| /* |
| * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. |
| * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Author: Tom Tucker <tom@opengridcomputing.com> |
| */ |
| |
| #include <linux/sunrpc/svc_xprt.h> |
| #include <linux/sunrpc/debug.h> |
| #include <linux/sunrpc/rpc_rdma.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| #include <linux/export.h> |
| #include "xprt_rdma.h" |
| |
| #define RPCDBG_FACILITY RPCDBG_SVCXPRT |
| |
| static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, |
| struct net *net, |
| struct sockaddr *sa, int salen, |
| int flags); |
| static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); |
| static void svc_rdma_release_rqst(struct svc_rqst *); |
| static void dto_tasklet_func(unsigned long data); |
| static void svc_rdma_detach(struct svc_xprt *xprt); |
| static void svc_rdma_free(struct svc_xprt *xprt); |
| static int svc_rdma_has_wspace(struct svc_xprt *xprt); |
| static int svc_rdma_secure_port(struct svc_rqst *); |
| static void rq_cq_reap(struct svcxprt_rdma *xprt); |
| static void sq_cq_reap(struct svcxprt_rdma *xprt); |
| |
| static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL); |
| static DEFINE_SPINLOCK(dto_lock); |
| static LIST_HEAD(dto_xprt_q); |
| |
| static struct svc_xprt_ops svc_rdma_ops = { |
| .xpo_create = svc_rdma_create, |
| .xpo_recvfrom = svc_rdma_recvfrom, |
| .xpo_sendto = svc_rdma_sendto, |
| .xpo_release_rqst = svc_rdma_release_rqst, |
| .xpo_detach = svc_rdma_detach, |
| .xpo_free = svc_rdma_free, |
| .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, |
| .xpo_has_wspace = svc_rdma_has_wspace, |
| .xpo_accept = svc_rdma_accept, |
| .xpo_secure_port = svc_rdma_secure_port, |
| }; |
| |
| struct svc_xprt_class svc_rdma_class = { |
| .xcl_name = "rdma", |
| .xcl_owner = THIS_MODULE, |
| .xcl_ops = &svc_rdma_ops, |
| .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA, |
| .xcl_ident = XPRT_TRANSPORT_RDMA, |
| }; |
| |
| struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) |
| { |
| struct svc_rdma_op_ctxt *ctxt; |
| |
| while (1) { |
| ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL); |
| if (ctxt) |
| break; |
| schedule_timeout_uninterruptible(msecs_to_jiffies(500)); |
| } |
| ctxt->xprt = xprt; |
| INIT_LIST_HEAD(&ctxt->dto_q); |
| ctxt->count = 0; |
| ctxt->frmr = NULL; |
| atomic_inc(&xprt->sc_ctxt_used); |
| return ctxt; |
| } |
| |
| void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) |
| { |
| struct svcxprt_rdma *xprt = ctxt->xprt; |
| int i; |
| for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) { |
| /* |
| * Unmap the DMA addr in the SGE if the lkey matches |
| * the sc_dma_lkey, otherwise, ignore it since it is |
| * an FRMR lkey and will be unmapped later when the |
| * last WR that uses it completes. |
| */ |
| if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) { |
| atomic_dec(&xprt->sc_dma_used); |
| ib_dma_unmap_page(xprt->sc_cm_id->device, |
| ctxt->sge[i].addr, |
| ctxt->sge[i].length, |
| ctxt->direction); |
| } |
| } |
| } |
| |
| void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) |
| { |
| struct svcxprt_rdma *xprt; |
| int i; |
| |
| xprt = ctxt->xprt; |
| if (free_pages) |
| for (i = 0; i < ctxt->count; i++) |
| put_page(ctxt->pages[i]); |
| |
| kmem_cache_free(svc_rdma_ctxt_cachep, ctxt); |
| atomic_dec(&xprt->sc_ctxt_used); |
| } |
| |
| /* |
| * Temporary NFS req mappings are shared across all transport |
| * instances. These are short lived and should be bounded by the number |
| * of concurrent server threads * depth of the SQ. |
| */ |
| struct svc_rdma_req_map *svc_rdma_get_req_map(void) |
| { |
| struct svc_rdma_req_map *map; |
| while (1) { |
| map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL); |
| if (map) |
| break; |
| schedule_timeout_uninterruptible(msecs_to_jiffies(500)); |
| } |
| map->count = 0; |
| return map; |
| } |
| |
| void svc_rdma_put_req_map(struct svc_rdma_req_map *map) |
| { |
| kmem_cache_free(svc_rdma_map_cachep, map); |
| } |
| |
| /* ib_cq event handler */ |
| static void cq_event_handler(struct ib_event *event, void *context) |
| { |
| struct svc_xprt *xprt = context; |
| dprintk("svcrdma: received CQ event id=%d, context=%p\n", |
| event->event, context); |
| set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| } |
| |
| /* QP event handler */ |
| static void qp_event_handler(struct ib_event *event, void *context) |
| { |
| struct svc_xprt *xprt = context; |
| |
| switch (event->event) { |
| /* These are considered benign events */ |
| case IB_EVENT_PATH_MIG: |
| case IB_EVENT_COMM_EST: |
| case IB_EVENT_SQ_DRAINED: |
| case IB_EVENT_QP_LAST_WQE_REACHED: |
| dprintk("svcrdma: QP event %d received for QP=%p\n", |
| event->event, event->element.qp); |
| break; |
| /* These are considered fatal events */ |
| case IB_EVENT_PATH_MIG_ERR: |
| case IB_EVENT_QP_FATAL: |
| case IB_EVENT_QP_REQ_ERR: |
| case IB_EVENT_QP_ACCESS_ERR: |
| case IB_EVENT_DEVICE_FATAL: |
| default: |
| dprintk("svcrdma: QP ERROR event %d received for QP=%p, " |
| "closing transport\n", |
| event->event, event->element.qp); |
| set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| break; |
| } |
| } |
| |
| /* |
| * Data Transfer Operation Tasklet |
| * |
| * Walks a list of transports with I/O pending, removing entries as |
| * they are added to the server's I/O pending list. Two bits indicate |
| * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave |
| * spinlock that serializes access to the transport list with the RQ |
| * and SQ interrupt handlers. |
| */ |
| static void dto_tasklet_func(unsigned long data) |
| { |
| struct svcxprt_rdma *xprt; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dto_lock, flags); |
| while (!list_empty(&dto_xprt_q)) { |
| xprt = list_entry(dto_xprt_q.next, |
| struct svcxprt_rdma, sc_dto_q); |
| list_del_init(&xprt->sc_dto_q); |
| spin_unlock_irqrestore(&dto_lock, flags); |
| |
| rq_cq_reap(xprt); |
| sq_cq_reap(xprt); |
| |
| svc_xprt_put(&xprt->sc_xprt); |
| spin_lock_irqsave(&dto_lock, flags); |
| } |
| spin_unlock_irqrestore(&dto_lock, flags); |
| } |
| |
| /* |
| * Receive Queue Completion Handler |
| * |
| * Since an RQ completion handler is called on interrupt context, we |
| * need to defer the handling of the I/O to a tasklet |
| */ |
| static void rq_comp_handler(struct ib_cq *cq, void *cq_context) |
| { |
| struct svcxprt_rdma *xprt = cq_context; |
| unsigned long flags; |
| |
| /* Guard against unconditional flush call for destroyed QP */ |
| if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) |
| return; |
| |
| /* |
| * Set the bit regardless of whether or not it's on the list |
| * because it may be on the list already due to an SQ |
| * completion. |
| */ |
| set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags); |
| |
| /* |
| * If this transport is not already on the DTO transport queue, |
| * add it |
| */ |
| spin_lock_irqsave(&dto_lock, flags); |
| if (list_empty(&xprt->sc_dto_q)) { |
| svc_xprt_get(&xprt->sc_xprt); |
| list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); |
| } |
| spin_unlock_irqrestore(&dto_lock, flags); |
| |
| /* Tasklet does all the work to avoid irqsave locks. */ |
| tasklet_schedule(&dto_tasklet); |
| } |
| |
| /* |
| * rq_cq_reap - Process the RQ CQ. |
| * |
| * Take all completing WC off the CQE and enqueue the associated DTO |
| * context on the dto_q for the transport. |
| * |
| * Note that caller must hold a transport reference. |
| */ |
| static void rq_cq_reap(struct svcxprt_rdma *xprt) |
| { |
| int ret; |
| struct ib_wc wc; |
| struct svc_rdma_op_ctxt *ctxt = NULL; |
| |
| if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags)) |
| return; |
| |
| ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP); |
| atomic_inc(&rdma_stat_rq_poll); |
| |
| while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) { |
| ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id; |
| ctxt->wc_status = wc.status; |
| ctxt->byte_len = wc.byte_len; |
| svc_rdma_unmap_dma(ctxt); |
| if (wc.status != IB_WC_SUCCESS) { |
| /* Close the transport */ |
| dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt); |
| set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); |
| svc_rdma_put_context(ctxt, 1); |
| svc_xprt_put(&xprt->sc_xprt); |
| continue; |
| } |
| spin_lock_bh(&xprt->sc_rq_dto_lock); |
| list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q); |
| spin_unlock_bh(&xprt->sc_rq_dto_lock); |
| svc_xprt_put(&xprt->sc_xprt); |
| } |
| |
| if (ctxt) |
| atomic_inc(&rdma_stat_rq_prod); |
| |
| set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); |
| /* |
| * If data arrived before established event, |
| * don't enqueue. This defers RPC I/O until the |
| * RDMA connection is complete. |
| */ |
| if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) |
| svc_xprt_enqueue(&xprt->sc_xprt); |
| } |
| |
| /* |
| * Process a completion context |
| */ |
| static void process_context(struct svcxprt_rdma *xprt, |
| struct svc_rdma_op_ctxt *ctxt) |
| { |
| svc_rdma_unmap_dma(ctxt); |
| |
| switch (ctxt->wr_op) { |
| case IB_WR_SEND: |
| if (ctxt->frmr) |
| pr_err("svcrdma: SEND: ctxt->frmr != NULL\n"); |
| svc_rdma_put_context(ctxt, 1); |
| break; |
| |
| case IB_WR_RDMA_WRITE: |
| if (ctxt->frmr) |
| pr_err("svcrdma: WRITE: ctxt->frmr != NULL\n"); |
| svc_rdma_put_context(ctxt, 0); |
| break; |
| |
| case IB_WR_RDMA_READ: |
| case IB_WR_RDMA_READ_WITH_INV: |
| svc_rdma_put_frmr(xprt, ctxt->frmr); |
| if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { |
| struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr; |
| if (read_hdr) { |
| spin_lock_bh(&xprt->sc_rq_dto_lock); |
| set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); |
| list_add_tail(&read_hdr->dto_q, |
| &xprt->sc_read_complete_q); |
| spin_unlock_bh(&xprt->sc_rq_dto_lock); |
| } else { |
| pr_err("svcrdma: ctxt->read_hdr == NULL\n"); |
| } |
| svc_xprt_enqueue(&xprt->sc_xprt); |
| } |
| svc_rdma_put_context(ctxt, 0); |
| break; |
| |
| default: |
| printk(KERN_ERR "svcrdma: unexpected completion type, " |
| "opcode=%d\n", |
| ctxt->wr_op); |
| break; |
| } |
| } |
| |
| /* |
| * Send Queue Completion Handler - potentially called on interrupt context. |
| * |
| * Note that caller must hold a transport reference. |
| */ |
| static void sq_cq_reap(struct svcxprt_rdma *xprt) |
| { |
| struct svc_rdma_op_ctxt *ctxt = NULL; |
| struct ib_wc wc_a[6]; |
| struct ib_wc *wc; |
| struct ib_cq *cq = xprt->sc_sq_cq; |
| int ret; |
| |
| memset(wc_a, 0, sizeof(wc_a)); |
| |
| if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags)) |
| return; |
| |
| ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP); |
| atomic_inc(&rdma_stat_sq_poll); |
| while ((ret = ib_poll_cq(cq, ARRAY_SIZE(wc_a), wc_a)) > 0) { |
| int i; |
| |
| for (i = 0; i < ret; i++) { |
| wc = &wc_a[i]; |
| if (wc->status != IB_WC_SUCCESS) { |
| dprintk("svcrdma: sq wc err status %d\n", |
| wc->status); |
| |
| /* Close the transport */ |
| set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); |
| } |
| |
| /* Decrement used SQ WR count */ |
| atomic_dec(&xprt->sc_sq_count); |
| wake_up(&xprt->sc_send_wait); |
| |
| ctxt = (struct svc_rdma_op_ctxt *) |
| (unsigned long)wc->wr_id; |
| if (ctxt) |
| process_context(xprt, ctxt); |
| |
| svc_xprt_put(&xprt->sc_xprt); |
| } |
| } |
| |
| if (ctxt) |
| atomic_inc(&rdma_stat_sq_prod); |
| } |
| |
| static void sq_comp_handler(struct ib_cq *cq, void *cq_context) |
| { |
| struct svcxprt_rdma *xprt = cq_context; |
| unsigned long flags; |
| |
| /* Guard against unconditional flush call for destroyed QP */ |
| if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0) |
| return; |
| |
| /* |
| * Set the bit regardless of whether or not it's on the list |
| * because it may be on the list already due to an RQ |
| * completion. |
| */ |
| set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags); |
| |
| /* |
| * If this transport is not already on the DTO transport queue, |
| * add it |
| */ |
| spin_lock_irqsave(&dto_lock, flags); |
| if (list_empty(&xprt->sc_dto_q)) { |
| svc_xprt_get(&xprt->sc_xprt); |
| list_add_tail(&xprt->sc_dto_q, &dto_xprt_q); |
| } |
| spin_unlock_irqrestore(&dto_lock, flags); |
| |
| /* Tasklet does all the work to avoid irqsave locks. */ |
| tasklet_schedule(&dto_tasklet); |
| } |
| |
| static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, |
| int listener) |
| { |
| struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); |
| |
| if (!cma_xprt) |
| return NULL; |
| svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); |
| INIT_LIST_HEAD(&cma_xprt->sc_accept_q); |
| INIT_LIST_HEAD(&cma_xprt->sc_dto_q); |
| INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); |
| INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); |
| INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); |
| init_waitqueue_head(&cma_xprt->sc_send_wait); |
| |
| spin_lock_init(&cma_xprt->sc_lock); |
| spin_lock_init(&cma_xprt->sc_rq_dto_lock); |
| spin_lock_init(&cma_xprt->sc_frmr_q_lock); |
| |
| cma_xprt->sc_ord = svcrdma_ord; |
| |
| cma_xprt->sc_max_req_size = svcrdma_max_req_size; |
| cma_xprt->sc_max_requests = svcrdma_max_requests; |
| cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT; |
| atomic_set(&cma_xprt->sc_sq_count, 0); |
| atomic_set(&cma_xprt->sc_ctxt_used, 0); |
| |
| if (listener) |
| set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); |
| |
| return cma_xprt; |
| } |
| |
| struct page *svc_rdma_get_page(void) |
| { |
| struct page *page; |
| |
| while ((page = alloc_page(GFP_KERNEL)) == NULL) { |
| /* If we can't get memory, wait a bit and try again */ |
| printk(KERN_INFO "svcrdma: out of memory...retrying in 1s\n"); |
| schedule_timeout_uninterruptible(msecs_to_jiffies(1000)); |
| } |
| return page; |
| } |
| |
| int svc_rdma_post_recv(struct svcxprt_rdma *xprt) |
| { |
| struct ib_recv_wr recv_wr, *bad_recv_wr; |
| struct svc_rdma_op_ctxt *ctxt; |
| struct page *page; |
| dma_addr_t pa; |
| int sge_no; |
| int buflen; |
| int ret; |
| |
| ctxt = svc_rdma_get_context(xprt); |
| buflen = 0; |
| ctxt->direction = DMA_FROM_DEVICE; |
| for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { |
| if (sge_no >= xprt->sc_max_sge) { |
| pr_err("svcrdma: Too many sges (%d)\n", sge_no); |
| goto err_put_ctxt; |
| } |
| page = svc_rdma_get_page(); |
| ctxt->pages[sge_no] = page; |
| pa = ib_dma_map_page(xprt->sc_cm_id->device, |
| page, 0, PAGE_SIZE, |
| DMA_FROM_DEVICE); |
| if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) |
| goto err_put_ctxt; |
| atomic_inc(&xprt->sc_dma_used); |
| ctxt->sge[sge_no].addr = pa; |
| ctxt->sge[sge_no].length = PAGE_SIZE; |
| ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey; |
| ctxt->count = sge_no + 1; |
| buflen += PAGE_SIZE; |
| } |
| recv_wr.next = NULL; |
| recv_wr.sg_list = &ctxt->sge[0]; |
| recv_wr.num_sge = ctxt->count; |
| recv_wr.wr_id = (u64)(unsigned long)ctxt; |
| |
| svc_xprt_get(&xprt->sc_xprt); |
| ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); |
| if (ret) { |
| svc_rdma_unmap_dma(ctxt); |
| svc_rdma_put_context(ctxt, 1); |
| svc_xprt_put(&xprt->sc_xprt); |
| } |
| return ret; |
| |
| err_put_ctxt: |
| svc_rdma_unmap_dma(ctxt); |
| svc_rdma_put_context(ctxt, 1); |
| return -ENOMEM; |
| } |
| |
| /* |
| * This function handles the CONNECT_REQUEST event on a listening |
| * endpoint. It is passed the cma_id for the _new_ connection. The context in |
| * this cma_id is inherited from the listening cma_id and is the svc_xprt |
| * structure for the listening endpoint. |
| * |
| * This function creates a new xprt for the new connection and enqueues it on |
| * the accept queue for the listent xprt. When the listen thread is kicked, it |
| * will call the recvfrom method on the listen xprt which will accept the new |
| * connection. |
| */ |
| static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird) |
| { |
| struct svcxprt_rdma *listen_xprt = new_cma_id->context; |
| struct svcxprt_rdma *newxprt; |
| struct sockaddr *sa; |
| |
| /* Create a new transport */ |
| newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); |
| if (!newxprt) { |
| dprintk("svcrdma: failed to create new transport\n"); |
| return; |
| } |
| newxprt->sc_cm_id = new_cma_id; |
| new_cma_id->context = newxprt; |
| dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", |
| newxprt, newxprt->sc_cm_id, listen_xprt); |
| |
| /* Save client advertised inbound read limit for use later in accept. */ |
| newxprt->sc_ord = client_ird; |
| |
| /* Set the local and remote addresses in the transport */ |
| sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; |
| svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); |
| sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; |
| svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); |
| |
| /* |
| * Enqueue the new transport on the accept queue of the listening |
| * transport |
| */ |
| spin_lock_bh(&listen_xprt->sc_lock); |
| list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); |
| spin_unlock_bh(&listen_xprt->sc_lock); |
| |
| set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); |
| svc_xprt_enqueue(&listen_xprt->sc_xprt); |
| } |
| |
| /* |
| * Handles events generated on the listening endpoint. These events will be |
| * either be incoming connect requests or adapter removal events. |
| */ |
| static int rdma_listen_handler(struct rdma_cm_id *cma_id, |
| struct rdma_cm_event *event) |
| { |
| struct svcxprt_rdma *xprt = cma_id->context; |
| int ret = 0; |
| |
| switch (event->event) { |
| case RDMA_CM_EVENT_CONNECT_REQUEST: |
| dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " |
| "event=%d\n", cma_id, cma_id->context, event->event); |
| handle_connect_req(cma_id, |
| event->param.conn.initiator_depth); |
| break; |
| |
| case RDMA_CM_EVENT_ESTABLISHED: |
| /* Accept complete */ |
| dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " |
| "cm_id=%p\n", xprt, cma_id); |
| break; |
| |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", |
| xprt, cma_id); |
| if (xprt) |
| set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); |
| break; |
| |
| default: |
| dprintk("svcrdma: Unexpected event on listening endpoint %p, " |
| "event=%d\n", cma_id, event->event); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int rdma_cma_handler(struct rdma_cm_id *cma_id, |
| struct rdma_cm_event *event) |
| { |
| struct svc_xprt *xprt = cma_id->context; |
| struct svcxprt_rdma *rdma = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| switch (event->event) { |
| case RDMA_CM_EVENT_ESTABLISHED: |
| /* Accept complete */ |
| svc_xprt_get(xprt); |
| dprintk("svcrdma: Connection completed on DTO xprt=%p, " |
| "cm_id=%p\n", xprt, cma_id); |
| clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); |
| svc_xprt_enqueue(xprt); |
| break; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", |
| xprt, cma_id); |
| if (xprt) { |
| set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| svc_xprt_enqueue(xprt); |
| svc_xprt_put(xprt); |
| } |
| break; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " |
| "event=%d\n", cma_id, xprt, event->event); |
| if (xprt) { |
| set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| svc_xprt_enqueue(xprt); |
| } |
| break; |
| default: |
| dprintk("svcrdma: Unexpected event on DTO endpoint %p, " |
| "event=%d\n", cma_id, event->event); |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Create a listening RDMA service endpoint. |
| */ |
| static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, |
| struct net *net, |
| struct sockaddr *sa, int salen, |
| int flags) |
| { |
| struct rdma_cm_id *listen_id; |
| struct svcxprt_rdma *cma_xprt; |
| int ret; |
| |
| dprintk("svcrdma: Creating RDMA socket\n"); |
| if (sa->sa_family != AF_INET) { |
| dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); |
| return ERR_PTR(-EAFNOSUPPORT); |
| } |
| cma_xprt = rdma_create_xprt(serv, 1); |
| if (!cma_xprt) |
| return ERR_PTR(-ENOMEM); |
| |
| listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP, |
| IB_QPT_RC); |
| if (IS_ERR(listen_id)) { |
| ret = PTR_ERR(listen_id); |
| dprintk("svcrdma: rdma_create_id failed = %d\n", ret); |
| goto err0; |
| } |
| |
| ret = rdma_bind_addr(listen_id, sa); |
| if (ret) { |
| dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); |
| goto err1; |
| } |
| cma_xprt->sc_cm_id = listen_id; |
| |
| ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); |
| if (ret) { |
| dprintk("svcrdma: rdma_listen failed = %d\n", ret); |
| goto err1; |
| } |
| |
| /* |
| * We need to use the address from the cm_id in case the |
| * caller specified 0 for the port number. |
| */ |
| sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; |
| svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); |
| |
| return &cma_xprt->sc_xprt; |
| |
| err1: |
| rdma_destroy_id(listen_id); |
| err0: |
| kfree(cma_xprt); |
| return ERR_PTR(ret); |
| } |
| |
| static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) |
| { |
| struct ib_mr *mr; |
| struct ib_fast_reg_page_list *pl; |
| struct svc_rdma_fastreg_mr *frmr; |
| |
| frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); |
| if (!frmr) |
| goto err; |
| |
| mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES); |
| if (IS_ERR(mr)) |
| goto err_free_frmr; |
| |
| pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device, |
| RPCSVC_MAXPAGES); |
| if (IS_ERR(pl)) |
| goto err_free_mr; |
| |
| frmr->mr = mr; |
| frmr->page_list = pl; |
| INIT_LIST_HEAD(&frmr->frmr_list); |
| return frmr; |
| |
| err_free_mr: |
| ib_dereg_mr(mr); |
| err_free_frmr: |
| kfree(frmr); |
| err: |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) |
| { |
| struct svc_rdma_fastreg_mr *frmr; |
| |
| while (!list_empty(&xprt->sc_frmr_q)) { |
| frmr = list_entry(xprt->sc_frmr_q.next, |
| struct svc_rdma_fastreg_mr, frmr_list); |
| list_del_init(&frmr->frmr_list); |
| ib_dereg_mr(frmr->mr); |
| ib_free_fast_reg_page_list(frmr->page_list); |
| kfree(frmr); |
| } |
| } |
| |
| struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) |
| { |
| struct svc_rdma_fastreg_mr *frmr = NULL; |
| |
| spin_lock_bh(&rdma->sc_frmr_q_lock); |
| if (!list_empty(&rdma->sc_frmr_q)) { |
| frmr = list_entry(rdma->sc_frmr_q.next, |
| struct svc_rdma_fastreg_mr, frmr_list); |
| list_del_init(&frmr->frmr_list); |
| frmr->map_len = 0; |
| frmr->page_list_len = 0; |
| } |
| spin_unlock_bh(&rdma->sc_frmr_q_lock); |
| if (frmr) |
| return frmr; |
| |
| return rdma_alloc_frmr(rdma); |
| } |
| |
| static void frmr_unmap_dma(struct svcxprt_rdma *xprt, |
| struct svc_rdma_fastreg_mr *frmr) |
| { |
| int page_no; |
| for (page_no = 0; page_no < frmr->page_list_len; page_no++) { |
| dma_addr_t addr = frmr->page_list->page_list[page_no]; |
| if (ib_dma_mapping_error(frmr->mr->device, addr)) |
| continue; |
| atomic_dec(&xprt->sc_dma_used); |
| ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE, |
| frmr->direction); |
| } |
| } |
| |
| void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, |
| struct svc_rdma_fastreg_mr *frmr) |
| { |
| if (frmr) { |
| frmr_unmap_dma(rdma, frmr); |
| spin_lock_bh(&rdma->sc_frmr_q_lock); |
| WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); |
| list_add(&frmr->frmr_list, &rdma->sc_frmr_q); |
| spin_unlock_bh(&rdma->sc_frmr_q_lock); |
| } |
| } |
| |
| /* |
| * This is the xpo_recvfrom function for listening endpoints. Its |
| * purpose is to accept incoming connections. The CMA callback handler |
| * has already created a new transport and attached it to the new CMA |
| * ID. |
| * |
| * There is a queue of pending connections hung on the listening |
| * transport. This queue contains the new svc_xprt structure. This |
| * function takes svc_xprt structures off the accept_q and completes |
| * the connection. |
| */ |
| static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) |
| { |
| struct svcxprt_rdma *listen_rdma; |
| struct svcxprt_rdma *newxprt = NULL; |
| struct rdma_conn_param conn_param; |
| struct ib_qp_init_attr qp_attr; |
| struct ib_device_attr devattr; |
| int uninitialized_var(dma_mr_acc); |
| int need_dma_mr; |
| int ret; |
| int i; |
| |
| listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| clear_bit(XPT_CONN, &xprt->xpt_flags); |
| /* Get the next entry off the accept list */ |
| spin_lock_bh(&listen_rdma->sc_lock); |
| if (!list_empty(&listen_rdma->sc_accept_q)) { |
| newxprt = list_entry(listen_rdma->sc_accept_q.next, |
| struct svcxprt_rdma, sc_accept_q); |
| list_del_init(&newxprt->sc_accept_q); |
| } |
| if (!list_empty(&listen_rdma->sc_accept_q)) |
| set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); |
| spin_unlock_bh(&listen_rdma->sc_lock); |
| if (!newxprt) |
| return NULL; |
| |
| dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", |
| newxprt, newxprt->sc_cm_id); |
| |
| ret = ib_query_device(newxprt->sc_cm_id->device, &devattr); |
| if (ret) { |
| dprintk("svcrdma: could not query device attributes on " |
| "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret); |
| goto errout; |
| } |
| |
| /* Qualify the transport resource defaults with the |
| * capabilities of this particular device */ |
| newxprt->sc_max_sge = min((size_t)devattr.max_sge, |
| (size_t)RPCSVC_MAXPAGES); |
| newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr, |
| (size_t)svcrdma_max_requests); |
| newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests; |
| |
| /* |
| * Limit ORD based on client limit, local device limit, and |
| * configured svcrdma limit. |
| */ |
| newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord); |
| newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); |
| |
| newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device); |
| if (IS_ERR(newxprt->sc_pd)) { |
| dprintk("svcrdma: error creating PD for connect request\n"); |
| goto errout; |
| } |
| newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device, |
| sq_comp_handler, |
| cq_event_handler, |
| newxprt, |
| newxprt->sc_sq_depth, |
| 0); |
| if (IS_ERR(newxprt->sc_sq_cq)) { |
| dprintk("svcrdma: error creating SQ CQ for connect request\n"); |
| goto errout; |
| } |
| newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device, |
| rq_comp_handler, |
| cq_event_handler, |
| newxprt, |
| newxprt->sc_max_requests, |
| 0); |
| if (IS_ERR(newxprt->sc_rq_cq)) { |
| dprintk("svcrdma: error creating RQ CQ for connect request\n"); |
| goto errout; |
| } |
| |
| memset(&qp_attr, 0, sizeof qp_attr); |
| qp_attr.event_handler = qp_event_handler; |
| qp_attr.qp_context = &newxprt->sc_xprt; |
| qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; |
| qp_attr.cap.max_recv_wr = newxprt->sc_max_requests; |
| qp_attr.cap.max_send_sge = newxprt->sc_max_sge; |
| qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; |
| qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| qp_attr.qp_type = IB_QPT_RC; |
| qp_attr.send_cq = newxprt->sc_sq_cq; |
| qp_attr.recv_cq = newxprt->sc_rq_cq; |
| dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n" |
| " cm_id->device=%p, sc_pd->device=%p\n" |
| " cap.max_send_wr = %d\n" |
| " cap.max_recv_wr = %d\n" |
| " cap.max_send_sge = %d\n" |
| " cap.max_recv_sge = %d\n", |
| newxprt->sc_cm_id, newxprt->sc_pd, |
| newxprt->sc_cm_id->device, newxprt->sc_pd->device, |
| qp_attr.cap.max_send_wr, |
| qp_attr.cap.max_recv_wr, |
| qp_attr.cap.max_send_sge, |
| qp_attr.cap.max_recv_sge); |
| |
| ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); |
| if (ret) { |
| dprintk("svcrdma: failed to create QP, ret=%d\n", ret); |
| goto errout; |
| } |
| newxprt->sc_qp = newxprt->sc_cm_id->qp; |
| |
| /* |
| * Use the most secure set of MR resources based on the |
| * transport type and available memory management features in |
| * the device. Here's the table implemented below: |
| * |
| * Fast Global DMA Remote WR |
| * Reg LKEY MR Access |
| * Sup'd Sup'd Needed Needed |
| * |
| * IWARP N N Y Y |
| * N Y Y Y |
| * Y N Y N |
| * Y Y N - |
| * |
| * IB N N Y N |
| * N Y N - |
| * Y N Y N |
| * Y Y N - |
| * |
| * NB: iWARP requires remote write access for the data sink |
| * of an RDMA_READ. IB does not. |
| */ |
| newxprt->sc_reader = rdma_read_chunk_lcl; |
| if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { |
| newxprt->sc_frmr_pg_list_len = |
| devattr.max_fast_reg_page_list_len; |
| newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; |
| newxprt->sc_reader = rdma_read_chunk_frmr; |
| } |
| |
| /* |
| * Determine if a DMA MR is required and if so, what privs are required |
| */ |
| switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) { |
| case RDMA_TRANSPORT_IWARP: |
| newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; |
| if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) { |
| need_dma_mr = 1; |
| dma_mr_acc = |
| (IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_WRITE); |
| } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) { |
| need_dma_mr = 1; |
| dma_mr_acc = IB_ACCESS_LOCAL_WRITE; |
| } else |
| need_dma_mr = 0; |
| break; |
| case RDMA_TRANSPORT_IB: |
| if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) { |
| need_dma_mr = 1; |
| dma_mr_acc = IB_ACCESS_LOCAL_WRITE; |
| } else if (!(devattr.device_cap_flags & |
| IB_DEVICE_LOCAL_DMA_LKEY)) { |
| need_dma_mr = 1; |
| dma_mr_acc = IB_ACCESS_LOCAL_WRITE; |
| } else |
| need_dma_mr = 0; |
| break; |
| default: |
| goto errout; |
| } |
| |
| /* Create the DMA MR if needed, otherwise, use the DMA LKEY */ |
| if (need_dma_mr) { |
| /* Register all of physical memory */ |
| newxprt->sc_phys_mr = |
| ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc); |
| if (IS_ERR(newxprt->sc_phys_mr)) { |
| dprintk("svcrdma: Failed to create DMA MR ret=%d\n", |
| ret); |
| goto errout; |
| } |
| newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey; |
| } else |
| newxprt->sc_dma_lkey = |
| newxprt->sc_cm_id->device->local_dma_lkey; |
| |
| /* Post receive buffers */ |
| for (i = 0; i < newxprt->sc_max_requests; i++) { |
| ret = svc_rdma_post_recv(newxprt); |
| if (ret) { |
| dprintk("svcrdma: failure posting receive buffers\n"); |
| goto errout; |
| } |
| } |
| |
| /* Swap out the handler */ |
| newxprt->sc_cm_id->event_handler = rdma_cma_handler; |
| |
| /* |
| * Arm the CQs for the SQ and RQ before accepting so we can't |
| * miss the first message |
| */ |
| ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP); |
| ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP); |
| |
| /* Accept Connection */ |
| set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); |
| memset(&conn_param, 0, sizeof conn_param); |
| conn_param.responder_resources = 0; |
| conn_param.initiator_depth = newxprt->sc_ord; |
| ret = rdma_accept(newxprt->sc_cm_id, &conn_param); |
| if (ret) { |
| dprintk("svcrdma: failed to accept new connection, ret=%d\n", |
| ret); |
| goto errout; |
| } |
| |
| dprintk("svcrdma: new connection %p accepted with the following " |
| "attributes:\n" |
| " local_ip : %pI4\n" |
| " local_port : %d\n" |
| " remote_ip : %pI4\n" |
| " remote_port : %d\n" |
| " max_sge : %d\n" |
| " sq_depth : %d\n" |
| " max_requests : %d\n" |
| " ord : %d\n", |
| newxprt, |
| &((struct sockaddr_in *)&newxprt->sc_cm_id-> |
| route.addr.src_addr)->sin_addr.s_addr, |
| ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> |
| route.addr.src_addr)->sin_port), |
| &((struct sockaddr_in *)&newxprt->sc_cm_id-> |
| route.addr.dst_addr)->sin_addr.s_addr, |
| ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id-> |
| route.addr.dst_addr)->sin_port), |
| newxprt->sc_max_sge, |
| newxprt->sc_sq_depth, |
| newxprt->sc_max_requests, |
| newxprt->sc_ord); |
| |
| return &newxprt->sc_xprt; |
| |
| errout: |
| dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); |
| /* Take a reference in case the DTO handler runs */ |
| svc_xprt_get(&newxprt->sc_xprt); |
| if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) |
| ib_destroy_qp(newxprt->sc_qp); |
| rdma_destroy_id(newxprt->sc_cm_id); |
| /* This call to put will destroy the transport */ |
| svc_xprt_put(&newxprt->sc_xprt); |
| return NULL; |
| } |
| |
| static void svc_rdma_release_rqst(struct svc_rqst *rqstp) |
| { |
| } |
| |
| /* |
| * When connected, an svc_xprt has at least two references: |
| * |
| * - A reference held by the cm_id between the ESTABLISHED and |
| * DISCONNECTED events. If the remote peer disconnected first, this |
| * reference could be gone. |
| * |
| * - A reference held by the svc_recv code that called this function |
| * as part of close processing. |
| * |
| * At a minimum one references should still be held. |
| */ |
| static void svc_rdma_detach(struct svc_xprt *xprt) |
| { |
| struct svcxprt_rdma *rdma = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| dprintk("svc: svc_rdma_detach(%p)\n", xprt); |
| |
| /* Disconnect and flush posted WQE */ |
| rdma_disconnect(rdma->sc_cm_id); |
| } |
| |
| static void __svc_rdma_free(struct work_struct *work) |
| { |
| struct svcxprt_rdma *rdma = |
| container_of(work, struct svcxprt_rdma, sc_work); |
| dprintk("svcrdma: svc_rdma_free(%p)\n", rdma); |
| |
| /* We should only be called from kref_put */ |
| if (atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0) |
| pr_err("svcrdma: sc_xprt still in use? (%d)\n", |
| atomic_read(&rdma->sc_xprt.xpt_ref.refcount)); |
| |
| /* |
| * Destroy queued, but not processed read completions. Note |
| * that this cleanup has to be done before destroying the |
| * cm_id because the device ptr is needed to unmap the dma in |
| * svc_rdma_put_context. |
| */ |
| while (!list_empty(&rdma->sc_read_complete_q)) { |
| struct svc_rdma_op_ctxt *ctxt; |
| ctxt = list_entry(rdma->sc_read_complete_q.next, |
| struct svc_rdma_op_ctxt, |
| dto_q); |
| list_del_init(&ctxt->dto_q); |
| svc_rdma_put_context(ctxt, 1); |
| } |
| |
| /* Destroy queued, but not processed recv completions */ |
| while (!list_empty(&rdma->sc_rq_dto_q)) { |
| struct svc_rdma_op_ctxt *ctxt; |
| ctxt = list_entry(rdma->sc_rq_dto_q.next, |
| struct svc_rdma_op_ctxt, |
| dto_q); |
| list_del_init(&ctxt->dto_q); |
| svc_rdma_put_context(ctxt, 1); |
| } |
| |
| /* Warn if we leaked a resource or under-referenced */ |
| if (atomic_read(&rdma->sc_ctxt_used) != 0) |
| pr_err("svcrdma: ctxt still in use? (%d)\n", |
| atomic_read(&rdma->sc_ctxt_used)); |
| if (atomic_read(&rdma->sc_dma_used) != 0) |
| pr_err("svcrdma: dma still in use? (%d)\n", |
| atomic_read(&rdma->sc_dma_used)); |
| |
| /* De-allocate fastreg mr */ |
| rdma_dealloc_frmr_q(rdma); |
| |
| /* Destroy the QP if present (not a listener) */ |
| if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) |
| ib_destroy_qp(rdma->sc_qp); |
| |
| if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) |
| ib_destroy_cq(rdma->sc_sq_cq); |
| |
| if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) |
| ib_destroy_cq(rdma->sc_rq_cq); |
| |
| if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr)) |
| ib_dereg_mr(rdma->sc_phys_mr); |
| |
| if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) |
| ib_dealloc_pd(rdma->sc_pd); |
| |
| /* Destroy the CM ID */ |
| rdma_destroy_id(rdma->sc_cm_id); |
| |
| kfree(rdma); |
| } |
| |
| static void svc_rdma_free(struct svc_xprt *xprt) |
| { |
| struct svcxprt_rdma *rdma = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| INIT_WORK(&rdma->sc_work, __svc_rdma_free); |
| queue_work(svc_rdma_wq, &rdma->sc_work); |
| } |
| |
| static int svc_rdma_has_wspace(struct svc_xprt *xprt) |
| { |
| struct svcxprt_rdma *rdma = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| |
| /* |
| * If there are already waiters on the SQ, |
| * return false. |
| */ |
| if (waitqueue_active(&rdma->sc_send_wait)) |
| return 0; |
| |
| /* Otherwise return true. */ |
| return 1; |
| } |
| |
| static int svc_rdma_secure_port(struct svc_rqst *rqstp) |
| { |
| return 1; |
| } |
| |
| /* |
| * Attempt to register the kvec representing the RPC memory with the |
| * device. |
| * |
| * Returns: |
| * NULL : The device does not support fastreg or there were no more |
| * fastreg mr. |
| * frmr : The kvec register request was successfully posted. |
| * <0 : An error was encountered attempting to register the kvec. |
| */ |
| int svc_rdma_fastreg(struct svcxprt_rdma *xprt, |
| struct svc_rdma_fastreg_mr *frmr) |
| { |
| struct ib_send_wr fastreg_wr; |
| u8 key; |
| |
| /* Bump the key */ |
| key = (u8)(frmr->mr->lkey & 0x000000FF); |
| ib_update_fast_reg_key(frmr->mr, ++key); |
| |
| /* Prepare FASTREG WR */ |
| memset(&fastreg_wr, 0, sizeof fastreg_wr); |
| fastreg_wr.opcode = IB_WR_FAST_REG_MR; |
| fastreg_wr.send_flags = IB_SEND_SIGNALED; |
| fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva; |
| fastreg_wr.wr.fast_reg.page_list = frmr->page_list; |
| fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len; |
| fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT; |
| fastreg_wr.wr.fast_reg.length = frmr->map_len; |
| fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags; |
| fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey; |
| return svc_rdma_send(xprt, &fastreg_wr); |
| } |
| |
| int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) |
| { |
| struct ib_send_wr *bad_wr, *n_wr; |
| int wr_count; |
| int i; |
| int ret; |
| |
| if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) |
| return -ENOTCONN; |
| |
| wr_count = 1; |
| for (n_wr = wr->next; n_wr; n_wr = n_wr->next) |
| wr_count++; |
| |
| /* If the SQ is full, wait until an SQ entry is available */ |
| while (1) { |
| spin_lock_bh(&xprt->sc_lock); |
| if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) { |
| spin_unlock_bh(&xprt->sc_lock); |
| atomic_inc(&rdma_stat_sq_starve); |
| |
| /* See if we can opportunistically reap SQ WR to make room */ |
| sq_cq_reap(xprt); |
| |
| /* Wait until SQ WR available if SQ still full */ |
| wait_event(xprt->sc_send_wait, |
| atomic_read(&xprt->sc_sq_count) < |
| xprt->sc_sq_depth); |
| if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) |
| return -ENOTCONN; |
| continue; |
| } |
| /* Take a transport ref for each WR posted */ |
| for (i = 0; i < wr_count; i++) |
| svc_xprt_get(&xprt->sc_xprt); |
| |
| /* Bump used SQ WR count and post */ |
| atomic_add(wr_count, &xprt->sc_sq_count); |
| ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); |
| if (ret) { |
| set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); |
| atomic_sub(wr_count, &xprt->sc_sq_count); |
| for (i = 0; i < wr_count; i ++) |
| svc_xprt_put(&xprt->sc_xprt); |
| dprintk("svcrdma: failed to post SQ WR rc=%d, " |
| "sc_sq_count=%d, sc_sq_depth=%d\n", |
| ret, atomic_read(&xprt->sc_sq_count), |
| xprt->sc_sq_depth); |
| } |
| spin_unlock_bh(&xprt->sc_lock); |
| if (ret) |
| wake_up(&xprt->sc_send_wait); |
| break; |
| } |
| return ret; |
| } |
| |
| void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp, |
| enum rpcrdma_errcode err) |
| { |
| struct ib_send_wr err_wr; |
| struct page *p; |
| struct svc_rdma_op_ctxt *ctxt; |
| u32 *va; |
| int length; |
| int ret; |
| |
| p = svc_rdma_get_page(); |
| va = page_address(p); |
| |
| /* XDR encode error */ |
| length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va); |
| |
| ctxt = svc_rdma_get_context(xprt); |
| ctxt->direction = DMA_FROM_DEVICE; |
| ctxt->count = 1; |
| ctxt->pages[0] = p; |
| |
| /* Prepare SGE for local address */ |
| ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device, |
| p, 0, length, DMA_FROM_DEVICE); |
| if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) { |
| put_page(p); |
| svc_rdma_put_context(ctxt, 1); |
| return; |
| } |
| atomic_inc(&xprt->sc_dma_used); |
| ctxt->sge[0].lkey = xprt->sc_dma_lkey; |
| ctxt->sge[0].length = length; |
| |
| /* Prepare SEND WR */ |
| memset(&err_wr, 0, sizeof err_wr); |
| ctxt->wr_op = IB_WR_SEND; |
| err_wr.wr_id = (unsigned long)ctxt; |
| err_wr.sg_list = ctxt->sge; |
| err_wr.num_sge = 1; |
| err_wr.opcode = IB_WR_SEND; |
| err_wr.send_flags = IB_SEND_SIGNALED; |
| |
| /* Post It */ |
| ret = svc_rdma_send(xprt, &err_wr); |
| if (ret) { |
| dprintk("svcrdma: Error %d posting send for protocol error\n", |
| ret); |
| svc_rdma_unmap_dma(ctxt); |
| svc_rdma_put_context(ctxt, 1); |
| } |
| } |