| /*------------------------------------------------------------------------ |
| . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device. |
| . |
| . Copyright (C) 1996 by Erik Stahlman |
| . Copyright (C) 2001 Standard Microsystems Corporation |
| . Developed by Simple Network Magic Corporation |
| . Copyright (C) 2003 Monta Vista Software, Inc. |
| . Unified SMC91x driver by Nicolas Pitre |
| . |
| . This program is free software; you can redistribute it and/or modify |
| . it under the terms of the GNU General Public License as published by |
| . the Free Software Foundation; either version 2 of the License, or |
| . (at your option) any later version. |
| . |
| . This program is distributed in the hope that it will be useful, |
| . but WITHOUT ANY WARRANTY; without even the implied warranty of |
| . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| . GNU General Public License for more details. |
| . |
| . You should have received a copy of the GNU General Public License |
| . along with this program; if not, write to the Free Software |
| . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| . |
| . Information contained in this file was obtained from the LAN91C111 |
| . manual from SMC. To get a copy, if you really want one, you can find |
| . information under www.smsc.com. |
| . |
| . Authors |
| . Erik Stahlman <erik@vt.edu> |
| . Daris A Nevil <dnevil@snmc.com> |
| . Nicolas Pitre <nico@cam.org> |
| . |
| ---------------------------------------------------------------------------*/ |
| #ifndef _SMC91X_H_ |
| #define _SMC91X_H_ |
| |
| |
| /* |
| * Define your architecture specific bus configuration parameters here. |
| */ |
| |
| #if defined(CONFIG_ARCH_LUBBOCK) |
| |
| /* We can only do 16-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_NOWAIT 1 |
| |
| /* The first two address lines aren't connected... */ |
| #define SMC_IO_SHIFT 2 |
| |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) |
| #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) |
| |
| #elif defined(CONFIG_BFIN) |
| |
| #define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH |
| |
| # if defined (CONFIG_BFIN561_EZKIT) |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 1 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| #define SMC_USE_BFIN_DMA 0 |
| |
| |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_inl(a, r) readl((a) + (r)) |
| #define SMC_outl(v, a, r) writel(v, (a) + (r)) |
| #define SMC_outsl(a, r, p, l) outsl((unsigned long *)((a) + (r)), p, l) |
| #define SMC_insl(a, r, p, l) insl ((unsigned long *)((a) + (r)), p, l) |
| # else |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| #define SMC_USE_BFIN_DMA 0 |
| |
| |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_outsw(a, r, p, l) outsw((unsigned long *)((a) + (r)), p, l) |
| #define SMC_insw(a, r, p, l) insw ((unsigned long *)((a) + (r)), p, l) |
| # endif |
| /* check if the mac in reg is valid */ |
| #define SMC_GET_MAC_ADDR(addr) \ |
| do { \ |
| unsigned int __v; \ |
| __v = SMC_inw(ioaddr, ADDR0_REG); \ |
| addr[0] = __v; addr[1] = __v >> 8; \ |
| __v = SMC_inw(ioaddr, ADDR1_REG); \ |
| addr[2] = __v; addr[3] = __v >> 8; \ |
| __v = SMC_inw(ioaddr, ADDR2_REG); \ |
| addr[4] = __v; addr[5] = __v >> 8; \ |
| if (*(u32 *)(&addr[0]) == 0xFFFFFFFF) { \ |
| random_ether_addr(addr); \ |
| } \ |
| } while (0) |
| #elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6) |
| |
| /* We can only do 16-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_IO_SHIFT 0 |
| |
| #define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r))) |
| #define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v) |
| #define SMC_insw(a, r, p, l) \ |
| do { \ |
| unsigned long __port = (a) + (r); \ |
| u16 *__p = (u16 *)(p); \ |
| int __l = (l); \ |
| insw(__port, __p, __l); \ |
| while (__l > 0) { \ |
| *__p = swab16(*__p); \ |
| __p++; \ |
| __l--; \ |
| } \ |
| } while (0) |
| #define SMC_outsw(a, r, p, l) \ |
| do { \ |
| unsigned long __port = (a) + (r); \ |
| u16 *__p = (u16 *)(p); \ |
| int __l = (l); \ |
| while (__l > 0) { \ |
| /* Believe it or not, the swab isn't needed. */ \ |
| outw( /* swab16 */ (*__p++), __port); \ |
| __l--; \ |
| } \ |
| } while (0) |
| #define SMC_IRQ_FLAGS (0) |
| |
| #elif defined(CONFIG_SA1100_PLEB) |
| /* We can only do 16-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inb(a, r) readb((a) + (r)) |
| #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) |
| #define SMC_outb(v, a, r) writeb(v, (a) + (r)) |
| #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) |
| |
| #define SMC_IRQ_FLAGS (0) |
| |
| #elif defined(CONFIG_SA1100_ASSABET) |
| |
| #include <asm/arch/neponset.h> |
| |
| /* We can only do 8-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 0 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_NOWAIT 1 |
| |
| /* The first two address lines aren't connected... */ |
| #define SMC_IO_SHIFT 2 |
| |
| #define SMC_inb(a, r) readb((a) + (r)) |
| #define SMC_outb(v, a, r) writeb(v, (a) + (r)) |
| #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) |
| #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) |
| |
| #elif defined(CONFIG_MACH_LOGICPD_PXA270) |
| |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) |
| #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) |
| |
| #elif defined(CONFIG_ARCH_INNOKOM) || \ |
| defined(CONFIG_MACH_MAINSTONE) || \ |
| defined(CONFIG_ARCH_PXA_IDP) || \ |
| defined(CONFIG_ARCH_RAMSES) |
| |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 1 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| #define SMC_USE_PXA_DMA 1 |
| |
| #define SMC_inb(a, r) readb((a) + (r)) |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_inl(a, r) readl((a) + (r)) |
| #define SMC_outb(v, a, r) writeb(v, (a) + (r)) |
| #define SMC_outl(v, a, r) writel(v, (a) + (r)) |
| #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) |
| #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) |
| |
| /* We actually can't write halfwords properly if not word aligned */ |
| static inline void |
| SMC_outw(u16 val, void __iomem *ioaddr, int reg) |
| { |
| if (reg & 2) { |
| unsigned int v = val << 16; |
| v |= readl(ioaddr + (reg & ~2)) & 0xffff; |
| writel(v, ioaddr + (reg & ~2)); |
| } else { |
| writew(val, ioaddr + reg); |
| } |
| } |
| |
| #elif defined(CONFIG_ARCH_OMAP) |
| |
| /* We can only do 16-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) |
| #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) |
| |
| #include <asm/mach-types.h> |
| #include <asm/arch/cpu.h> |
| |
| #define SMC_IRQ_FLAGS (( \ |
| machine_is_omap_h2() \ |
| || machine_is_omap_h3() \ |
| || machine_is_omap_h4() \ |
| || (machine_is_omap_innovator() && !cpu_is_omap1510()) \ |
| ) ? IRQF_TRIGGER_FALLING : IRQF_TRIGGER_RISING) |
| |
| |
| #elif defined(CONFIG_SH_SH4202_MICRODEV) |
| |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| |
| #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000) |
| #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000) |
| #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000) |
| #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000) |
| #define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000) |
| #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000) |
| #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l) |
| #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l) |
| #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l) |
| #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l) |
| |
| #define SMC_IRQ_FLAGS (0) |
| |
| #elif defined(CONFIG_ISA) |
| |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| |
| #define SMC_inb(a, r) inb((a) + (r)) |
| #define SMC_inw(a, r) inw((a) + (r)) |
| #define SMC_outb(v, a, r) outb(v, (a) + (r)) |
| #define SMC_outw(v, a, r) outw(v, (a) + (r)) |
| #define SMC_insw(a, r, p, l) insw((a) + (r), p, l) |
| #define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l) |
| |
| #elif defined(CONFIG_M32R) |
| |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| |
| #define SMC_inb(a, r) inb(((u32)a) + (r)) |
| #define SMC_inw(a, r) inw(((u32)a) + (r)) |
| #define SMC_outb(v, a, r) outb(v, ((u32)a) + (r)) |
| #define SMC_outw(v, a, r) outw(v, ((u32)a) + (r)) |
| #define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l) |
| #define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l) |
| |
| #define SMC_IRQ_FLAGS (0) |
| |
| #define RPC_LSA_DEFAULT RPC_LED_TX_RX |
| #define RPC_LSB_DEFAULT RPC_LED_100_10 |
| |
| #elif defined(CONFIG_MACH_LPD79520) \ |
| || defined(CONFIG_MACH_LPD7A400) \ |
| || defined(CONFIG_MACH_LPD7A404) |
| |
| /* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the |
| * way that the CPU handles chip selects and the way that the SMC chip |
| * expects the chip select to operate. Refer to |
| * Documentation/arm/Sharp-LH/IOBarrier for details. The read from |
| * IOBARRIER is a byte, in order that we read the least-common |
| * denominator. It would be wasteful to read 32 bits from an 8-bit |
| * accessible region. |
| * |
| * There is no explicit protection against interrupts intervening |
| * between the writew and the IOBARRIER. In SMC ISR there is a |
| * preamble that performs an IOBARRIER in the extremely unlikely event |
| * that the driver interrupts itself between a writew to the chip an |
| * the IOBARRIER that follows *and* the cache is large enough that the |
| * first off-chip access while handing the interrupt is to the SMC |
| * chip. Other devices in the same address space as the SMC chip must |
| * be aware of the potential for trouble and perform a similar |
| * IOBARRIER on entry to their ISR. |
| */ |
| |
| #include <asm/arch/constants.h> /* IOBARRIER_VIRT */ |
| |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_NOWAIT 0 |
| #define LPD7X_IOBARRIER readb (IOBARRIER_VIRT) |
| |
| #define SMC_inw(a,r)\ |
| ({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; }) |
| #define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; }) |
| |
| #define SMC_insw LPD7_SMC_insw |
| static inline void LPD7_SMC_insw (unsigned char* a, int r, |
| unsigned char* p, int l) |
| { |
| unsigned short* ps = (unsigned short*) p; |
| while (l-- > 0) { |
| *ps++ = readw (a + r); |
| LPD7X_IOBARRIER; |
| } |
| } |
| |
| #define SMC_outsw LPD7_SMC_outsw |
| static inline void LPD7_SMC_outsw (unsigned char* a, int r, |
| unsigned char* p, int l) |
| { |
| unsigned short* ps = (unsigned short*) p; |
| while (l-- > 0) { |
| writew (*ps++, a + r); |
| LPD7X_IOBARRIER; |
| } |
| } |
| |
| #define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER |
| |
| #define RPC_LSA_DEFAULT RPC_LED_TX_RX |
| #define RPC_LSB_DEFAULT RPC_LED_100_10 |
| |
| #elif defined(CONFIG_SOC_AU1X00) |
| |
| #include <au1xxx.h> |
| |
| /* We can only do 16-bit reads and writes in the static memory space. */ |
| #define SMC_CAN_USE_8BIT 0 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 0 |
| #define SMC_IO_SHIFT 0 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inw(a, r) au_readw((unsigned long)((a) + (r))) |
| #define SMC_insw(a, r, p, l) \ |
| do { \ |
| unsigned long _a = (unsigned long)((a) + (r)); \ |
| int _l = (l); \ |
| u16 *_p = (u16 *)(p); \ |
| while (_l-- > 0) \ |
| *_p++ = au_readw(_a); \ |
| } while(0) |
| #define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r))) |
| #define SMC_outsw(a, r, p, l) \ |
| do { \ |
| unsigned long _a = (unsigned long)((a) + (r)); \ |
| int _l = (l); \ |
| const u16 *_p = (const u16 *)(p); \ |
| while (_l-- > 0) \ |
| au_writew(*_p++ , _a); \ |
| } while(0) |
| |
| #define SMC_IRQ_FLAGS (0) |
| |
| #elif defined(CONFIG_ARCH_VERSATILE) |
| |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 1 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inb(a, r) readb((a) + (r)) |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_inl(a, r) readl((a) + (r)) |
| #define SMC_outb(v, a, r) writeb(v, (a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_outl(v, a, r) writel(v, (a) + (r)) |
| #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) |
| #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) |
| |
| #define SMC_IRQ_FLAGS (0) |
| |
| #else |
| |
| #define SMC_CAN_USE_8BIT 1 |
| #define SMC_CAN_USE_16BIT 1 |
| #define SMC_CAN_USE_32BIT 1 |
| #define SMC_NOWAIT 1 |
| |
| #define SMC_inb(a, r) readb((a) + (r)) |
| #define SMC_inw(a, r) readw((a) + (r)) |
| #define SMC_inl(a, r) readl((a) + (r)) |
| #define SMC_outb(v, a, r) writeb(v, (a) + (r)) |
| #define SMC_outw(v, a, r) writew(v, (a) + (r)) |
| #define SMC_outl(v, a, r) writel(v, (a) + (r)) |
| #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) |
| #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) |
| |
| #define RPC_LSA_DEFAULT RPC_LED_100_10 |
| #define RPC_LSB_DEFAULT RPC_LED_TX_RX |
| |
| #endif |
| |
| #ifdef SMC_USE_PXA_DMA |
| /* |
| * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is |
| * always happening in irq context so no need to worry about races. TX is |
| * different and probably not worth it for that reason, and not as critical |
| * as RX which can overrun memory and lose packets. |
| */ |
| #include <linux/dma-mapping.h> |
| #include <asm/dma.h> |
| #include <asm/arch/pxa-regs.h> |
| |
| #ifdef SMC_insl |
| #undef SMC_insl |
| #define SMC_insl(a, r, p, l) \ |
| smc_pxa_dma_insl(a, lp->physaddr, r, dev->dma, p, l) |
| static inline void |
| smc_pxa_dma_insl(void __iomem *ioaddr, u_long physaddr, int reg, int dma, |
| u_char *buf, int len) |
| { |
| dma_addr_t dmabuf; |
| |
| /* fallback if no DMA available */ |
| if (dma == (unsigned char)-1) { |
| readsl(ioaddr + reg, buf, len); |
| return; |
| } |
| |
| /* 64 bit alignment is required for memory to memory DMA */ |
| if ((long)buf & 4) { |
| *((u32 *)buf) = SMC_inl(ioaddr, reg); |
| buf += 4; |
| len--; |
| } |
| |
| len *= 4; |
| dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE); |
| DCSR(dma) = DCSR_NODESC; |
| DTADR(dma) = dmabuf; |
| DSADR(dma) = physaddr + reg; |
| DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | |
| DCMD_WIDTH4 | (DCMD_LENGTH & len)); |
| DCSR(dma) = DCSR_NODESC | DCSR_RUN; |
| while (!(DCSR(dma) & DCSR_STOPSTATE)) |
| cpu_relax(); |
| DCSR(dma) = 0; |
| dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE); |
| } |
| #endif |
| |
| #ifdef SMC_insw |
| #undef SMC_insw |
| #define SMC_insw(a, r, p, l) \ |
| smc_pxa_dma_insw(a, lp->physaddr, r, dev->dma, p, l) |
| static inline void |
| smc_pxa_dma_insw(void __iomem *ioaddr, u_long physaddr, int reg, int dma, |
| u_char *buf, int len) |
| { |
| dma_addr_t dmabuf; |
| |
| /* fallback if no DMA available */ |
| if (dma == (unsigned char)-1) { |
| readsw(ioaddr + reg, buf, len); |
| return; |
| } |
| |
| /* 64 bit alignment is required for memory to memory DMA */ |
| while ((long)buf & 6) { |
| *((u16 *)buf) = SMC_inw(ioaddr, reg); |
| buf += 2; |
| len--; |
| } |
| |
| len *= 2; |
| dmabuf = dma_map_single(NULL, buf, len, DMA_FROM_DEVICE); |
| DCSR(dma) = DCSR_NODESC; |
| DTADR(dma) = dmabuf; |
| DSADR(dma) = physaddr + reg; |
| DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | |
| DCMD_WIDTH2 | (DCMD_LENGTH & len)); |
| DCSR(dma) = DCSR_NODESC | DCSR_RUN; |
| while (!(DCSR(dma) & DCSR_STOPSTATE)) |
| cpu_relax(); |
| DCSR(dma) = 0; |
| dma_unmap_single(NULL, dmabuf, len, DMA_FROM_DEVICE); |
| } |
| #endif |
| |
| static void |
| smc_pxa_dma_irq(int dma, void *dummy) |
| { |
| DCSR(dma) = 0; |
| } |
| #endif /* SMC_USE_PXA_DMA */ |
| |
| |
| /* |
| * Everything a particular hardware setup needs should have been defined |
| * at this point. Add stubs for the undefined cases, mainly to avoid |
| * compilation warnings since they'll be optimized away, or to prevent buggy |
| * use of them. |
| */ |
| |
| #if ! SMC_CAN_USE_32BIT |
| #define SMC_inl(ioaddr, reg) ({ BUG(); 0; }) |
| #define SMC_outl(x, ioaddr, reg) BUG() |
| #define SMC_insl(a, r, p, l) BUG() |
| #define SMC_outsl(a, r, p, l) BUG() |
| #endif |
| |
| #if !defined(SMC_insl) || !defined(SMC_outsl) |
| #define SMC_insl(a, r, p, l) BUG() |
| #define SMC_outsl(a, r, p, l) BUG() |
| #endif |
| |
| #if ! SMC_CAN_USE_16BIT |
| |
| /* |
| * Any 16-bit access is performed with two 8-bit accesses if the hardware |
| * can't do it directly. Most registers are 16-bit so those are mandatory. |
| */ |
| #define SMC_outw(x, ioaddr, reg) \ |
| do { \ |
| unsigned int __val16 = (x); \ |
| SMC_outb( __val16, ioaddr, reg ); \ |
| SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\ |
| } while (0) |
| #define SMC_inw(ioaddr, reg) \ |
| ({ \ |
| unsigned int __val16; \ |
| __val16 = SMC_inb( ioaddr, reg ); \ |
| __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \ |
| __val16; \ |
| }) |
| |
| #define SMC_insw(a, r, p, l) BUG() |
| #define SMC_outsw(a, r, p, l) BUG() |
| |
| #endif |
| |
| #if !defined(SMC_insw) || !defined(SMC_outsw) |
| #define SMC_insw(a, r, p, l) BUG() |
| #define SMC_outsw(a, r, p, l) BUG() |
| #endif |
| |
| #if ! SMC_CAN_USE_8BIT |
| #define SMC_inb(ioaddr, reg) ({ BUG(); 0; }) |
| #define SMC_outb(x, ioaddr, reg) BUG() |
| #define SMC_insb(a, r, p, l) BUG() |
| #define SMC_outsb(a, r, p, l) BUG() |
| #endif |
| |
| #if !defined(SMC_insb) || !defined(SMC_outsb) |
| #define SMC_insb(a, r, p, l) BUG() |
| #define SMC_outsb(a, r, p, l) BUG() |
| #endif |
| |
| #ifndef SMC_CAN_USE_DATACS |
| #define SMC_CAN_USE_DATACS 0 |
| #endif |
| |
| #ifndef SMC_IO_SHIFT |
| #define SMC_IO_SHIFT 0 |
| #endif |
| |
| #ifndef SMC_IRQ_FLAGS |
| #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING |
| #endif |
| |
| #ifndef SMC_INTERRUPT_PREAMBLE |
| #define SMC_INTERRUPT_PREAMBLE |
| #endif |
| |
| |
| /* Because of bank switching, the LAN91x uses only 16 I/O ports */ |
| #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT) |
| #define SMC_DATA_EXTENT (4) |
| |
| /* |
| . Bank Select Register: |
| . |
| . yyyy yyyy 0000 00xx |
| . xx = bank number |
| . yyyy yyyy = 0x33, for identification purposes. |
| */ |
| #define BANK_SELECT (14 << SMC_IO_SHIFT) |
| |
| |
| // Transmit Control Register |
| /* BANK 0 */ |
| #define TCR_REG SMC_REG(0x0000, 0) |
| #define TCR_ENABLE 0x0001 // When 1 we can transmit |
| #define TCR_LOOP 0x0002 // Controls output pin LBK |
| #define TCR_FORCOL 0x0004 // When 1 will force a collision |
| #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0 |
| #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames |
| #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier |
| #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation |
| #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error |
| #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback |
| #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode |
| |
| #define TCR_CLEAR 0 /* do NOTHING */ |
| /* the default settings for the TCR register : */ |
| #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN) |
| |
| |
| // EPH Status Register |
| /* BANK 0 */ |
| #define EPH_STATUS_REG SMC_REG(0x0002, 0) |
| #define ES_TX_SUC 0x0001 // Last TX was successful |
| #define ES_SNGL_COL 0x0002 // Single collision detected for last tx |
| #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx |
| #define ES_LTX_MULT 0x0008 // Last tx was a multicast |
| #define ES_16COL 0x0010 // 16 Collisions Reached |
| #define ES_SQET 0x0020 // Signal Quality Error Test |
| #define ES_LTXBRD 0x0040 // Last tx was a broadcast |
| #define ES_TXDEFR 0x0080 // Transmit Deferred |
| #define ES_LATCOL 0x0200 // Late collision detected on last tx |
| #define ES_LOSTCARR 0x0400 // Lost Carrier Sense |
| #define ES_EXC_DEF 0x0800 // Excessive Deferral |
| #define ES_CTR_ROL 0x1000 // Counter Roll Over indication |
| #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin |
| #define ES_TXUNRN 0x8000 // Tx Underrun |
| |
| |
| // Receive Control Register |
| /* BANK 0 */ |
| #define RCR_REG SMC_REG(0x0004, 0) |
| #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted |
| #define RCR_PRMS 0x0002 // Enable promiscuous mode |
| #define RCR_ALMUL 0x0004 // When set accepts all multicast frames |
| #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets |
| #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets |
| #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision |
| #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier |
| #define RCR_SOFTRST 0x8000 // resets the chip |
| |
| /* the normal settings for the RCR register : */ |
| #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN) |
| #define RCR_CLEAR 0x0 // set it to a base state |
| |
| |
| // Counter Register |
| /* BANK 0 */ |
| #define COUNTER_REG SMC_REG(0x0006, 0) |
| |
| |
| // Memory Information Register |
| /* BANK 0 */ |
| #define MIR_REG SMC_REG(0x0008, 0) |
| |
| |
| // Receive/Phy Control Register |
| /* BANK 0 */ |
| #define RPC_REG SMC_REG(0x000A, 0) |
| #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode. |
| #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode |
| #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode |
| #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb |
| #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb |
| #define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect |
| #define RPC_LED_RES (0x01) // LED = Reserved |
| #define RPC_LED_10 (0x02) // LED = 10Mbps link detect |
| #define RPC_LED_FD (0x03) // LED = Full Duplex Mode |
| #define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred |
| #define RPC_LED_100 (0x05) // LED = 100Mbps link dectect |
| #define RPC_LED_TX (0x06) // LED = TX packet occurred |
| #define RPC_LED_RX (0x07) // LED = RX packet occurred |
| |
| #ifndef RPC_LSA_DEFAULT |
| #define RPC_LSA_DEFAULT RPC_LED_100 |
| #endif |
| #ifndef RPC_LSB_DEFAULT |
| #define RPC_LSB_DEFAULT RPC_LED_FD |
| #endif |
| |
| #define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX) |
| |
| |
| /* Bank 0 0x0C is reserved */ |
| |
| // Bank Select Register |
| /* All Banks */ |
| #define BSR_REG 0x000E |
| |
| |
| // Configuration Reg |
| /* BANK 1 */ |
| #define CONFIG_REG SMC_REG(0x0000, 1) |
| #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy |
| #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL |
| #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus |
| #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode. |
| |
| // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low |
| #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN) |
| |
| |
| // Base Address Register |
| /* BANK 1 */ |
| #define BASE_REG SMC_REG(0x0002, 1) |
| |
| |
| // Individual Address Registers |
| /* BANK 1 */ |
| #define ADDR0_REG SMC_REG(0x0004, 1) |
| #define ADDR1_REG SMC_REG(0x0006, 1) |
| #define ADDR2_REG SMC_REG(0x0008, 1) |
| |
| |
| // General Purpose Register |
| /* BANK 1 */ |
| #define GP_REG SMC_REG(0x000A, 1) |
| |
| |
| // Control Register |
| /* BANK 1 */ |
| #define CTL_REG SMC_REG(0x000C, 1) |
| #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received |
| #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically |
| #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt |
| #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt |
| #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt |
| #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store |
| #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers |
| #define CTL_STORE 0x0001 // When set stores registers into EEPROM |
| |
| |
| // MMU Command Register |
| /* BANK 2 */ |
| #define MMU_CMD_REG SMC_REG(0x0000, 2) |
| #define MC_BUSY 1 // When 1 the last release has not completed |
| #define MC_NOP (0<<5) // No Op |
| #define MC_ALLOC (1<<5) // OR with number of 256 byte packets |
| #define MC_RESET (2<<5) // Reset MMU to initial state |
| #define MC_REMOVE (3<<5) // Remove the current rx packet |
| #define MC_RELEASE (4<<5) // Remove and release the current rx packet |
| #define MC_FREEPKT (5<<5) // Release packet in PNR register |
| #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit |
| #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs |
| |
| |
| // Packet Number Register |
| /* BANK 2 */ |
| #define PN_REG SMC_REG(0x0002, 2) |
| |
| |
| // Allocation Result Register |
| /* BANK 2 */ |
| #define AR_REG SMC_REG(0x0003, 2) |
| #define AR_FAILED 0x80 // Alocation Failed |
| |
| |
| // TX FIFO Ports Register |
| /* BANK 2 */ |
| #define TXFIFO_REG SMC_REG(0x0004, 2) |
| #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty |
| |
| // RX FIFO Ports Register |
| /* BANK 2 */ |
| #define RXFIFO_REG SMC_REG(0x0005, 2) |
| #define RXFIFO_REMPTY 0x80 // RX FIFO Empty |
| |
| #define FIFO_REG SMC_REG(0x0004, 2) |
| |
| // Pointer Register |
| /* BANK 2 */ |
| #define PTR_REG SMC_REG(0x0006, 2) |
| #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area |
| #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access |
| #define PTR_READ 0x2000 // When 1 the operation is a read |
| |
| |
| // Data Register |
| /* BANK 2 */ |
| #define DATA_REG SMC_REG(0x0008, 2) |
| |
| |
| // Interrupt Status/Acknowledge Register |
| /* BANK 2 */ |
| #define INT_REG SMC_REG(0x000C, 2) |
| |
| |
| // Interrupt Mask Register |
| /* BANK 2 */ |
| #define IM_REG SMC_REG(0x000D, 2) |
| #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt |
| #define IM_ERCV_INT 0x40 // Early Receive Interrupt |
| #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section |
| #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns |
| #define IM_ALLOC_INT 0x08 // Set when allocation request is completed |
| #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty |
| #define IM_TX_INT 0x02 // Transmit Interrupt |
| #define IM_RCV_INT 0x01 // Receive Interrupt |
| |
| |
| // Multicast Table Registers |
| /* BANK 3 */ |
| #define MCAST_REG1 SMC_REG(0x0000, 3) |
| #define MCAST_REG2 SMC_REG(0x0002, 3) |
| #define MCAST_REG3 SMC_REG(0x0004, 3) |
| #define MCAST_REG4 SMC_REG(0x0006, 3) |
| |
| |
| // Management Interface Register (MII) |
| /* BANK 3 */ |
| #define MII_REG SMC_REG(0x0008, 3) |
| #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup |
| #define MII_MDOE 0x0008 // MII Output Enable |
| #define MII_MCLK 0x0004 // MII Clock, pin MDCLK |
| #define MII_MDI 0x0002 // MII Input, pin MDI |
| #define MII_MDO 0x0001 // MII Output, pin MDO |
| |
| |
| // Revision Register |
| /* BANK 3 */ |
| /* ( hi: chip id low: rev # ) */ |
| #define REV_REG SMC_REG(0x000A, 3) |
| |
| |
| // Early RCV Register |
| /* BANK 3 */ |
| /* this is NOT on SMC9192 */ |
| #define ERCV_REG SMC_REG(0x000C, 3) |
| #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received |
| #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask |
| |
| |
| // External Register |
| /* BANK 7 */ |
| #define EXT_REG SMC_REG(0x0000, 7) |
| |
| |
| #define CHIP_9192 3 |
| #define CHIP_9194 4 |
| #define CHIP_9195 5 |
| #define CHIP_9196 6 |
| #define CHIP_91100 7 |
| #define CHIP_91100FD 8 |
| #define CHIP_91111FD 9 |
| |
| static const char * chip_ids[ 16 ] = { |
| NULL, NULL, NULL, |
| /* 3 */ "SMC91C90/91C92", |
| /* 4 */ "SMC91C94", |
| /* 5 */ "SMC91C95", |
| /* 6 */ "SMC91C96", |
| /* 7 */ "SMC91C100", |
| /* 8 */ "SMC91C100FD", |
| /* 9 */ "SMC91C11xFD", |
| NULL, NULL, NULL, |
| NULL, NULL, NULL}; |
| |
| |
| /* |
| . Receive status bits |
| */ |
| #define RS_ALGNERR 0x8000 |
| #define RS_BRODCAST 0x4000 |
| #define RS_BADCRC 0x2000 |
| #define RS_ODDFRAME 0x1000 |
| #define RS_TOOLONG 0x0800 |
| #define RS_TOOSHORT 0x0400 |
| #define RS_MULTICAST 0x0001 |
| #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT) |
| |
| |
| /* |
| * PHY IDs |
| * LAN83C183 == LAN91C111 Internal PHY |
| */ |
| #define PHY_LAN83C183 0x0016f840 |
| #define PHY_LAN83C180 0x02821c50 |
| |
| /* |
| * PHY Register Addresses (LAN91C111 Internal PHY) |
| * |
| * Generic PHY registers can be found in <linux/mii.h> |
| * |
| * These phy registers are specific to our on-board phy. |
| */ |
| |
| // PHY Configuration Register 1 |
| #define PHY_CFG1_REG 0x10 |
| #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled |
| #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled |
| #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down |
| #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler |
| #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable |
| #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled |
| #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm) |
| #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db |
| #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust |
| #define PHY_CFG1_TLVL_MASK 0x003C |
| #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time |
| |
| |
| // PHY Configuration Register 2 |
| #define PHY_CFG2_REG 0x11 |
| #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled |
| #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled |
| #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt) |
| #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo |
| |
| // PHY Status Output (and Interrupt status) Register |
| #define PHY_INT_REG 0x12 // Status Output (Interrupt Status) |
| #define PHY_INT_INT 0x8000 // 1=bits have changed since last read |
| #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected |
| #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync |
| #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx |
| #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx |
| #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx |
| #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected |
| #define PHY_INT_JAB 0x0100 // 1=Jabber detected |
| #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode |
| #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex |
| |
| // PHY Interrupt/Status Mask Register |
| #define PHY_MASK_REG 0x13 // Interrupt Mask |
| // Uses the same bit definitions as PHY_INT_REG |
| |
| |
| /* |
| * SMC91C96 ethernet config and status registers. |
| * These are in the "attribute" space. |
| */ |
| #define ECOR 0x8000 |
| #define ECOR_RESET 0x80 |
| #define ECOR_LEVEL_IRQ 0x40 |
| #define ECOR_WR_ATTRIB 0x04 |
| #define ECOR_ENABLE 0x01 |
| |
| #define ECSR 0x8002 |
| #define ECSR_IOIS8 0x20 |
| #define ECSR_PWRDWN 0x04 |
| #define ECSR_INT 0x02 |
| |
| #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT) |
| |
| |
| /* |
| * Macros to abstract register access according to the data bus |
| * capabilities. Please use those and not the in/out primitives. |
| * Note: the following macros do *not* select the bank -- this must |
| * be done separately as needed in the main code. The SMC_REG() macro |
| * only uses the bank argument for debugging purposes (when enabled). |
| * |
| * Note: despite inline functions being safer, everything leading to this |
| * should preferably be macros to let BUG() display the line number in |
| * the core source code since we're interested in the top call site |
| * not in any inline function location. |
| */ |
| |
| #if SMC_DEBUG > 0 |
| #define SMC_REG(reg, bank) \ |
| ({ \ |
| int __b = SMC_CURRENT_BANK(); \ |
| if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \ |
| printk( "%s: bank reg screwed (0x%04x)\n", \ |
| CARDNAME, __b ); \ |
| BUG(); \ |
| } \ |
| reg<<SMC_IO_SHIFT; \ |
| }) |
| #else |
| #define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT) |
| #endif |
| |
| /* |
| * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not |
| * aligned to a 32 bit boundary. I tell you that does exist! |
| * Fortunately the affected register accesses can be easily worked around |
| * since we can write zeroes to the preceeding 16 bits without adverse |
| * effects and use a 32-bit access. |
| * |
| * Enforce it on any 32-bit capable setup for now. |
| */ |
| #define SMC_MUST_ALIGN_WRITE SMC_CAN_USE_32BIT |
| |
| #define SMC_GET_PN() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, PN_REG)) \ |
| : (SMC_inw(ioaddr, PN_REG) & 0xFF) ) |
| |
| #define SMC_SET_PN(x) \ |
| do { \ |
| if (SMC_MUST_ALIGN_WRITE) \ |
| SMC_outl((x)<<16, ioaddr, SMC_REG(0, 2)); \ |
| else if (SMC_CAN_USE_8BIT) \ |
| SMC_outb(x, ioaddr, PN_REG); \ |
| else \ |
| SMC_outw(x, ioaddr, PN_REG); \ |
| } while (0) |
| |
| #define SMC_GET_AR() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, AR_REG)) \ |
| : (SMC_inw(ioaddr, PN_REG) >> 8) ) |
| |
| #define SMC_GET_TXFIFO() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, TXFIFO_REG)) \ |
| : (SMC_inw(ioaddr, TXFIFO_REG) & 0xFF) ) |
| |
| #define SMC_GET_RXFIFO() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, RXFIFO_REG)) \ |
| : (SMC_inw(ioaddr, TXFIFO_REG) >> 8) ) |
| |
| #define SMC_GET_INT() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, INT_REG)) \ |
| : (SMC_inw(ioaddr, INT_REG) & 0xFF) ) |
| |
| #define SMC_ACK_INT(x) \ |
| do { \ |
| if (SMC_CAN_USE_8BIT) \ |
| SMC_outb(x, ioaddr, INT_REG); \ |
| else { \ |
| unsigned long __flags; \ |
| int __mask; \ |
| local_irq_save(__flags); \ |
| __mask = SMC_inw( ioaddr, INT_REG ) & ~0xff; \ |
| SMC_outw( __mask | (x), ioaddr, INT_REG ); \ |
| local_irq_restore(__flags); \ |
| } \ |
| } while (0) |
| |
| #define SMC_GET_INT_MASK() \ |
| ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, IM_REG)) \ |
| : (SMC_inw( ioaddr, INT_REG ) >> 8) ) |
| |
| #define SMC_SET_INT_MASK(x) \ |
| do { \ |
| if (SMC_CAN_USE_8BIT) \ |
| SMC_outb(x, ioaddr, IM_REG); \ |
| else \ |
| SMC_outw((x) << 8, ioaddr, INT_REG); \ |
| } while (0) |
| |
| #define SMC_CURRENT_BANK() SMC_inw(ioaddr, BANK_SELECT) |
| |
| #define SMC_SELECT_BANK(x) \ |
| do { \ |
| if (SMC_MUST_ALIGN_WRITE) \ |
| SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \ |
| else \ |
| SMC_outw(x, ioaddr, BANK_SELECT); \ |
| } while (0) |
| |
| #define SMC_GET_BASE() SMC_inw(ioaddr, BASE_REG) |
| |
| #define SMC_SET_BASE(x) SMC_outw(x, ioaddr, BASE_REG) |
| |
| #define SMC_GET_CONFIG() SMC_inw(ioaddr, CONFIG_REG) |
| |
| #define SMC_SET_CONFIG(x) SMC_outw(x, ioaddr, CONFIG_REG) |
| |
| #define SMC_GET_COUNTER() SMC_inw(ioaddr, COUNTER_REG) |
| |
| #define SMC_GET_CTL() SMC_inw(ioaddr, CTL_REG) |
| |
| #define SMC_SET_CTL(x) SMC_outw(x, ioaddr, CTL_REG) |
| |
| #define SMC_GET_MII() SMC_inw(ioaddr, MII_REG) |
| |
| #define SMC_SET_MII(x) SMC_outw(x, ioaddr, MII_REG) |
| |
| #define SMC_GET_MIR() SMC_inw(ioaddr, MIR_REG) |
| |
| #define SMC_SET_MIR(x) SMC_outw(x, ioaddr, MIR_REG) |
| |
| #define SMC_GET_MMU_CMD() SMC_inw(ioaddr, MMU_CMD_REG) |
| |
| #define SMC_SET_MMU_CMD(x) SMC_outw(x, ioaddr, MMU_CMD_REG) |
| |
| #define SMC_GET_FIFO() SMC_inw(ioaddr, FIFO_REG) |
| |
| #define SMC_GET_PTR() SMC_inw(ioaddr, PTR_REG) |
| |
| #define SMC_SET_PTR(x) \ |
| do { \ |
| if (SMC_MUST_ALIGN_WRITE) \ |
| SMC_outl((x)<<16, ioaddr, SMC_REG(4, 2)); \ |
| else \ |
| SMC_outw(x, ioaddr, PTR_REG); \ |
| } while (0) |
| |
| #define SMC_GET_EPH_STATUS() SMC_inw(ioaddr, EPH_STATUS_REG) |
| |
| #define SMC_GET_RCR() SMC_inw(ioaddr, RCR_REG) |
| |
| #define SMC_SET_RCR(x) SMC_outw(x, ioaddr, RCR_REG) |
| |
| #define SMC_GET_REV() SMC_inw(ioaddr, REV_REG) |
| |
| #define SMC_GET_RPC() SMC_inw(ioaddr, RPC_REG) |
| |
| #define SMC_SET_RPC(x) \ |
| do { \ |
| if (SMC_MUST_ALIGN_WRITE) \ |
| SMC_outl((x)<<16, ioaddr, SMC_REG(8, 0)); \ |
| else \ |
| SMC_outw(x, ioaddr, RPC_REG); \ |
| } while (0) |
| |
| #define SMC_GET_TCR() SMC_inw(ioaddr, TCR_REG) |
| |
| #define SMC_SET_TCR(x) SMC_outw(x, ioaddr, TCR_REG) |
| |
| #ifndef SMC_GET_MAC_ADDR |
| #define SMC_GET_MAC_ADDR(addr) \ |
| do { \ |
| unsigned int __v; \ |
| __v = SMC_inw( ioaddr, ADDR0_REG ); \ |
| addr[0] = __v; addr[1] = __v >> 8; \ |
| __v = SMC_inw( ioaddr, ADDR1_REG ); \ |
| addr[2] = __v; addr[3] = __v >> 8; \ |
| __v = SMC_inw( ioaddr, ADDR2_REG ); \ |
| addr[4] = __v; addr[5] = __v >> 8; \ |
| } while (0) |
| #endif |
| |
| #define SMC_SET_MAC_ADDR(addr) \ |
| do { \ |
| SMC_outw( addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG ); \ |
| SMC_outw( addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG ); \ |
| SMC_outw( addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG ); \ |
| } while (0) |
| |
| #define SMC_SET_MCAST(x) \ |
| do { \ |
| const unsigned char *mt = (x); \ |
| SMC_outw( mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1 ); \ |
| SMC_outw( mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2 ); \ |
| SMC_outw( mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3 ); \ |
| SMC_outw( mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4 ); \ |
| } while (0) |
| |
| #define SMC_PUT_PKT_HDR(status, length) \ |
| do { \ |
| if (SMC_CAN_USE_32BIT) \ |
| SMC_outl((status) | (length)<<16, ioaddr, DATA_REG); \ |
| else { \ |
| SMC_outw(status, ioaddr, DATA_REG); \ |
| SMC_outw(length, ioaddr, DATA_REG); \ |
| } \ |
| } while (0) |
| |
| #define SMC_GET_PKT_HDR(status, length) \ |
| do { \ |
| if (SMC_CAN_USE_32BIT) { \ |
| unsigned int __val = SMC_inl(ioaddr, DATA_REG); \ |
| (status) = __val & 0xffff; \ |
| (length) = __val >> 16; \ |
| } else { \ |
| (status) = SMC_inw(ioaddr, DATA_REG); \ |
| (length) = SMC_inw(ioaddr, DATA_REG); \ |
| } \ |
| } while (0) |
| |
| #define SMC_PUSH_DATA(p, l) \ |
| do { \ |
| if (SMC_CAN_USE_32BIT) { \ |
| void *__ptr = (p); \ |
| int __len = (l); \ |
| void __iomem *__ioaddr = ioaddr; \ |
| if (__len >= 2 && (unsigned long)__ptr & 2) { \ |
| __len -= 2; \ |
| SMC_outw(*(u16 *)__ptr, ioaddr, DATA_REG); \ |
| __ptr += 2; \ |
| } \ |
| if (SMC_CAN_USE_DATACS && lp->datacs) \ |
| __ioaddr = lp->datacs; \ |
| SMC_outsl(__ioaddr, DATA_REG, __ptr, __len>>2); \ |
| if (__len & 2) { \ |
| __ptr += (__len & ~3); \ |
| SMC_outw(*((u16 *)__ptr), ioaddr, DATA_REG); \ |
| } \ |
| } else if (SMC_CAN_USE_16BIT) \ |
| SMC_outsw(ioaddr, DATA_REG, p, (l) >> 1); \ |
| else if (SMC_CAN_USE_8BIT) \ |
| SMC_outsb(ioaddr, DATA_REG, p, l); \ |
| } while (0) |
| |
| #define SMC_PULL_DATA(p, l) \ |
| do { \ |
| if (SMC_CAN_USE_32BIT) { \ |
| void *__ptr = (p); \ |
| int __len = (l); \ |
| void __iomem *__ioaddr = ioaddr; \ |
| if ((unsigned long)__ptr & 2) { \ |
| /* \ |
| * We want 32bit alignment here. \ |
| * Since some buses perform a full \ |
| * 32bit fetch even for 16bit data \ |
| * we can't use SMC_inw() here. \ |
| * Back both source (on-chip) and \ |
| * destination pointers of 2 bytes. \ |
| * This is possible since the call to \ |
| * SMC_GET_PKT_HDR() already advanced \ |
| * the source pointer of 4 bytes, and \ |
| * the skb_reserve(skb, 2) advanced \ |
| * the destination pointer of 2 bytes. \ |
| */ \ |
| __ptr -= 2; \ |
| __len += 2; \ |
| SMC_SET_PTR(2|PTR_READ|PTR_RCV|PTR_AUTOINC); \ |
| } \ |
| if (SMC_CAN_USE_DATACS && lp->datacs) \ |
| __ioaddr = lp->datacs; \ |
| __len += 2; \ |
| SMC_insl(__ioaddr, DATA_REG, __ptr, __len>>2); \ |
| } else if (SMC_CAN_USE_16BIT) \ |
| SMC_insw(ioaddr, DATA_REG, p, (l) >> 1); \ |
| else if (SMC_CAN_USE_8BIT) \ |
| SMC_insb(ioaddr, DATA_REG, p, l); \ |
| } while (0) |
| |
| #endif /* _SMC91X_H_ */ |