| /* -*- c-basic-offset: 8 -*- |
| * |
| * fw-ohci.c - Driver for OHCI 1394 boards |
| * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/poll.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/semaphore.h> |
| |
| #include "fw-transaction.h" |
| #include "fw-ohci.h" |
| |
| #define descriptor_output_more 0 |
| #define descriptor_output_last (1 << 12) |
| #define descriptor_input_more (2 << 12) |
| #define descriptor_input_last (3 << 12) |
| #define descriptor_status (1 << 11) |
| #define descriptor_key_immediate (2 << 8) |
| #define descriptor_ping (1 << 7) |
| #define descriptor_yy (1 << 6) |
| #define descriptor_no_irq (0 << 4) |
| #define descriptor_irq_error (1 << 4) |
| #define descriptor_irq_always (3 << 4) |
| #define descriptor_branch_always (3 << 2) |
| |
| struct descriptor { |
| __le16 req_count; |
| __le16 control; |
| __le32 data_address; |
| __le32 branch_address; |
| __le16 res_count; |
| __le16 transfer_status; |
| } __attribute__((aligned(16))); |
| |
| struct ar_context { |
| struct fw_ohci *ohci; |
| struct descriptor descriptor; |
| __le32 buffer[512]; |
| dma_addr_t descriptor_bus; |
| dma_addr_t buffer_bus; |
| |
| u32 command_ptr; |
| u32 control_set; |
| u32 control_clear; |
| |
| struct tasklet_struct tasklet; |
| }; |
| |
| struct at_context { |
| struct fw_ohci *ohci; |
| dma_addr_t descriptor_bus; |
| dma_addr_t buffer_bus; |
| |
| struct list_head list; |
| |
| struct { |
| struct descriptor more; |
| __le32 header[4]; |
| struct descriptor last; |
| } d; |
| |
| u32 command_ptr; |
| u32 control_set; |
| u32 control_clear; |
| |
| struct tasklet_struct tasklet; |
| }; |
| |
| #define it_header_sy(v) ((v) << 0) |
| #define it_header_tcode(v) ((v) << 4) |
| #define it_header_channel(v) ((v) << 8) |
| #define it_header_tag(v) ((v) << 14) |
| #define it_header_speed(v) ((v) << 16) |
| #define it_header_data_length(v) ((v) << 16) |
| |
| struct iso_context { |
| struct fw_iso_context base; |
| struct tasklet_struct tasklet; |
| u32 control_set; |
| u32 control_clear; |
| u32 command_ptr; |
| u32 context_match; |
| |
| struct descriptor *buffer; |
| dma_addr_t buffer_bus; |
| struct descriptor *head_descriptor; |
| struct descriptor *tail_descriptor; |
| struct descriptor *tail_descriptor_last; |
| struct descriptor *prev_descriptor; |
| }; |
| |
| #define CONFIG_ROM_SIZE 1024 |
| |
| struct fw_ohci { |
| struct fw_card card; |
| |
| __iomem char *registers; |
| dma_addr_t self_id_bus; |
| __le32 *self_id_cpu; |
| struct tasklet_struct bus_reset_tasklet; |
| int generation; |
| int request_generation; |
| |
| /* Spinlock for accessing fw_ohci data. Never call out of |
| * this driver with this lock held. */ |
| spinlock_t lock; |
| u32 self_id_buffer[512]; |
| |
| /* Config rom buffers */ |
| __be32 *config_rom; |
| dma_addr_t config_rom_bus; |
| __be32 *next_config_rom; |
| dma_addr_t next_config_rom_bus; |
| u32 next_header; |
| |
| struct ar_context ar_request_ctx; |
| struct ar_context ar_response_ctx; |
| struct at_context at_request_ctx; |
| struct at_context at_response_ctx; |
| |
| u32 it_context_mask; |
| struct iso_context *it_context_list; |
| u32 ir_context_mask; |
| struct iso_context *ir_context_list; |
| }; |
| |
| static inline struct fw_ohci *fw_ohci(struct fw_card *card) |
| { |
| return container_of(card, struct fw_ohci, card); |
| } |
| |
| #define CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 |
| |
| #define CONTEXT_RUN 0x8000 |
| #define CONTEXT_WAKE 0x1000 |
| #define CONTEXT_DEAD 0x0800 |
| #define CONTEXT_ACTIVE 0x0400 |
| |
| #define OHCI1394_MAX_AT_REQ_RETRIES 0x2 |
| #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 |
| #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 |
| |
| #define FW_OHCI_MAJOR 240 |
| #define OHCI1394_REGISTER_SIZE 0x800 |
| #define OHCI_LOOP_COUNT 500 |
| #define OHCI1394_PCI_HCI_Control 0x40 |
| #define SELF_ID_BUF_SIZE 0x800 |
| |
| static char ohci_driver_name[] = KBUILD_MODNAME; |
| |
| static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) |
| { |
| writel(data, ohci->registers + offset); |
| } |
| |
| static inline u32 reg_read(const struct fw_ohci *ohci, int offset) |
| { |
| return readl(ohci->registers + offset); |
| } |
| |
| static inline void flush_writes(const struct fw_ohci *ohci) |
| { |
| /* Do a dummy read to flush writes. */ |
| reg_read(ohci, OHCI1394_Version); |
| } |
| |
| static int |
| ohci_update_phy_reg(struct fw_card *card, int addr, |
| int clear_bits, int set_bits) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| u32 val, old; |
| |
| reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); |
| msleep(2); |
| val = reg_read(ohci, OHCI1394_PhyControl); |
| if ((val & OHCI1394_PhyControl_ReadDone) == 0) { |
| fw_error("failed to set phy reg bits.\n"); |
| return -EBUSY; |
| } |
| |
| old = OHCI1394_PhyControl_ReadData(val); |
| old = (old & ~clear_bits) | set_bits; |
| reg_write(ohci, OHCI1394_PhyControl, |
| OHCI1394_PhyControl_Write(addr, old)); |
| |
| return 0; |
| } |
| |
| static void ar_context_run(struct ar_context *ctx) |
| { |
| reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1); |
| reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN); |
| flush_writes(ctx->ohci); |
| } |
| |
| static void ar_context_tasklet(unsigned long data) |
| { |
| struct ar_context *ctx = (struct ar_context *)data; |
| struct fw_ohci *ohci = ctx->ohci; |
| struct fw_packet p; |
| u32 status, length, tcode; |
| |
| /* FIXME: What to do about evt_* errors? */ |
| length = le16_to_cpu(ctx->descriptor.req_count) - |
| le16_to_cpu(ctx->descriptor.res_count) - 4; |
| status = le32_to_cpu(ctx->buffer[length / 4]); |
| |
| p.ack = ((status >> 16) & 0x1f) - 16; |
| p.speed = (status >> 21) & 0x7; |
| p.timestamp = status & 0xffff; |
| p.generation = ohci->request_generation; |
| |
| p.header[0] = le32_to_cpu(ctx->buffer[0]); |
| p.header[1] = le32_to_cpu(ctx->buffer[1]); |
| p.header[2] = le32_to_cpu(ctx->buffer[2]); |
| |
| tcode = (p.header[0] >> 4) & 0x0f; |
| switch (tcode) { |
| case TCODE_WRITE_QUADLET_REQUEST: |
| case TCODE_READ_QUADLET_RESPONSE: |
| p.header[3] = ctx->buffer[3]; |
| p.header_length = 16; |
| break; |
| |
| case TCODE_WRITE_BLOCK_REQUEST: |
| case TCODE_READ_BLOCK_REQUEST : |
| case TCODE_READ_BLOCK_RESPONSE: |
| case TCODE_LOCK_REQUEST: |
| case TCODE_LOCK_RESPONSE: |
| p.header[3] = le32_to_cpu(ctx->buffer[3]); |
| p.header_length = 16; |
| break; |
| |
| case TCODE_WRITE_RESPONSE: |
| case TCODE_READ_QUADLET_REQUEST: |
| p.header_length = 12; |
| break; |
| } |
| |
| p.payload = (void *) ctx->buffer + p.header_length; |
| p.payload_length = length - p.header_length; |
| |
| /* The OHCI bus reset handler synthesizes a phy packet with |
| * the new generation number when a bus reset happens (see |
| * section 8.4.2.3). This helps us determine when a request |
| * was received and make sure we send the response in the same |
| * generation. We only need this for requests; for responses |
| * we use the unique tlabel for finding the matching |
| * request. */ |
| |
| if (p.ack + 16 == 0x09) |
| ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff; |
| else if (ctx == &ohci->ar_request_ctx) |
| fw_core_handle_request(&ohci->card, &p); |
| else |
| fw_core_handle_response(&ohci->card, &p); |
| |
| ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); |
| ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); |
| ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); |
| |
| dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus, |
| sizeof ctx->descriptor_bus, DMA_TO_DEVICE); |
| |
| /* FIXME: We stop and restart the ar context here, what if we |
| * stop while a receive is in progress? Maybe we could just |
| * loop the context back to itself and use it in buffer fill |
| * mode as intended... */ |
| |
| reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); |
| ar_context_run(ctx); |
| } |
| |
| static int |
| ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set) |
| { |
| ctx->descriptor_bus = |
| dma_map_single(ohci->card.device, &ctx->descriptor, |
| sizeof ctx->descriptor, DMA_TO_DEVICE); |
| if (ctx->descriptor_bus == 0) |
| return -ENOMEM; |
| |
| if (ctx->descriptor_bus & 0xf) |
| fw_notify("descriptor not 16-byte aligned: 0x%08lx\n", |
| (unsigned long)ctx->descriptor_bus); |
| |
| ctx->buffer_bus = |
| dma_map_single(ohci->card.device, ctx->buffer, |
| sizeof ctx->buffer, DMA_FROM_DEVICE); |
| |
| if (ctx->buffer_bus == 0) { |
| dma_unmap_single(ohci->card.device, ctx->descriptor_bus, |
| sizeof ctx->descriptor, DMA_TO_DEVICE); |
| return -ENOMEM; |
| } |
| |
| memset(&ctx->descriptor, 0, sizeof ctx->descriptor); |
| ctx->descriptor.control = cpu_to_le16(descriptor_input_more | |
| descriptor_status | |
| descriptor_branch_always); |
| ctx->descriptor.req_count = cpu_to_le16(sizeof ctx->buffer); |
| ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus); |
| ctx->descriptor.res_count = cpu_to_le16(sizeof ctx->buffer); |
| |
| ctx->control_set = control_set; |
| ctx->control_clear = control_set + 4; |
| ctx->command_ptr = control_set + 12; |
| ctx->ohci = ohci; |
| |
| tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); |
| |
| ar_context_run(ctx); |
| |
| return 0; |
| } |
| |
| static void |
| do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list) |
| { |
| struct fw_packet *p, *next; |
| |
| list_for_each_entry_safe(p, next, list, link) |
| p->callback(p, &ohci->card, p->ack); |
| } |
| |
| static void |
| complete_transmission(struct fw_packet *packet, |
| int ack, struct list_head *list) |
| { |
| list_move_tail(&packet->link, list); |
| packet->ack = ack; |
| } |
| |
| /* This function prepares the first packet in the context queue for |
| * transmission. Must always be called with the ochi->lock held to |
| * ensure proper generation handling and locking around packet queue |
| * manipulation. */ |
| static void |
| at_context_setup_packet(struct at_context *ctx, struct list_head *list) |
| { |
| struct fw_packet *packet; |
| struct fw_ohci *ohci = ctx->ohci; |
| int z, tcode; |
| |
| packet = fw_packet(ctx->list.next); |
| |
| memset(&ctx->d, 0, sizeof ctx->d); |
| if (packet->payload_length > 0) { |
| packet->payload_bus = dma_map_single(ohci->card.device, |
| packet->payload, |
| packet->payload_length, |
| DMA_TO_DEVICE); |
| if (packet->payload_bus == 0) { |
| complete_transmission(packet, -ENOMEM, list); |
| return; |
| } |
| |
| ctx->d.more.control = |
| cpu_to_le16(descriptor_output_more | |
| descriptor_key_immediate); |
| ctx->d.more.req_count = cpu_to_le16(packet->header_length); |
| ctx->d.more.res_count = cpu_to_le16(packet->timestamp); |
| ctx->d.last.control = |
| cpu_to_le16(descriptor_output_last | |
| descriptor_irq_always | |
| descriptor_branch_always); |
| ctx->d.last.req_count = cpu_to_le16(packet->payload_length); |
| ctx->d.last.data_address = cpu_to_le32(packet->payload_bus); |
| z = 3; |
| } else { |
| ctx->d.more.control = |
| cpu_to_le16(descriptor_output_last | |
| descriptor_key_immediate | |
| descriptor_irq_always | |
| descriptor_branch_always); |
| ctx->d.more.req_count = cpu_to_le16(packet->header_length); |
| ctx->d.more.res_count = cpu_to_le16(packet->timestamp); |
| z = 2; |
| } |
| |
| /* The DMA format for asyncronous link packets is different |
| * from the IEEE1394 layout, so shift the fields around |
| * accordingly. If header_length is 8, it's a PHY packet, to |
| * which we need to prepend an extra quadlet. */ |
| if (packet->header_length > 8) { |
| ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) | |
| (packet->speed << 16)); |
| ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) | |
| (packet->header[0] & 0xffff0000)); |
| ctx->d.header[2] = cpu_to_le32(packet->header[2]); |
| |
| tcode = (packet->header[0] >> 4) & 0x0f; |
| if (TCODE_IS_BLOCK_PACKET(tcode)) |
| ctx->d.header[3] = cpu_to_le32(packet->header[3]); |
| else |
| ctx->d.header[3] = packet->header[3]; |
| } else { |
| ctx->d.header[0] = |
| cpu_to_le32((OHCI1394_phy_tcode << 4) | |
| (packet->speed << 16)); |
| ctx->d.header[1] = cpu_to_le32(packet->header[0]); |
| ctx->d.header[2] = cpu_to_le32(packet->header[1]); |
| ctx->d.more.req_count = cpu_to_le16(12); |
| } |
| |
| /* FIXME: Document how the locking works. */ |
| if (ohci->generation == packet->generation) { |
| reg_write(ctx->ohci, ctx->command_ptr, |
| ctx->descriptor_bus | z); |
| reg_write(ctx->ohci, ctx->control_set, |
| CONTEXT_RUN | CONTEXT_WAKE); |
| } else { |
| /* We dont return error codes from this function; all |
| * transmission errors are reported through the |
| * callback. */ |
| complete_transmission(packet, -ESTALE, list); |
| } |
| } |
| |
| static void at_context_stop(struct at_context *ctx) |
| { |
| u32 reg; |
| |
| reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN); |
| |
| reg = reg_read(ctx->ohci, ctx->control_set); |
| if (reg & CONTEXT_ACTIVE) |
| fw_notify("Tried to stop context, but it is still active " |
| "(0x%08x).\n", reg); |
| } |
| |
| static void at_context_tasklet(unsigned long data) |
| { |
| struct at_context *ctx = (struct at_context *)data; |
| struct fw_ohci *ohci = ctx->ohci; |
| struct fw_packet *packet; |
| LIST_HEAD(list); |
| unsigned long flags; |
| int evt; |
| |
| spin_lock_irqsave(&ohci->lock, flags); |
| |
| packet = fw_packet(ctx->list.next); |
| |
| at_context_stop(ctx); |
| |
| if (packet->payload_length > 0) { |
| dma_unmap_single(ohci->card.device, packet->payload_bus, |
| packet->payload_length, DMA_TO_DEVICE); |
| evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f; |
| packet->timestamp = le16_to_cpu(ctx->d.last.res_count); |
| } |
| else { |
| evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f; |
| packet->timestamp = le16_to_cpu(ctx->d.more.res_count); |
| } |
| |
| if (evt < 16) { |
| switch (evt) { |
| case OHCI1394_evt_timeout: |
| /* Async response transmit timed out. */ |
| complete_transmission(packet, -ETIMEDOUT, &list); |
| break; |
| |
| case OHCI1394_evt_flushed: |
| /* The packet was flushed should give same |
| * error as when we try to use a stale |
| * generation count. */ |
| complete_transmission(packet, -ESTALE, &list); |
| break; |
| |
| case OHCI1394_evt_missing_ack: |
| /* This would be a higher level software |
| * error, it is using a valid (current) |
| * generation count, but the node is not on |
| * the bus. */ |
| complete_transmission(packet, -ENODEV, &list); |
| break; |
| |
| default: |
| complete_transmission(packet, -EIO, &list); |
| break; |
| } |
| } else |
| complete_transmission(packet, evt - 16, &list); |
| |
| /* If more packets are queued, set up the next one. */ |
| if (!list_empty(&ctx->list)) |
| at_context_setup_packet(ctx, &list); |
| |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| |
| do_packet_callbacks(ohci, &list); |
| } |
| |
| static int |
| at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set) |
| { |
| INIT_LIST_HEAD(&ctx->list); |
| |
| ctx->descriptor_bus = |
| dma_map_single(ohci->card.device, &ctx->d, |
| sizeof ctx->d, DMA_TO_DEVICE); |
| if (ctx->descriptor_bus == 0) |
| return -ENOMEM; |
| |
| ctx->control_set = control_set; |
| ctx->control_clear = control_set + 4; |
| ctx->command_ptr = control_set + 12; |
| ctx->ohci = ohci; |
| |
| tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx); |
| |
| return 0; |
| } |
| |
| static void |
| at_context_transmit(struct at_context *ctx, struct fw_packet *packet) |
| { |
| LIST_HEAD(list); |
| unsigned long flags; |
| int was_empty; |
| |
| spin_lock_irqsave(&ctx->ohci->lock, flags); |
| |
| was_empty = list_empty(&ctx->list); |
| list_add_tail(&packet->link, &ctx->list); |
| if (was_empty) |
| at_context_setup_packet(ctx, &list); |
| |
| spin_unlock_irqrestore(&ctx->ohci->lock, flags); |
| |
| do_packet_callbacks(ctx->ohci, &list); |
| } |
| |
| static void bus_reset_tasklet(unsigned long data) |
| { |
| struct fw_ohci *ohci = (struct fw_ohci *)data; |
| int self_id_count, i, j, reg, node_id; |
| int generation, new_generation; |
| unsigned long flags; |
| |
| reg = reg_read(ohci, OHCI1394_NodeID); |
| if (!(reg & OHCI1394_NodeID_idValid)) { |
| fw_error("node ID not valid, new bus reset in progress\n"); |
| return; |
| } |
| node_id = reg & 0xffff; |
| |
| /* The count in the SelfIDCount register is the number of |
| * bytes in the self ID receive buffer. Since we also receive |
| * the inverted quadlets and a header quadlet, we shift one |
| * bit extra to get the actual number of self IDs. */ |
| |
| self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff; |
| generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; |
| |
| for (i = 1, j = 0; j < self_id_count; i += 2, j++) { |
| if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) |
| fw_error("inconsistent self IDs\n"); |
| ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]); |
| } |
| |
| /* Check the consistency of the self IDs we just read. The |
| * problem we face is that a new bus reset can start while we |
| * read out the self IDs from the DMA buffer. If this happens, |
| * the DMA buffer will be overwritten with new self IDs and we |
| * will read out inconsistent data. The OHCI specification |
| * (section 11.2) recommends a technique similar to |
| * linux/seqlock.h, where we remember the generation of the |
| * self IDs in the buffer before reading them out and compare |
| * it to the current generation after reading them out. If |
| * the two generations match we know we have a consistent set |
| * of self IDs. */ |
| |
| new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; |
| if (new_generation != generation) { |
| fw_notify("recursive bus reset detected, " |
| "discarding self ids\n"); |
| return; |
| } |
| |
| /* FIXME: Document how the locking works. */ |
| spin_lock_irqsave(&ohci->lock, flags); |
| |
| ohci->generation = generation; |
| at_context_stop(&ohci->at_request_ctx); |
| at_context_stop(&ohci->at_response_ctx); |
| reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); |
| |
| /* This next bit is unrelated to the AT context stuff but we |
| * have to do it under the spinlock also. If a new config rom |
| * was set up before this reset, the old one is now no longer |
| * in use and we can free it. Update the config rom pointers |
| * to point to the current config rom and clear the |
| * next_config_rom pointer so a new udpate can take place. */ |
| |
| if (ohci->next_config_rom != NULL) { |
| dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| ohci->config_rom, ohci->config_rom_bus); |
| ohci->config_rom = ohci->next_config_rom; |
| ohci->config_rom_bus = ohci->next_config_rom_bus; |
| ohci->next_config_rom = NULL; |
| |
| /* Restore config_rom image and manually update |
| * config_rom registers. Writing the header quadlet |
| * will indicate that the config rom is ready, so we |
| * do that last. */ |
| reg_write(ohci, OHCI1394_BusOptions, |
| be32_to_cpu(ohci->config_rom[2])); |
| ohci->config_rom[0] = cpu_to_be32(ohci->next_header); |
| reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header); |
| } |
| |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| |
| fw_core_handle_bus_reset(&ohci->card, node_id, generation, |
| self_id_count, ohci->self_id_buffer); |
| } |
| |
| static irqreturn_t irq_handler(int irq, void *data) |
| { |
| struct fw_ohci *ohci = data; |
| u32 event, iso_event; |
| int i; |
| |
| event = reg_read(ohci, OHCI1394_IntEventClear); |
| |
| if (!event) |
| return IRQ_NONE; |
| |
| reg_write(ohci, OHCI1394_IntEventClear, event); |
| |
| if (event & OHCI1394_selfIDComplete) |
| tasklet_schedule(&ohci->bus_reset_tasklet); |
| |
| if (event & OHCI1394_RQPkt) |
| tasklet_schedule(&ohci->ar_request_ctx.tasklet); |
| |
| if (event & OHCI1394_RSPkt) |
| tasklet_schedule(&ohci->ar_response_ctx.tasklet); |
| |
| if (event & OHCI1394_reqTxComplete) |
| tasklet_schedule(&ohci->at_request_ctx.tasklet); |
| |
| if (event & OHCI1394_respTxComplete) |
| tasklet_schedule(&ohci->at_response_ctx.tasklet); |
| |
| iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet); |
| reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); |
| |
| while (iso_event) { |
| i = ffs(iso_event) - 1; |
| tasklet_schedule(&ohci->ir_context_list[i].tasklet); |
| iso_event &= ~(1 << i); |
| } |
| |
| iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet); |
| reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); |
| |
| while (iso_event) { |
| i = ffs(iso_event) - 1; |
| tasklet_schedule(&ohci->it_context_list[i].tasklet); |
| iso_event &= ~(1 << i); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| struct pci_dev *dev = to_pci_dev(card->device); |
| |
| /* When the link is not yet enabled, the atomic config rom |
| * update mechanism described below in ohci_set_config_rom() |
| * is not active. We have to update ConfigRomHeader and |
| * BusOptions manually, and the write to ConfigROMmap takes |
| * effect immediately. We tie this to the enabling of the |
| * link, so we have a valid config rom before enabling - the |
| * OHCI requires that ConfigROMhdr and BusOptions have valid |
| * values before enabling. |
| * |
| * However, when the ConfigROMmap is written, some controllers |
| * always read back quadlets 0 and 2 from the config rom to |
| * the ConfigRomHeader and BusOptions registers on bus reset. |
| * They shouldn't do that in this initial case where the link |
| * isn't enabled. This means we have to use the same |
| * workaround here, setting the bus header to 0 and then write |
| * the right values in the bus reset tasklet. |
| */ |
| |
| ohci->next_config_rom = |
| dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| &ohci->next_config_rom_bus, GFP_KERNEL); |
| if (ohci->next_config_rom == NULL) |
| return -ENOMEM; |
| |
| memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); |
| fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4); |
| |
| ohci->next_header = config_rom[0]; |
| ohci->next_config_rom[0] = 0; |
| reg_write(ohci, OHCI1394_ConfigROMhdr, 0); |
| reg_write(ohci, OHCI1394_BusOptions, config_rom[2]); |
| reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); |
| |
| reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); |
| |
| if (request_irq(dev->irq, irq_handler, |
| SA_SHIRQ, ohci_driver_name, ohci)) { |
| fw_error("Failed to allocate shared interrupt %d.\n", |
| dev->irq); |
| dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| ohci->config_rom, ohci->config_rom_bus); |
| return -EIO; |
| } |
| |
| reg_write(ohci, OHCI1394_HCControlSet, |
| OHCI1394_HCControl_linkEnable | |
| OHCI1394_HCControl_BIBimageValid); |
| flush_writes(ohci); |
| |
| /* We are ready to go, initiate bus reset to finish the |
| * initialization. */ |
| |
| fw_core_initiate_bus_reset(&ohci->card, 1); |
| |
| return 0; |
| } |
| |
| static int |
| ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length) |
| { |
| struct fw_ohci *ohci; |
| unsigned long flags; |
| int retval = 0; |
| __be32 *next_config_rom; |
| dma_addr_t next_config_rom_bus; |
| |
| ohci = fw_ohci(card); |
| |
| /* When the OHCI controller is enabled, the config rom update |
| * mechanism is a bit tricky, but easy enough to use. See |
| * section 5.5.6 in the OHCI specification. |
| * |
| * The OHCI controller caches the new config rom address in a |
| * shadow register (ConfigROMmapNext) and needs a bus reset |
| * for the changes to take place. When the bus reset is |
| * detected, the controller loads the new values for the |
| * ConfigRomHeader and BusOptions registers from the specified |
| * config rom and loads ConfigROMmap from the ConfigROMmapNext |
| * shadow register. All automatically and atomically. |
| * |
| * Now, there's a twist to this story. The automatic load of |
| * ConfigRomHeader and BusOptions doesn't honor the |
| * noByteSwapData bit, so with a be32 config rom, the |
| * controller will load be32 values in to these registers |
| * during the atomic update, even on litte endian |
| * architectures. The workaround we use is to put a 0 in the |
| * header quadlet; 0 is endian agnostic and means that the |
| * config rom isn't ready yet. In the bus reset tasklet we |
| * then set up the real values for the two registers. |
| * |
| * We use ohci->lock to avoid racing with the code that sets |
| * ohci->next_config_rom to NULL (see bus_reset_tasklet). |
| */ |
| |
| next_config_rom = |
| dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| &next_config_rom_bus, GFP_KERNEL); |
| if (next_config_rom == NULL) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&ohci->lock, flags); |
| |
| if (ohci->next_config_rom == NULL) { |
| ohci->next_config_rom = next_config_rom; |
| ohci->next_config_rom_bus = next_config_rom_bus; |
| |
| memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE); |
| fw_memcpy_to_be32(ohci->next_config_rom, config_rom, |
| length * 4); |
| |
| ohci->next_header = config_rom[0]; |
| ohci->next_config_rom[0] = 0; |
| |
| reg_write(ohci, OHCI1394_ConfigROMmap, |
| ohci->next_config_rom_bus); |
| } else { |
| dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, |
| next_config_rom, next_config_rom_bus); |
| retval = -EBUSY; |
| } |
| |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| |
| /* Now initiate a bus reset to have the changes take |
| * effect. We clean up the old config rom memory and DMA |
| * mappings in the bus reset tasklet, since the OHCI |
| * controller could need to access it before the bus reset |
| * takes effect. */ |
| if (retval == 0) |
| fw_core_initiate_bus_reset(&ohci->card, 1); |
| |
| return retval; |
| } |
| |
| static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| |
| at_context_transmit(&ohci->at_request_ctx, packet); |
| } |
| |
| static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| |
| at_context_transmit(&ohci->at_response_ctx, packet); |
| } |
| |
| static int |
| ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| unsigned long flags; |
| int n, retval = 0; |
| |
| /* FIXME: Make sure this bitmask is cleared when we clear the busReset |
| * interrupt bit. Clear physReqResourceAllBuses on bus reset. */ |
| |
| spin_lock_irqsave(&ohci->lock, flags); |
| |
| if (ohci->generation != generation) { |
| retval = -ESTALE; |
| goto out; |
| } |
| |
| /* NOTE, if the node ID contains a non-local bus ID, physical DMA is |
| * enabled for _all_ nodes on remote buses. */ |
| |
| n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; |
| if (n < 32) |
| reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); |
| else |
| reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); |
| |
| flush_writes(ohci); |
| out: |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| return retval; |
| } |
| |
| static void ir_context_tasklet(unsigned long data) |
| { |
| struct iso_context *ctx = (struct iso_context *)data; |
| |
| (void)ctx; |
| } |
| |
| #define ISO_BUFFER_SIZE (64 * 1024) |
| |
| static void flush_iso_context(struct iso_context *ctx) |
| { |
| struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| struct descriptor *d, *last; |
| u32 address; |
| int z; |
| |
| dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus, |
| ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| |
| d = ctx->tail_descriptor; |
| last = ctx->tail_descriptor_last; |
| |
| while (last->branch_address != 0 && last->transfer_status != 0) { |
| address = le32_to_cpu(last->branch_address); |
| z = address & 0xf; |
| d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d; |
| |
| if (z == 2) |
| last = d; |
| else |
| last = d + z - 1; |
| |
| if (le16_to_cpu(last->control) & descriptor_irq_always) |
| ctx->base.callback(&ctx->base, |
| 0, le16_to_cpu(last->res_count), |
| ctx->base.callback_data); |
| } |
| |
| ctx->tail_descriptor = d; |
| ctx->tail_descriptor_last = last; |
| } |
| |
| static void it_context_tasklet(unsigned long data) |
| { |
| struct iso_context *ctx = (struct iso_context *)data; |
| |
| flush_iso_context(ctx); |
| } |
| |
| static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, |
| int type) |
| { |
| struct fw_ohci *ohci = fw_ohci(card); |
| struct iso_context *ctx, *list; |
| void (*tasklet) (unsigned long data); |
| u32 *mask; |
| unsigned long flags; |
| int index; |
| |
| if (type == FW_ISO_CONTEXT_TRANSMIT) { |
| mask = &ohci->it_context_mask; |
| list = ohci->it_context_list; |
| tasklet = it_context_tasklet; |
| } else { |
| mask = &ohci->ir_context_mask; |
| list = ohci->ir_context_list; |
| tasklet = ir_context_tasklet; |
| } |
| |
| spin_lock_irqsave(&ohci->lock, flags); |
| index = ffs(*mask) - 1; |
| if (index >= 0) |
| *mask &= ~(1 << index); |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| |
| if (index < 0) |
| return ERR_PTR(-EBUSY); |
| |
| ctx = &list[index]; |
| memset(ctx, 0, sizeof *ctx); |
| tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx); |
| |
| ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL); |
| if (ctx->buffer == NULL) { |
| spin_lock_irqsave(&ohci->lock, flags); |
| *mask |= 1 << index; |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ctx->buffer_bus = |
| dma_map_single(card->device, ctx->buffer, |
| ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| |
| ctx->head_descriptor = ctx->buffer; |
| ctx->prev_descriptor = ctx->buffer; |
| ctx->tail_descriptor = ctx->buffer; |
| ctx->tail_descriptor_last = ctx->buffer; |
| |
| /* We put a dummy descriptor in the buffer that has a NULL |
| * branch address and looks like it's been sent. That way we |
| * have a descriptor to append DMA programs to. Also, the |
| * ring buffer invariant is that it always has at least one |
| * element so that head == tail means buffer full. */ |
| |
| memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor); |
| ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last); |
| ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011); |
| ctx->head_descriptor++; |
| |
| return &ctx->base; |
| } |
| |
| static int ohci_send_iso(struct fw_iso_context *base, s32 cycle) |
| { |
| struct iso_context *ctx = (struct iso_context *)base; |
| struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| u32 cycle_match = 0; |
| int index; |
| |
| index = ctx - ohci->it_context_list; |
| if (cycle > 0) |
| cycle_match = CONTEXT_CYCLE_MATCH_ENABLE | |
| (cycle & 0x7fff) << 16; |
| |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); |
| reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index), |
| le32_to_cpu(ctx->tail_descriptor_last->branch_address)); |
| reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); |
| reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), |
| CONTEXT_RUN | cycle_match); |
| flush_writes(ohci); |
| |
| return 0; |
| } |
| |
| static void ohci_free_iso_context(struct fw_iso_context *base) |
| { |
| struct fw_ohci *ohci = fw_ohci(base->card); |
| struct iso_context *ctx = (struct iso_context *)base; |
| unsigned long flags; |
| int index; |
| |
| flush_iso_context(ctx); |
| |
| spin_lock_irqsave(&ohci->lock, flags); |
| |
| if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { |
| index = ctx - ohci->it_context_list; |
| reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0); |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); |
| ohci->it_context_mask |= 1 << index; |
| } else { |
| index = ctx - ohci->ir_context_list; |
| reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0); |
| reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); |
| ohci->ir_context_mask |= 1 << index; |
| } |
| flush_writes(ohci); |
| |
| dma_unmap_single(ohci->card.device, ctx->buffer_bus, |
| ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| |
| spin_unlock_irqrestore(&ohci->lock, flags); |
| } |
| |
| static int |
| ohci_queue_iso(struct fw_iso_context *base, |
| struct fw_iso_packet *packet, void *payload) |
| { |
| struct iso_context *ctx = (struct iso_context *)base; |
| struct fw_ohci *ohci = fw_ohci(ctx->base.card); |
| struct descriptor *d, *end, *last, *tail, *pd; |
| struct fw_iso_packet *p; |
| __le32 *header; |
| dma_addr_t d_bus; |
| u32 z, header_z, payload_z, irq; |
| u32 payload_index, payload_end_index, next_page_index; |
| int index, page, end_page, i, length, offset; |
| |
| /* FIXME: Cycle lost behavior should be configurable: lose |
| * packet, retransmit or terminate.. */ |
| |
| p = packet; |
| payload_index = payload - ctx->base.buffer; |
| d = ctx->head_descriptor; |
| tail = ctx->tail_descriptor; |
| end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor); |
| |
| if (p->skip) |
| z = 1; |
| else |
| z = 2; |
| if (p->header_length > 0) |
| z++; |
| |
| /* Determine the first page the payload isn't contained in. */ |
| end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; |
| if (p->payload_length > 0) |
| payload_z = end_page - (payload_index >> PAGE_SHIFT); |
| else |
| payload_z = 0; |
| |
| z += payload_z; |
| |
| /* Get header size in number of descriptors. */ |
| header_z = DIV_ROUND_UP(p->header_length, sizeof *d); |
| |
| if (d + z + header_z <= tail) { |
| goto has_space; |
| } else if (d > tail && d + z + header_z <= end) { |
| goto has_space; |
| } else if (d > tail && ctx->buffer + z + header_z <= tail) { |
| d = ctx->buffer; |
| goto has_space; |
| } |
| |
| /* No space in buffer */ |
| return -1; |
| |
| has_space: |
| memset(d, 0, (z + header_z) * sizeof *d); |
| d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d; |
| |
| if (!p->skip) { |
| d[0].control = cpu_to_le16(descriptor_key_immediate); |
| d[0].req_count = cpu_to_le16(8); |
| |
| header = (__le32 *) &d[1]; |
| header[0] = cpu_to_le32(it_header_sy(p->sy) | |
| it_header_tag(p->tag) | |
| it_header_tcode(TCODE_STREAM_DATA) | |
| it_header_channel(ctx->base.channel) | |
| it_header_speed(ctx->base.speed)); |
| header[1] = |
| cpu_to_le32(it_header_data_length(p->header_length + |
| p->payload_length)); |
| } |
| |
| if (p->header_length > 0) { |
| d[2].req_count = cpu_to_le16(p->header_length); |
| d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d); |
| memcpy(&d[z], p->header, p->header_length); |
| } |
| |
| pd = d + z - payload_z; |
| payload_end_index = payload_index + p->payload_length; |
| for (i = 0; i < payload_z; i++) { |
| page = payload_index >> PAGE_SHIFT; |
| offset = payload_index & ~PAGE_MASK; |
| next_page_index = (page + 1) << PAGE_SHIFT; |
| length = |
| min(next_page_index, payload_end_index) - payload_index; |
| pd[i].req_count = cpu_to_le16(length); |
| pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset); |
| |
| payload_index += length; |
| } |
| |
| if (z == 2) |
| last = d; |
| else |
| last = d + z - 1; |
| |
| if (p->interrupt) |
| irq = descriptor_irq_always; |
| else |
| irq = descriptor_no_irq; |
| |
| last->control = cpu_to_le16(descriptor_output_last | |
| descriptor_status | |
| descriptor_branch_always | |
| irq); |
| |
| dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus, |
| ISO_BUFFER_SIZE, DMA_TO_DEVICE); |
| |
| ctx->head_descriptor = d + z + header_z; |
| ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z); |
| ctx->prev_descriptor = last; |
| |
| index = ctx - ohci->it_context_list; |
| reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE); |
| flush_writes(ohci); |
| |
| return 0; |
| } |
| |
| static const struct fw_card_driver ohci_driver = { |
| .name = ohci_driver_name, |
| .enable = ohci_enable, |
| .update_phy_reg = ohci_update_phy_reg, |
| .set_config_rom = ohci_set_config_rom, |
| .send_request = ohci_send_request, |
| .send_response = ohci_send_response, |
| .enable_phys_dma = ohci_enable_phys_dma, |
| |
| .allocate_iso_context = ohci_allocate_iso_context, |
| .free_iso_context = ohci_free_iso_context, |
| .queue_iso = ohci_queue_iso, |
| .send_iso = ohci_send_iso, |
| }; |
| |
| static int software_reset(struct fw_ohci *ohci) |
| { |
| int i; |
| |
| reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); |
| |
| for (i = 0; i < OHCI_LOOP_COUNT; i++) { |
| if ((reg_read(ohci, OHCI1394_HCControlSet) & |
| OHCI1394_HCControl_softReset) == 0) |
| return 0; |
| msleep(1); |
| } |
| |
| return -EBUSY; |
| } |
| |
| /* ---------- pci subsystem interface ---------- */ |
| |
| enum { |
| CLEANUP_SELF_ID, |
| CLEANUP_REGISTERS, |
| CLEANUP_IOMEM, |
| CLEANUP_DISABLE, |
| CLEANUP_PUT_CARD, |
| }; |
| |
| static int cleanup(struct fw_ohci *ohci, int stage, int code) |
| { |
| struct pci_dev *dev = to_pci_dev(ohci->card.device); |
| |
| switch (stage) { |
| case CLEANUP_SELF_ID: |
| dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, |
| ohci->self_id_cpu, ohci->self_id_bus); |
| case CLEANUP_REGISTERS: |
| kfree(ohci->it_context_list); |
| kfree(ohci->ir_context_list); |
| pci_iounmap(dev, ohci->registers); |
| case CLEANUP_IOMEM: |
| pci_release_region(dev, 0); |
| case CLEANUP_DISABLE: |
| pci_disable_device(dev); |
| case CLEANUP_PUT_CARD: |
| fw_card_put(&ohci->card); |
| } |
| |
| return code; |
| } |
| |
| static int __devinit |
| pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) |
| { |
| struct fw_ohci *ohci; |
| u32 bus_options, max_receive, link_speed; |
| u64 guid; |
| int error_code; |
| size_t size; |
| |
| ohci = kzalloc(sizeof *ohci, GFP_KERNEL); |
| if (ohci == NULL) { |
| fw_error("Could not malloc fw_ohci data.\n"); |
| return -ENOMEM; |
| } |
| |
| fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); |
| |
| if (pci_enable_device(dev)) { |
| fw_error("Failed to enable OHCI hardware.\n"); |
| return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV); |
| } |
| |
| pci_set_master(dev); |
| pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); |
| pci_set_drvdata(dev, ohci); |
| |
| spin_lock_init(&ohci->lock); |
| |
| tasklet_init(&ohci->bus_reset_tasklet, |
| bus_reset_tasklet, (unsigned long)ohci); |
| |
| if (pci_request_region(dev, 0, ohci_driver_name)) { |
| fw_error("MMIO resource unavailable\n"); |
| return cleanup(ohci, CLEANUP_DISABLE, -EBUSY); |
| } |
| |
| ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); |
| if (ohci->registers == NULL) { |
| fw_error("Failed to remap registers\n"); |
| return cleanup(ohci, CLEANUP_IOMEM, -ENXIO); |
| } |
| |
| if (software_reset(ohci)) { |
| fw_error("Failed to reset ohci card.\n"); |
| return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY); |
| } |
| |
| /* Now enable LPS, which we need in order to start accessing |
| * most of the registers. In fact, on some cards (ALI M5251), |
| * accessing registers in the SClk domain without LPS enabled |
| * will lock up the machine. Wait 50msec to make sure we have |
| * full link enabled. */ |
| reg_write(ohci, OHCI1394_HCControlSet, |
| OHCI1394_HCControl_LPS | |
| OHCI1394_HCControl_postedWriteEnable); |
| flush_writes(ohci); |
| msleep(50); |
| |
| reg_write(ohci, OHCI1394_HCControlClear, |
| OHCI1394_HCControl_noByteSwapData); |
| |
| reg_write(ohci, OHCI1394_LinkControlSet, |
| OHCI1394_LinkControl_rcvSelfID | |
| OHCI1394_LinkControl_cycleTimerEnable | |
| OHCI1394_LinkControl_cycleMaster); |
| |
| ar_context_init(&ohci->ar_request_ctx, ohci, |
| OHCI1394_AsReqRcvContextControlSet); |
| |
| ar_context_init(&ohci->ar_response_ctx, ohci, |
| OHCI1394_AsRspRcvContextControlSet); |
| |
| at_context_init(&ohci->at_request_ctx, ohci, |
| OHCI1394_AsReqTrContextControlSet); |
| |
| at_context_init(&ohci->at_response_ctx, ohci, |
| OHCI1394_AsRspTrContextControlSet); |
| |
| reg_write(ohci, OHCI1394_ATRetries, |
| OHCI1394_MAX_AT_REQ_RETRIES | |
| (OHCI1394_MAX_AT_RESP_RETRIES << 4) | |
| (OHCI1394_MAX_PHYS_RESP_RETRIES << 8)); |
| |
| reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); |
| ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); |
| reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); |
| size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask); |
| ohci->it_context_list = kzalloc(size, GFP_KERNEL); |
| |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); |
| ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); |
| reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); |
| size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask); |
| ohci->ir_context_list = kzalloc(size, GFP_KERNEL); |
| |
| if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { |
| fw_error("Out of memory for it/ir contexts.\n"); |
| return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); |
| } |
| |
| /* self-id dma buffer allocation */ |
| ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device, |
| SELF_ID_BUF_SIZE, |
| &ohci->self_id_bus, |
| GFP_KERNEL); |
| if (ohci->self_id_cpu == NULL) { |
| fw_error("Out of memory for self ID buffer.\n"); |
| return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM); |
| } |
| |
| reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); |
| reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); |
| reg_write(ohci, OHCI1394_IntEventClear, ~0); |
| reg_write(ohci, OHCI1394_IntMaskClear, ~0); |
| reg_write(ohci, OHCI1394_IntMaskSet, |
| OHCI1394_selfIDComplete | |
| OHCI1394_RQPkt | OHCI1394_RSPkt | |
| OHCI1394_reqTxComplete | OHCI1394_respTxComplete | |
| OHCI1394_isochRx | OHCI1394_isochTx | |
| OHCI1394_masterIntEnable); |
| |
| bus_options = reg_read(ohci, OHCI1394_BusOptions); |
| max_receive = (bus_options >> 12) & 0xf; |
| link_speed = bus_options & 0x7; |
| guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | |
| reg_read(ohci, OHCI1394_GUIDLo); |
| |
| error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid); |
| if (error_code < 0) |
| return cleanup(ohci, CLEANUP_SELF_ID, error_code); |
| |
| fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id); |
| |
| return 0; |
| } |
| |
| static void pci_remove(struct pci_dev *dev) |
| { |
| struct fw_ohci *ohci; |
| |
| ohci = pci_get_drvdata(dev); |
| reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable); |
| fw_core_remove_card(&ohci->card); |
| |
| /* FIXME: Fail all pending packets here, now that the upper |
| * layers can't queue any more. */ |
| |
| software_reset(ohci); |
| free_irq(dev->irq, ohci); |
| cleanup(ohci, CLEANUP_SELF_ID, 0); |
| |
| fw_notify("Removed fw-ohci device.\n"); |
| } |
| |
| static struct pci_device_id pci_table[] = { |
| { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, pci_table); |
| |
| static struct pci_driver fw_ohci_pci_driver = { |
| .name = ohci_driver_name, |
| .id_table = pci_table, |
| .probe = pci_probe, |
| .remove = pci_remove, |
| }; |
| |
| MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); |
| MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); |
| MODULE_LICENSE("GPL"); |
| |
| static int __init fw_ohci_init(void) |
| { |
| return pci_register_driver(&fw_ohci_pci_driver); |
| } |
| |
| static void __exit fw_ohci_cleanup(void) |
| { |
| pci_unregister_driver(&fw_ohci_pci_driver); |
| } |
| |
| module_init(fw_ohci_init); |
| module_exit(fw_ohci_cleanup); |