| /* |
| * Blackfin On-Chip Real Time Clock Driver |
| * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x |
| * |
| * Copyright 2004-2009 Analog Devices Inc. |
| * |
| * Enter bugs at http://blackfin.uclinux.org/ |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| /* The biggest issue we deal with in this driver is that register writes are |
| * synced to the RTC frequency of 1Hz. So if you write to a register and |
| * attempt to write again before the first write has completed, the new write |
| * is simply discarded. This can easily be troublesome if userspace disables |
| * one event (say periodic) and then right after enables an event (say alarm). |
| * Since all events are maintained in the same interrupt mask register, if |
| * we wrote to it to disable the first event and then wrote to it again to |
| * enable the second event, that second event would not be enabled as the |
| * write would be discarded and things quickly fall apart. |
| * |
| * To keep this delay from significantly degrading performance (we, in theory, |
| * would have to sleep for up to 1 second everytime we wanted to write a |
| * register), we only check the write pending status before we start to issue |
| * a new write. We bank on the idea that it doesnt matter when the sync |
| * happens so long as we don't attempt another write before it does. The only |
| * time userspace would take this penalty is when they try and do multiple |
| * operations right after another ... but in this case, they need to take the |
| * sync penalty, so we should be OK. |
| * |
| * Also note that the RTC_ISTAT register does not suffer this penalty; its |
| * writes to clear status registers complete immediately. |
| */ |
| |
| /* It may seem odd that there is no SWCNT code in here (which would be exposed |
| * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral |
| * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ |
| * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs. |
| * The same exact behavior can be accomplished by using the update interrupt |
| * event (UIE). Maybe down the line the RTC peripheral will suck less in which |
| * case we can re-introduce PIE support. |
| */ |
| |
| #include <linux/bcd.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| |
| #include <asm/blackfin.h> |
| |
| #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__) |
| |
| struct bfin_rtc { |
| struct rtc_device *rtc_dev; |
| struct rtc_time rtc_alarm; |
| u16 rtc_wrote_regs; |
| }; |
| |
| /* Bit values for the ISTAT / ICTL registers */ |
| #define RTC_ISTAT_WRITE_COMPLETE 0x8000 |
| #define RTC_ISTAT_WRITE_PENDING 0x4000 |
| #define RTC_ISTAT_ALARM_DAY 0x0040 |
| #define RTC_ISTAT_24HR 0x0020 |
| #define RTC_ISTAT_HOUR 0x0010 |
| #define RTC_ISTAT_MIN 0x0008 |
| #define RTC_ISTAT_SEC 0x0004 |
| #define RTC_ISTAT_ALARM 0x0002 |
| #define RTC_ISTAT_STOPWATCH 0x0001 |
| |
| /* Shift values for RTC_STAT register */ |
| #define DAY_BITS_OFF 17 |
| #define HOUR_BITS_OFF 12 |
| #define MIN_BITS_OFF 6 |
| #define SEC_BITS_OFF 0 |
| |
| /* Some helper functions to convert between the common RTC notion of time |
| * and the internal Blackfin notion that is encoded in 32bits. |
| */ |
| static inline u32 rtc_time_to_bfin(unsigned long now) |
| { |
| u32 sec = (now % 60); |
| u32 min = (now % (60 * 60)) / 60; |
| u32 hour = (now % (60 * 60 * 24)) / (60 * 60); |
| u32 days = (now / (60 * 60 * 24)); |
| return (sec << SEC_BITS_OFF) + |
| (min << MIN_BITS_OFF) + |
| (hour << HOUR_BITS_OFF) + |
| (days << DAY_BITS_OFF); |
| } |
| static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin) |
| { |
| return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) + |
| (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) + |
| (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) + |
| (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24); |
| } |
| static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm) |
| { |
| rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm); |
| } |
| |
| /** |
| * bfin_rtc_sync_pending - make sure pending writes have complete |
| * |
| * Wait for the previous write to a RTC register to complete. |
| * Unfortunately, we can't sleep here as that introduces a race condition when |
| * turning on interrupt events. Consider this: |
| * - process sets alarm |
| * - process enables alarm |
| * - process sleeps while waiting for rtc write to sync |
| * - interrupt fires while process is sleeping |
| * - interrupt acks the event by writing to ISTAT |
| * - interrupt sets the WRITE PENDING bit |
| * - interrupt handler finishes |
| * - process wakes up, sees WRITE PENDING bit set, goes to sleep |
| * - interrupt fires while process is sleeping |
| * If anyone can point out the obvious solution here, i'm listening :). This |
| * shouldn't be an issue on an SMP or preempt system as this function should |
| * only be called with the rtc lock held. |
| * |
| * Other options: |
| * - disable PREN so the sync happens at 32.768kHZ ... but this changes the |
| * inc rate for all RTC registers from 1HZ to 32.768kHZ ... |
| * - use the write complete IRQ |
| */ |
| /* |
| static void bfin_rtc_sync_pending_polled(void) |
| { |
| while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) |
| if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)) |
| break; |
| bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE); |
| } |
| */ |
| static DECLARE_COMPLETION(bfin_write_complete); |
| static void bfin_rtc_sync_pending(struct device *dev) |
| { |
| dev_dbg_stamp(dev); |
| while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) |
| wait_for_completion_timeout(&bfin_write_complete, HZ * 5); |
| dev_dbg_stamp(dev); |
| } |
| |
| /** |
| * bfin_rtc_reset - set RTC to sane/known state |
| * |
| * Initialize the RTC. Enable pre-scaler to scale RTC clock |
| * to 1Hz and clear interrupt/status registers. |
| */ |
| static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| dev_dbg_stamp(dev); |
| bfin_rtc_sync_pending(dev); |
| bfin_write_RTC_PREN(0x1); |
| bfin_write_RTC_ICTL(rtc_ictl); |
| bfin_write_RTC_ALARM(0); |
| bfin_write_RTC_ISTAT(0xFFFF); |
| rtc->rtc_wrote_regs = 0; |
| } |
| |
| /** |
| * bfin_rtc_interrupt - handle interrupt from RTC |
| * |
| * Since we handle all RTC events here, we have to make sure the requested |
| * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT) |
| * always gets updated regardless of the interrupt being enabled. So when one |
| * even we care about (e.g. stopwatch) goes off, we don't want to turn around |
| * and say that other events have happened as well (e.g. second). We do not |
| * have to worry about pending writes to the RTC_ICTL register as interrupts |
| * only fire if they are enabled in the RTC_ICTL register. |
| */ |
| static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct device *dev = dev_id; |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long events = 0; |
| bool write_complete = false; |
| u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits; |
| |
| dev_dbg_stamp(dev); |
| |
| rtc_istat = bfin_read_RTC_ISTAT(); |
| rtc_ictl = bfin_read_RTC_ICTL(); |
| rtc_istat_clear = 0; |
| |
| bits = RTC_ISTAT_WRITE_COMPLETE; |
| if (rtc_istat & bits) { |
| rtc_istat_clear |= bits; |
| write_complete = true; |
| complete(&bfin_write_complete); |
| } |
| |
| bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY); |
| if (rtc_ictl & bits) { |
| if (rtc_istat & bits) { |
| rtc_istat_clear |= bits; |
| events |= RTC_AF | RTC_IRQF; |
| } |
| } |
| |
| bits = RTC_ISTAT_SEC; |
| if (rtc_ictl & bits) { |
| if (rtc_istat & bits) { |
| rtc_istat_clear |= bits; |
| events |= RTC_UF | RTC_IRQF; |
| } |
| } |
| |
| if (events) |
| rtc_update_irq(rtc->rtc_dev, 1, events); |
| |
| if (write_complete || events) { |
| bfin_write_RTC_ISTAT(rtc_istat_clear); |
| return IRQ_HANDLED; |
| } else |
| return IRQ_NONE; |
| } |
| |
| static void bfin_rtc_int_set(u16 rtc_int) |
| { |
| bfin_write_RTC_ISTAT(rtc_int); |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int); |
| } |
| static void bfin_rtc_int_clear(u16 rtc_int) |
| { |
| bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int); |
| } |
| static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc) |
| { |
| /* Blackfin has different bits for whether the alarm is |
| * more than 24 hours away. |
| */ |
| bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY); |
| } |
| static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| int ret = 0; |
| |
| dev_dbg_stamp(dev); |
| |
| bfin_rtc_sync_pending(dev); |
| |
| switch (cmd) { |
| case RTC_UIE_ON: |
| dev_dbg_stamp(dev); |
| bfin_rtc_int_set(RTC_ISTAT_SEC); |
| break; |
| case RTC_UIE_OFF: |
| dev_dbg_stamp(dev); |
| bfin_rtc_int_clear(~RTC_ISTAT_SEC); |
| break; |
| |
| case RTC_AIE_ON: |
| dev_dbg_stamp(dev); |
| bfin_rtc_int_set_alarm(rtc); |
| break; |
| case RTC_AIE_OFF: |
| dev_dbg_stamp(dev); |
| bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
| break; |
| |
| default: |
| dev_dbg_stamp(dev); |
| ret = -ENOIOCTLCMD; |
| } |
| |
| return ret; |
| } |
| |
| static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| |
| dev_dbg_stamp(dev); |
| |
| if (rtc->rtc_wrote_regs & 0x1) |
| bfin_rtc_sync_pending(dev); |
| |
| rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm); |
| |
| return 0; |
| } |
| |
| static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| int ret; |
| unsigned long now; |
| |
| dev_dbg_stamp(dev); |
| |
| ret = rtc_tm_to_time(tm, &now); |
| if (ret == 0) { |
| if (rtc->rtc_wrote_regs & 0x1) |
| bfin_rtc_sync_pending(dev); |
| bfin_write_RTC_STAT(rtc_time_to_bfin(now)); |
| rtc->rtc_wrote_regs = 0x1; |
| } |
| |
| return ret; |
| } |
| |
| static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| dev_dbg_stamp(dev); |
| alrm->time = rtc->rtc_alarm; |
| bfin_rtc_sync_pending(dev); |
| alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); |
| return 0; |
| } |
| |
| static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct bfin_rtc *rtc = dev_get_drvdata(dev); |
| unsigned long rtc_alarm; |
| |
| dev_dbg_stamp(dev); |
| |
| if (rtc_tm_to_time(&alrm->time, &rtc_alarm)) |
| return -EINVAL; |
| |
| rtc->rtc_alarm = alrm->time; |
| |
| bfin_rtc_sync_pending(dev); |
| bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm)); |
| if (alrm->enabled) |
| bfin_rtc_int_set_alarm(rtc); |
| |
| return 0; |
| } |
| |
| static int bfin_rtc_proc(struct device *dev, struct seq_file *seq) |
| { |
| #define yesno(x) ((x) ? "yes" : "no") |
| u16 ictl = bfin_read_RTC_ICTL(); |
| dev_dbg_stamp(dev); |
| seq_printf(seq, |
| "alarm_IRQ\t: %s\n" |
| "wkalarm_IRQ\t: %s\n" |
| "seconds_IRQ\t: %s\n", |
| yesno(ictl & RTC_ISTAT_ALARM), |
| yesno(ictl & RTC_ISTAT_ALARM_DAY), |
| yesno(ictl & RTC_ISTAT_SEC)); |
| return 0; |
| #undef yesno |
| } |
| |
| static struct rtc_class_ops bfin_rtc_ops = { |
| .ioctl = bfin_rtc_ioctl, |
| .read_time = bfin_rtc_read_time, |
| .set_time = bfin_rtc_set_time, |
| .read_alarm = bfin_rtc_read_alarm, |
| .set_alarm = bfin_rtc_set_alarm, |
| .proc = bfin_rtc_proc, |
| }; |
| |
| static int __devinit bfin_rtc_probe(struct platform_device *pdev) |
| { |
| struct bfin_rtc *rtc; |
| struct device *dev = &pdev->dev; |
| int ret = 0; |
| unsigned long timeout = jiffies + HZ; |
| |
| dev_dbg_stamp(dev); |
| |
| /* Allocate memory for our RTC struct */ |
| rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); |
| if (unlikely(!rtc)) |
| return -ENOMEM; |
| platform_set_drvdata(pdev, rtc); |
| device_init_wakeup(dev, 1); |
| |
| /* Register our RTC with the RTC framework */ |
| rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops, |
| THIS_MODULE); |
| if (unlikely(IS_ERR(rtc->rtc_dev))) { |
| ret = PTR_ERR(rtc->rtc_dev); |
| goto err; |
| } |
| |
| /* Grab the IRQ and init the hardware */ |
| ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev); |
| if (unlikely(ret)) |
| goto err_reg; |
| /* sometimes the bootloader touched things, but the write complete was not |
| * enabled, so let's just do a quick timeout here since the IRQ will not fire ... |
| */ |
| while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) |
| if (time_after(jiffies, timeout)) |
| break; |
| bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE); |
| bfin_write_RTC_SWCNT(0); |
| |
| return 0; |
| |
| err_reg: |
| rtc_device_unregister(rtc->rtc_dev); |
| err: |
| kfree(rtc); |
| return ret; |
| } |
| |
| static int __devexit bfin_rtc_remove(struct platform_device *pdev) |
| { |
| struct bfin_rtc *rtc = platform_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| |
| bfin_rtc_reset(dev, 0); |
| free_irq(IRQ_RTC, dev); |
| rtc_device_unregister(rtc->rtc_dev); |
| platform_set_drvdata(pdev, NULL); |
| kfree(rtc); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| if (device_may_wakeup(&pdev->dev)) { |
| enable_irq_wake(IRQ_RTC); |
| bfin_rtc_sync_pending(&pdev->dev); |
| } else |
| bfin_rtc_int_clear(0); |
| |
| return 0; |
| } |
| |
| static int bfin_rtc_resume(struct platform_device *pdev) |
| { |
| if (device_may_wakeup(&pdev->dev)) |
| disable_irq_wake(IRQ_RTC); |
| |
| /* |
| * Since only some of the RTC bits are maintained externally in the |
| * Vbat domain, we need to wait for the RTC MMRs to be synced into |
| * the core after waking up. This happens every RTC 1HZ. Once that |
| * has happened, we can go ahead and re-enable the important write |
| * complete interrupt event. |
| */ |
| while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC)) |
| continue; |
| bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE); |
| |
| return 0; |
| } |
| #else |
| # define bfin_rtc_suspend NULL |
| # define bfin_rtc_resume NULL |
| #endif |
| |
| static struct platform_driver bfin_rtc_driver = { |
| .driver = { |
| .name = "rtc-bfin", |
| .owner = THIS_MODULE, |
| }, |
| .probe = bfin_rtc_probe, |
| .remove = __devexit_p(bfin_rtc_remove), |
| .suspend = bfin_rtc_suspend, |
| .resume = bfin_rtc_resume, |
| }; |
| |
| static int __init bfin_rtc_init(void) |
| { |
| return platform_driver_register(&bfin_rtc_driver); |
| } |
| |
| static void __exit bfin_rtc_exit(void) |
| { |
| platform_driver_unregister(&bfin_rtc_driver); |
| } |
| |
| module_init(bfin_rtc_init); |
| module_exit(bfin_rtc_exit); |
| |
| MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver"); |
| MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:rtc-bfin"); |