_ops(ap->ops); |
| |
| if (!host->ops && !ata_port_is_dummy(ap)) |
| host->ops = ap->ops; |
| |
| if (ap->ops->port_stop) |
| have_stop = 1; |
| } |
| |
| if (host->ops->host_stop) |
| have_stop = 1; |
| |
| if (have_stop) { |
| start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); |
| if (!start_dr) |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (ap->ops->port_start) { |
| rc = ap->ops->port_start(ap); |
| if (rc) { |
| if (rc != -ENODEV) |
| dev_err(host->dev, |
| "failed to start port %d (errno=%d)\n", |
| i, rc); |
| goto err_out; |
| } |
| } |
| ata_eh_freeze_port(ap); |
| } |
| |
| if (start_dr) |
| devres_add(host->dev, start_dr); |
| host->flags |= ATA_HOST_STARTED; |
| return 0; |
| |
| err_out: |
| while (--i >= 0) { |
| struct ata_port *ap = host->ports[i]; |
| |
| if (ap->ops->port_stop) |
| ap->ops->port_stop(ap); |
| } |
| devres_free(start_dr); |
| return rc; |
| } |
| |
| /** |
| * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) |
| * @host: host to initialize |
| * @dev: device host is attached to |
| * @ops: port_ops |
| * |
| */ |
| void ata_host_init(struct ata_host *host, struct device *dev, |
| struct ata_port_operations *ops) |
| { |
| spin_lock_init(&host->lock); |
| mutex_init(&host->eh_mutex); |
| host->n_tags = ATA_MAX_QUEUE; |
| host->dev = dev; |
| host->ops = ops; |
| kref_init(&host->kref); |
| } |
| |
| void __ata_port_probe(struct ata_port *ap) |
| { |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| unsigned long flags; |
| |
| /* kick EH for boot probing */ |
| spin_lock_irqsave(ap->lock, flags); |
| |
| ehi->probe_mask |= ATA_ALL_DEVICES; |
| ehi->action |= ATA_EH_RESET; |
| ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; |
| |
| ap->pflags &= ~ATA_PFLAG_INITIALIZING; |
| ap->pflags |= ATA_PFLAG_LOADING; |
| ata_port_schedule_eh(ap); |
| |
| spin_unlock_irqrestore(ap->lock, flags); |
| } |
| |
| int ata_port_probe(struct ata_port *ap) |
| { |
| int rc = 0; |
| |
| if (ap->ops->error_handler) { |
| __ata_port_probe(ap); |
| ata_port_wait_eh(ap); |
| } else { |
| DPRINTK("ata%u: bus probe begin\n", ap->print_id); |
| rc = ata_bus_probe(ap); |
| DPRINTK("ata%u: bus probe end\n", ap->print_id); |
| } |
| return rc; |
| } |
| |
| |
| static void async_port_probe(void *data, async_cookie_t cookie) |
| { |
| struct ata_port *ap = data; |
| |
| /* |
| * If we're not allowed to scan this host in parallel, |
| * we need to wait until all previous scans have completed |
| * before going further. |
| * Jeff Garzik says this is only within a controller, so we |
| * don't need to wait for port 0, only for later ports. |
| */ |
| if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) |
| async_synchronize_cookie(cookie); |
| |
| (void)ata_port_probe(ap); |
| |
| /* in order to keep device order, we need to synchronize at this point */ |
| async_synchronize_cookie(cookie); |
| |
| ata_scsi_scan_host(ap, 1); |
| } |
| |
| /** |
| * ata_host_register - register initialized ATA host |
| * @host: ATA host to register |
| * @sht: template for SCSI host |
| * |
| * Register initialized ATA host. @host is allocated using |
| * ata_host_alloc() and fully initialized by LLD. This function |
| * starts ports, registers @host with ATA and SCSI layers and |
| * probe registered devices. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) |
| { |
| int i, rc; |
| |
| host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); |
| |
| /* host must have been started */ |
| if (!(host->flags & ATA_HOST_STARTED)) { |
| dev_err(host->dev, "BUG: trying to register unstarted host\n"); |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| /* Blow away unused ports. This happens when LLD can't |
| * determine the exact number of ports to allocate at |
| * allocation time. |
| */ |
| for (i = host->n_ports; host->ports[i]; i++) |
| kfree(host->ports[i]); |
| |
| /* give ports names and add SCSI hosts */ |
| for (i = 0; i < host->n_ports; i++) { |
| host->ports[i]->print_id = atomic_inc_return(&ata_print_id); |
| host->ports[i]->local_port_no = i + 1; |
| } |
| |
| /* Create associated sysfs transport objects */ |
| for (i = 0; i < host->n_ports; i++) { |
| rc = ata_tport_add(host->dev,host->ports[i]); |
| if (rc) { |
| goto err_tadd; |
| } |
| } |
| |
| rc = ata_scsi_add_hosts(host, sht); |
| if (rc) |
| goto err_tadd; |
| |
| /* set cable, sata_spd_limit and report */ |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| unsigned long xfer_mask; |
| |
| /* set SATA cable type if still unset */ |
| if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) |
| ap->cbl = ATA_CBL_SATA; |
| |
| /* init sata_spd_limit to the current value */ |
| sata_link_init_spd(&ap->link); |
| if (ap->slave_link) |
| sata_link_init_spd(ap->slave_link); |
| |
| /* print per-port info to dmesg */ |
| xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, |
| ap->udma_mask); |
| |
| if (!ata_port_is_dummy(ap)) { |
| ata_port_info(ap, "%cATA max %s %s\n", |
| (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', |
| ata_mode_string(xfer_mask), |
| ap->link.eh_info.desc); |
| ata_ehi_clear_desc(&ap->link.eh_info); |
| } else |
| ata_port_info(ap, "DUMMY\n"); |
| } |
| |
| /* perform each probe asynchronously */ |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| async_schedule(async_port_probe, ap); |
| } |
| |
| return 0; |
| |
| err_tadd: |
| while (--i >= 0) { |
| ata_tport_delete(host->ports[i]); |
| } |
| return rc; |
| |
| } |
| |
| /** |
| * ata_host_activate - start host, request IRQ and register it |
| * @host: target ATA host |
| * @irq: IRQ to request |
| * @irq_handler: irq_handler used when requesting IRQ |
| * @irq_flags: irq_flags used when requesting IRQ |
| * @sht: scsi_host_template to use when registering the host |
| * |
| * After allocating an ATA host and initializing it, most libata |
| * LLDs perform three steps to activate the host - start host, |
| * request IRQ and register it. This helper takes necessary |
| * arguments and performs the three steps in one go. |
| * |
| * An invalid IRQ skips the IRQ registration and expects the host to |
| * have set polling mode on the port. In this case, @irq_handler |
| * should be NULL. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_host_activate(struct ata_host *host, int irq, |
| irq_handler_t irq_handler, unsigned long irq_flags, |
| struct scsi_host_template *sht) |
| { |
| int i, rc; |
| char *irq_desc; |
| |
| rc = ata_host_start(host); |
| if (rc) |
| return rc; |
| |
| /* Special case for polling mode */ |
| if (!irq) { |
| WARN_ON(irq_handler); |
| return ata_host_register(host, sht); |
| } |
| |
| irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", |
| dev_driver_string(host->dev), |
| dev_name(host->dev)); |
| if (!irq_desc) |
| return -ENOMEM; |
| |
| rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, |
| irq_desc, host); |
| if (rc) |
| return rc; |
| |
| for (i = 0; i < host->n_ports; i++) |
| ata_port_desc(host->ports[i], "irq %d", irq); |
| |
| rc = ata_host_register(host, sht); |
| /* if failed, just free the IRQ and leave ports alone */ |
| if (rc) |
| devm_free_irq(host->dev, irq, host); |
| |
| return rc; |
| } |
| |
| /** |
| * ata_port_detach - Detach ATA port in preparation of device removal |
| * @ap: ATA port to be detached |
| * |
| * Detach all ATA devices and the associated SCSI devices of @ap; |
| * then, remove the associated SCSI host. @ap is guaranteed to |
| * be quiescent on return from this function. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| static void ata_port_detach(struct ata_port *ap) |
| { |
| unsigned long flags; |
| struct ata_link *link; |
| struct ata_device *dev; |
| |
| if (!ap->ops->error_handler) |
| goto skip_eh; |
| |
| /* tell EH we're leaving & flush EH */ |
| spin_lock_irqsave(ap->lock, flags); |
| ap->pflags |= ATA_PFLAG_UNLOADING; |
| ata_port_schedule_eh(ap); |
| spin_unlock_irqrestore(ap->lock, flags); |
| |
| /* wait till EH commits suicide */ |
| ata_port_wait_eh(ap); |
| |
| /* it better be dead now */ |
| WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); |
| |
| cancel_delayed_work_sync(&ap->hotplug_task); |
| |
| skip_eh: |
| /* clean up zpodd on port removal */ |
| ata_for_each_link(link, ap, HOST_FIRST) { |
| ata_for_each_dev(dev, link, ALL) { |
| if (zpodd_dev_enabled(dev)) |
| zpodd_exit(dev); |
| } |
| } |
| if (ap->pmp_link) { |
| int i; |
| for (i = 0; i < SATA_PMP_MAX_PORTS; i++) |
| ata_tlink_delete(&ap->pmp_link[i]); |
| } |
| /* remove the associated SCSI host */ |
| scsi_remove_host(ap->scsi_host); |
| ata_tport_delete(ap); |
| } |
| |
| /** |
| * ata_host_detach - Detach all ports of an ATA host |
| * @host: Host to detach |
| * |
| * Detach all ports of @host. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep). |
| */ |
| void ata_host_detach(struct ata_host *host) |
| { |
| int i; |
| |
| /* Ensure ata_port probe has completed */ |
| async_synchronize_full(); |
| |
| for (i = 0; i < host->n_ports; i++) |
| ata_port_detach(host->ports[i]); |
| |
| /* the host is dead now, dissociate ACPI */ |
| ata_acpi_dissociate(host); |
| } |
| |
| #ifdef CONFIG_PCI |
| |
| /** |
| * ata_pci_remove_one - PCI layer callback for device removal |
| * @pdev: PCI device that was removed |
| * |
| * PCI layer indicates to libata via this hook that hot-unplug or |
| * module unload event has occurred. Detach all ports. Resource |
| * release is handled via devres. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| */ |
| void ata_pci_remove_one(struct pci_dev *pdev) |
| { |
| struct ata_host *host = pci_get_drvdata(pdev); |
| |
| ata_host_detach(host); |
| } |
| |
| void ata_pci_shutdown_one(struct pci_dev *pdev) |
| { |
| struct ata_host *host = pci_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < host->n_ports; i++) { |
| struct ata_port *ap = host->ports[i]; |
| |
| ap->pflags |= ATA_PFLAG_FROZEN; |
| |
| /* Disable port interrupts */ |
| if (ap->ops->freeze) |
| ap->ops->freeze(ap); |
| |
| /* Stop the port DMA engines */ |
| if (ap->ops->port_stop) |
| ap->ops->port_stop(ap); |
| } |
| } |
| |
| /* move to PCI subsystem */ |
| int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) |
| { |
| unsigned long tmp = 0; |
| |
| switch (bits->width) { |
| case 1: { |
| u8 tmp8 = 0; |
| pci_read_config_byte(pdev, bits->reg, &tmp8); |
| tmp = tmp8; |
| break; |
| } |
| case 2: { |
| u16 tmp16 = 0; |
| pci_read_config_word(pdev, bits->reg, &tmp16); |
| tmp = tmp16; |
| break; |
| } |
| case 4: { |
| u32 tmp32 = 0; |
| pci_read_config_dword(pdev, bits->reg, &tmp32); |
| tmp = tmp32; |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| tmp &= bits->mask; |
| |
| return (tmp == bits->val) ? 1 : 0; |
| } |
| |
| #ifdef CONFIG_PM |
| void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) |
| { |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| |
| if (mesg.event & PM_EVENT_SLEEP) |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| int ata_pci_device_do_resume(struct pci_dev *pdev) |
| { |
| int rc; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| |
| rc = pcim_enable_device(pdev); |
| if (rc) { |
| dev_err(&pdev->dev, |
| "failed to enable device after resume (%d)\n", rc); |
| return rc; |
| } |
| |
| pci_set_master(pdev); |
| return 0; |
| } |
| |
| int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) |
| { |
| struct ata_host *host = pci_get_drvdata(pdev); |
| int rc = 0; |
| |
| rc = ata_host_suspend(host, mesg); |
| if (rc) |
| return rc; |
| |
| ata_pci_device_do_suspend(pdev, mesg); |
| |
| return 0; |
| } |
| |
| int ata_pci_device_resume(struct pci_dev *pdev) |
| { |
| struct ata_host *host = pci_get_drvdata(pdev); |
| int rc; |
| |
| rc = ata_pci_device_do_resume(pdev); |
| if (rc == 0) |
| ata_host_resume(host); |
| return rc; |
| } |
| #endif /* CONFIG_PM */ |
| |
| #endif /* CONFIG_PCI */ |
| |
| /** |
| * ata_platform_remove_one - Platform layer callback for device removal |
| * @pdev: Platform device that was removed |
| * |
| * Platform layer indicates to libata via this hook that hot-unplug or |
| * module unload event has occurred. Detach all ports. Resource |
| * release is handled via devres. |
| * |
| * LOCKING: |
| * Inherited from platform layer (may sleep). |
| */ |
| int ata_platform_remove_one(struct platform_device *pdev) |
| { |
| struct ata_host *host = platform_get_drvdata(pdev); |
| |
| ata_host_detach(host); |
| |
| return 0; |
| } |
| |
| static int __init ata_parse_force_one(char **cur, |
| struct ata_force_ent *force_ent, |
| const char **reason) |
| { |
| static const struct ata_force_param force_tbl[] __initconst = { |
| { "40c", .cbl = ATA_CBL_PATA40 }, |
| { "80c", .cbl = ATA_CBL_PATA80 }, |
| { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, |
| { "unk", .cbl = ATA_CBL_PATA_UNK }, |
| { "ign", .cbl = ATA_CBL_PATA_IGN }, |
| { "sata", .cbl = ATA_CBL_SATA }, |
| { "1.5Gbps", .spd_limit = 1 }, |
| { "3.0Gbps", .spd_limit = 2 }, |
| { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, |
| { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, |
| { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, |
| { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, |
| { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, |
| { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, |
| { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, |
| { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, |
| { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, |
| { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, |
| { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, |
| { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, |
| { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, |
| { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, |
| { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, |
| { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, |
| { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, |
| { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, |
| { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, |
| { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, |
| { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, |
| { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, |
| { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, |
| { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, |
| { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, |
| { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, |
| { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, |
| { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, |
| { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, |
| { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, |
| { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, |
| { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, |
| { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, |
| { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, |
| { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, |
| { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, |
| { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, |
| { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, |
| { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, |
| { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, |
| { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, |
| { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, |
| { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, |
| { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, |
| { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, |
| }; |
| char *start = *cur, *p = *cur; |
| char *id, *val, *endp; |
| const struct ata_force_param *match_fp = NULL; |
| int nr_matches = 0, i; |
| |
| /* find where this param ends and update *cur */ |
| while (*p != '\0' && *p != ',') |
| p++; |
| |
| if (*p == '\0') |
| *cur = p; |
| else |
| *cur = p + 1; |
| |
| *p = '\0'; |
| |
| /* parse */ |
| p = strchr(start, ':'); |
| if (!p) { |
| val = strstrip(start); |
| goto parse_val; |
| } |
| *p = '\0'; |
| |
| id = strstrip(start); |
| val = strstrip(p + 1); |
| |
| /* parse id */ |
| p = strchr(id, '.'); |
| if (p) { |
| *p++ = '\0'; |
| force_ent->device = simple_strtoul(p, &endp, 10); |
| if (p == endp || *endp != '\0') { |
| *reason = "invalid device"; |
| return -EINVAL; |
| } |
| } |
| |
| force_ent->port = simple_strtoul(id, &endp, 10); |
| if (id == endp || *endp != '\0') { |
| *reason = "invalid port/link"; |
| return -EINVAL; |
| } |
| |
| parse_val: |
| /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ |
| for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { |
| const struct ata_force_param *fp = &force_tbl[i]; |
| |
| if (strncasecmp(val, fp->name, strlen(val))) |
| continue; |
| |
| nr_matches++; |
| match_fp = fp; |
| |
| if (strcasecmp(val, fp->name) == 0) { |
| nr_matches = 1; |
| break; |
| } |
| } |
| |
| if (!nr_matches) { |
| *reason = "unknown value"; |
| return -EINVAL; |
| } |
| if (nr_matches > 1) { |
| *reason = "ambiguous value"; |
| return -EINVAL; |
| } |
| |
| force_ent->param = *match_fp; |
| |
| return 0; |
| } |
| |
| static void __init ata_parse_force_param(void) |
| { |
| int idx = 0, size = 1; |
| int last_port = -1, last_device = -1; |
| char *p, *cur, *next; |
| |
| /* calculate maximum number of params and allocate force_tbl */ |
| for (p = ata_force_param_buf; *p; p++) |
| if (*p == ',') |
| size++; |
| |
| ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); |
| if (!ata_force_tbl) { |
| printk(KERN_WARNING "ata: failed to extend force table, " |
| "libata.force ignored\n"); |
| return; |
| } |
| |
| /* parse and populate the table */ |
| for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { |
| const char *reason = ""; |
| struct ata_force_ent te = { .port = -1, .device = -1 }; |
| |
| next = cur; |
| if (ata_parse_force_one(&next, &te, &reason)) { |
| printk(KERN_WARNING "ata: failed to parse force " |
| "parameter \"%s\" (%s)\n", |
| cur, reason); |
| continue; |
| } |
| |
| if (te.port == -1) { |
| te.port = last_port; |
| te.device = last_device; |
| } |
| |
| ata_force_tbl[idx++] = te; |
| |
| last_port = te.port; |
| last_device = te.device; |
| } |
| |
| ata_force_tbl_size = idx; |
| } |
| |
| static int __init ata_init(void) |
| { |
| int rc; |
| |
| ata_parse_force_param(); |
| |
| rc = ata_sff_init(); |
| if (rc) { |
| kfree(ata_force_tbl); |
| return rc; |
| } |
| |
| libata_transport_init(); |
| ata_scsi_transport_template = ata_attach_transport(); |
| if (!ata_scsi_transport_template) { |
| ata_sff_exit(); |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| |
| printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); |
| return 0; |
| |
| err_out: |
| return rc; |
| } |
| |
| static void __exit ata_exit(void) |
| { |
| ata_release_transport(ata_scsi_transport_template); |
| libata_transport_exit(); |
| ata_sff_exit(); |
| kfree(ata_force_tbl); |
| } |
| |
| subsys_initcall(ata_init); |
| module_exit(ata_exit); |
| |
| static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); |
| |
| int ata_ratelimit(void) |
| { |
| return __ratelimit(&ratelimit); |
| } |
| |
| /** |
| * ata_msleep - ATA EH owner aware msleep |
| * @ap: ATA port to attribute the sleep to |
| * @msecs: duration to sleep in milliseconds |
| * |
| * Sleeps @msecs. If the current task is owner of @ap's EH, the |
| * ownership is released before going to sleep and reacquired |
| * after the sleep is complete. IOW, other ports sharing the |
| * @ap->host will be allowed to own the EH while this task is |
| * sleeping. |
| * |
| * LOCKING: |
| * Might sleep. |
| */ |
| void ata_msleep(struct ata_port *ap, unsigned int msecs) |
| { |
| bool owns_eh = ap && ap->host->eh_owner == current; |
| |
| if (owns_eh) |
| ata_eh_release(ap); |
| |
| if (msecs < 20) { |
| unsigned long usecs = msecs * USEC_PER_MSEC; |
| usleep_range(usecs, usecs + 50); |
| } else { |
| msleep(msecs); |
| } |
| |
| if (owns_eh) |
| ata_eh_acquire(ap); |
| } |
| |
| /** |
| * ata_wait_register - wait until register value changes |
| * @ap: ATA port to wait register for, can be NULL |
| * @reg: IO-mapped register |
| * @mask: Mask to apply to read register value |
| * @val: Wait condition |
| * @interval: polling interval in milliseconds |
| * @timeout: timeout in milliseconds |
| * |
| * Waiting for some bits of register to change is a common |
| * operation for ATA controllers. This function reads 32bit LE |
| * IO-mapped register @reg and tests for the following condition. |
| * |
| * (*@reg & mask) != val |
| * |
| * If the condition is met, it returns; otherwise, the process is |
| * repeated after @interval_msec until timeout. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * The final register value. |
| */ |
| u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, |
| unsigned long interval, unsigned long timeout) |
| { |
| unsigned long deadline; |
| u32 tmp; |
| |
| tmp = ioread32(reg); |
| |
| /* Calculate timeout _after_ the first read to make sure |
| * preceding writes reach the controller before starting to |
| * eat away the timeout. |
| */ |
| deadline = ata_deadline(jiffies, timeout); |
| |
| while ((tmp & mask) == val && time_before(jiffies, deadline)) { |
| ata_msleep(ap, interval); |
| tmp = ioread32(reg); |
| } |
| |
| return tmp; |
| } |
| |
| /** |
| * sata_lpm_ignore_phy_events - test if PHY event should be ignored |
| * @link: Link receiving the event |
| * |
| * Test whether the received PHY event has to be ignored or not. |
| * |
| * LOCKING: |
| * None: |
| * |
| * RETURNS: |
| * True if the event has to be ignored. |
| */ |
| bool sata_lpm_ignore_phy_events(struct ata_link *link) |
| { |
| unsigned long lpm_timeout = link->last_lpm_change + |
| msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); |
| |
| /* if LPM is enabled, PHYRDY doesn't mean anything */ |
| if (link->lpm_policy > ATA_LPM_MAX_POWER) |
| return true; |
| |
| /* ignore the first PHY event after the LPM policy changed |
| * as it is might be spurious |
| */ |
| if ((link->flags & ATA_LFLAG_CHANGED) && |
| time_before(jiffies, lpm_timeout)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); |
| |
| /* |
| * Dummy port_ops |
| */ |
| static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) |
| { |
| return AC_ERR_SYSTEM; |
| } |
| |
| static void ata_dummy_error_handler(struct ata_port *ap) |
| { |
| /* truly dummy */ |
| } |
| |
| struct ata_port_operations ata_dummy_port_ops = { |
| .qc_prep = ata_noop_qc_prep, |
| .qc_issue = ata_dummy_qc_issue, |
| .error_handler = ata_dummy_error_handler, |
| .sched_eh = ata_std_sched_eh, |
| .end_eh = ata_std_end_eh, |
| }; |
| |
| const struct ata_port_info ata_dummy_port_info = { |
| .port_ops = &ata_dummy_port_ops, |
| }; |
| |
| /* |
| * Utility print functions |
| */ |
| void ata_port_printk(const struct ata_port *ap, const char *level, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| printk("%sata%u: %pV", level, ap->print_id, &vaf); |
| |
| va_end(args); |
| } |
| EXPORT_SYMBOL(ata_port_printk); |
| |
| void ata_link_printk(const struct ata_link *link, const char *level, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| if (sata_pmp_attached(link->ap) || link->ap->slave_link) |
| printk("%sata%u.%02u: %pV", |
| level, link->ap->print_id, link->pmp, &vaf); |
| else |
| printk("%sata%u: %pV", |
| level, link->ap->print_id, &vaf); |
| |
| va_end(args); |
| } |
| EXPORT_SYMBOL(ata_link_printk); |
| |
| void ata_dev_printk(const struct ata_device *dev, const char *level, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| printk("%sata%u.%02u: %pV", |
| level, dev->link->ap->print_id, dev->link->pmp + dev->devno, |
| &vaf); |
| |
| va_end(args); |
| } |
| EXPORT_SYMBOL(ata_dev_printk); |
| |
| void ata_print_version(const struct device *dev, const char *version) |
| { |
| dev_printk(KERN_DEBUG, dev, "version %s\n", version); |
| } |
| EXPORT_SYMBOL(ata_print_version); |
| |
| /* |
| * libata is essentially a library of internal helper functions for |
| * low-level ATA host controller drivers. As such, the API/ABI is |
| * likely to change as new drivers are added and updated. |
| * Do not depend on ABI/API stability. |
| */ |
| EXPORT_SYMBOL_GPL(sata_deb_timing_normal); |
| EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); |
| EXPORT_SYMBOL_GPL(sata_deb_timing_long); |
| EXPORT_SYMBOL_GPL(ata_base_port_ops); |
| EXPORT_SYMBOL_GPL(sata_port_ops); |
| EXPORT_SYMBOL_GPL(ata_dummy_port_ops); |
| EXPORT_SYMBOL_GPL(ata_dummy_port_info); |
| EXPORT_SYMBOL_GPL(ata_link_next); |
| EXPORT_SYMBOL_GPL(ata_dev_next); |
| EXPORT_SYMBOL_GPL(ata_std_bios_param); |
| EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); |
| EXPORT_SYMBOL_GPL(ata_host_init); |
| EXPORT_SYMBOL_GPL(ata_host_alloc); |
| EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); |
| EXPORT_SYMBOL_GPL(ata_slave_link_init); |
| EXPORT_SYMBOL_GPL(ata_host_start); |
| EXPORT_SYMBOL_GPL(ata_host_register); |
| EXPORT_SYMBOL_GPL(ata_host_activate); |
| EXPORT_SYMBOL_GPL(ata_host_detach); |
| EXPORT_SYMBOL_GPL(ata_sg_init); |
| EXPORT_SYMBOL_GPL(ata_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); |
| EXPORT_SYMBOL_GPL(atapi_cmd_type); |
| EXPORT_SYMBOL_GPL(ata_tf_to_fis); |
| EXPORT_SYMBOL_GPL(ata_tf_from_fis); |
| EXPORT_SYMBOL_GPL(ata_pack_xfermask); |
| EXPORT_SYMBOL_GPL(ata_unpack_xfermask); |
| EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); |
| EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); |
| EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); |
| EXPORT_SYMBOL_GPL(ata_mode_string); |
| EXPORT_SYMBOL_GPL(ata_id_xfermask); |
| EXPORT_SYMBOL_GPL(ata_do_set_mode); |
| EXPORT_SYMBOL_GPL(ata_std_qc_defer); |
| EXPORT_SYMBOL_GPL(ata_noop_qc_prep); |
| EXPORT_SYMBOL_GPL(ata_dev_disable); |
| EXPORT_SYMBOL_GPL(sata_set_spd); |
| EXPORT_SYMBOL_GPL(ata_wait_after_reset); |
| EXPORT_SYMBOL_GPL(sata_link_debounce); |
| EXPORT_SYMBOL_GPL(sata_link_resume); |
| EXPORT_SYMBOL_GPL(sata_link_scr_lpm); |
| EXPORT_SYMBOL_GPL(ata_std_prereset); |
| EXPORT_SYMBOL_GPL(sata_link_hardreset); |
| EXPORT_SYMBOL_GPL(sata_std_hardreset); |
| EXPORT_SYMBOL_GPL(ata_std_postreset); |
| EXPORT_SYMBOL_GPL(ata_dev_classify); |
| EXPORT_SYMBOL_GPL(ata_dev_pair); |
| EXPORT_SYMBOL_GPL(ata_ratelimit); |
| EXPORT_SYMBOL_GPL(ata_msleep); |
| EXPORT_SYMBOL_GPL(ata_wait_register); |
| EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_config); |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); |
| EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); |
| EXPORT_SYMBOL_GPL(__ata_change_queue_depth); |
| EXPORT_SYMBOL_GPL(sata_scr_valid); |
| EXPORT_SYMBOL_GPL(sata_scr_read); |
| EXPORT_SYMBOL_GPL(sata_scr_write); |
| EXPORT_SYMBOL_GPL(sata_scr_write_flush); |
| EXPORT_SYMBOL_GPL(ata_link_online); |
| EXPORT_SYMBOL_GPL(ata_link_offline); |
| #ifdef CONFIG_PM |
| EXPORT_SYMBOL_GPL(ata_host_suspend); |
| EXPORT_SYMBOL_GPL(ata_host_resume); |
| #endif /* CONFIG_PM */ |
| EXPORT_SYMBOL_GPL(ata_id_string); |
| EXPORT_SYMBOL_GPL(ata_id_c_string); |
| EXPORT_SYMBOL_GPL(ata_do_dev_read_id); |
| EXPORT_SYMBOL_GPL(ata_scsi_simulate); |
| |
| EXPORT_SYMBOL_GPL(ata_pio_need_iordy); |
| EXPORT_SYMBOL_GPL(ata_timing_find_mode); |
| EXPORT_SYMBOL_GPL(ata_timing_compute); |
| EXPORT_SYMBOL_GPL(ata_timing_merge); |
| EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); |
| |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL_GPL(pci_test_config_bits); |
| EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); |
| EXPORT_SYMBOL_GPL(ata_pci_remove_one); |
| #ifdef CONFIG_PM |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); |
| EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); |
| EXPORT_SYMBOL_GPL(ata_pci_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_pci_device_resume); |
| #endif /* CONFIG_PM */ |
| #endif /* CONFIG_PCI */ |
| |
| EXPORT_SYMBOL_GPL(ata_platform_remove_one); |
| |
| EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); |
| EXPORT_SYMBOL_GPL(ata_ehi_push_desc); |
| EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); |
| EXPORT_SYMBOL_GPL(ata_port_desc); |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL_GPL(ata_port_pbar_desc); |
| #endif /* CONFIG_PCI */ |
| EXPORT_SYMBOL_GPL(ata_port_schedule_eh); |
| EXPORT_SYMBOL_GPL(ata_link_abort); |
| EXPORT_SYMBOL_GPL(ata_port_abort); |
| EXPORT_SYMBOL_GPL(ata_port_freeze); |
| EXPORT_SYMBOL_GPL(sata_async_notification); |
| EXPORT_SYMBOL_GPL(ata_eh_freeze_port); |
| EXPORT_SYMBOL_GPL(ata_eh_thaw_port); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_retry); |
| EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); |
| EXPORT_SYMBOL_GPL(ata_do_eh); |
| EXPORT_SYMBOL_GPL(ata_std_error_handler); |
| |
| EXPORT_SYMBOL_GPL(ata_cable_40wire); |
| EXPORT_SYMBOL_GPL(ata_cable_80wire); |
| EXPORT_SYMBOL_GPL(ata_cable_unknown); |
| EXPORT_SYMBOL_GPL(ata_cable_ignore); |
| EXPORT_SYMBOL_GPL(ata_cable_sata); |
| EXPORT_SYMBOL_GPL(ata_host_get); |
| EXPORT_SYMBOL_GPL(ata_host_put); |