| #ifndef _ASM_M32R_BITOPS_H |
| #define _ASM_M32R_BITOPS_H |
| |
| /* |
| * linux/include/asm-m32r/bitops.h |
| * |
| * Copyright 1992, Linus Torvalds. |
| * |
| * M32R version: |
| * Copyright (C) 2001, 2002 Hitoshi Yamamoto |
| * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org> |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> |
| #include <asm/assembler.h> |
| #include <asm/system.h> |
| #include <asm/byteorder.h> |
| #include <asm/types.h> |
| |
| /* |
| * These have to be done with inline assembly: that way the bit-setting |
| * is guaranteed to be atomic. All bit operations return 0 if the bit |
| * was cleared before the operation and != 0 if it was not. |
| * |
| * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| */ |
| |
| /** |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void set_bit(int nr, volatile void * addr) |
| { |
| __u32 mask; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "r6", "%1") |
| M32R_LOCK" %0, @%1; \n\t" |
| "or %0, %2; \n\t" |
| M32R_UNLOCK" %0, @%1; \n\t" |
| : "=&r" (tmp) |
| : "r" (a), "r" (mask) |
| : "memory" |
| #ifdef CONFIG_CHIP_M32700_TS1 |
| , "r6" |
| #endif /* CONFIG_CHIP_M32700_TS1 */ |
| ); |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __set_bit(int nr, volatile void * addr) |
| { |
| __u32 mask; |
| volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| *a |= mask; |
| } |
| |
| /** |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void clear_bit(int nr, volatile void * addr) |
| { |
| __u32 mask; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "r6", "%1") |
| M32R_LOCK" %0, @%1; \n\t" |
| "and %0, %2; \n\t" |
| M32R_UNLOCK" %0, @%1; \n\t" |
| : "=&r" (tmp) |
| : "r" (a), "r" (~mask) |
| : "memory" |
| #ifdef CONFIG_CHIP_M32700_TS1 |
| , "r6" |
| #endif /* CONFIG_CHIP_M32700_TS1 */ |
| ); |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __clear_bit(int nr, volatile unsigned long * addr) |
| { |
| unsigned long mask; |
| volatile unsigned long *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| *a &= ~mask; |
| } |
| |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /** |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| __u32 mask; |
| volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| *a ^= mask; |
| } |
| |
| /** |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void change_bit(int nr, volatile void * addr) |
| { |
| __u32 mask; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "r6", "%1") |
| M32R_LOCK" %0, @%1; \n\t" |
| "xor %0, %2; \n\t" |
| M32R_UNLOCK" %0, @%1; \n\t" |
| : "=&r" (tmp) |
| : "r" (a), "r" (mask) |
| : "memory" |
| #ifdef CONFIG_CHIP_M32700_TS1 |
| , "r6" |
| #endif /* CONFIG_CHIP_M32700_TS1 */ |
| ); |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "%1", "%2") |
| M32R_LOCK" %0, @%2; \n\t" |
| "mv %1, %0; \n\t" |
| "and %0, %3; \n\t" |
| "or %1, %3; \n\t" |
| M32R_UNLOCK" %1, @%2; \n\t" |
| : "=&r" (oldbit), "=&r" (tmp) |
| : "r" (a), "r" (mask) |
| : "memory" |
| ); |
| local_irq_restore(flags); |
| |
| return (oldbit != 0); |
| } |
| |
| /** |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| oldbit = (*a & mask); |
| *a |= mask; |
| |
| return (oldbit != 0); |
| } |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "%1", "%3") |
| M32R_LOCK" %0, @%3; \n\t" |
| "mv %1, %0; \n\t" |
| "and %0, %2; \n\t" |
| "not %2, %2; \n\t" |
| "and %1, %2; \n\t" |
| M32R_UNLOCK" %1, @%3; \n\t" |
| : "=&r" (oldbit), "=&r" (tmp), "+r" (mask) |
| : "r" (a) |
| : "memory" |
| ); |
| local_irq_restore(flags); |
| |
| return (oldbit != 0); |
| } |
| |
| /** |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| oldbit = (*a & mask); |
| *a &= ~mask; |
| |
| return (oldbit != 0); |
| } |
| |
| /* WARNING: non atomic and it can be reordered! */ |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| oldbit = (*a & mask); |
| *a ^= mask; |
| |
| return (oldbit != 0); |
| } |
| |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| { |
| __u32 mask, oldbit; |
| volatile __u32 *a = addr; |
| unsigned long flags; |
| unsigned long tmp; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| local_irq_save(flags); |
| __asm__ __volatile__ ( |
| DCACHE_CLEAR("%0", "%1", "%2") |
| M32R_LOCK" %0, @%2; \n\t" |
| "mv %1, %0; \n\t" |
| "and %0, %3; \n\t" |
| "xor %1, %3; \n\t" |
| M32R_UNLOCK" %1, @%2; \n\t" |
| : "=&r" (oldbit), "=&r" (tmp) |
| : "r" (a), "r" (mask) |
| : "memory" |
| ); |
| local_irq_restore(flags); |
| |
| return (oldbit != 0); |
| } |
| |
| /** |
| * test_bit - Determine whether a bit is set |
| * @nr: bit number to test |
| * @addr: Address to start counting from |
| */ |
| static __inline__ int test_bit(int nr, const volatile void * addr) |
| { |
| __u32 mask; |
| const volatile __u32 *a = addr; |
| |
| a += (nr >> 5); |
| mask = (1 << (nr & 0x1F)); |
| |
| return ((*a & mask) != 0); |
| } |
| |
| /** |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static __inline__ unsigned long ffz(unsigned long word) |
| { |
| int k; |
| |
| word = ~word; |
| k = 0; |
| if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } |
| if (!(word & 0x000000ff)) { k += 8; word >>= 8; } |
| if (!(word & 0x0000000f)) { k += 4; word >>= 4; } |
| if (!(word & 0x00000003)) { k += 2; word >>= 2; } |
| if (!(word & 0x00000001)) { k += 1; } |
| |
| return k; |
| } |
| |
| /** |
| * find_first_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first zero bit, not the number of the byte |
| * containing a bit. |
| */ |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| /** |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static __inline__ int find_next_zero_bit(const unsigned long *addr, |
| int size, int offset) |
| { |
| const unsigned long *p = addr + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __inline__ unsigned long __ffs(unsigned long word) |
| { |
| int k = 0; |
| |
| if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } |
| if (!(word & 0x000000ff)) { k += 8; word >>= 8; } |
| if (!(word & 0x0000000f)) { k += 4; word >>= 4; } |
| if (!(word & 0x00000003)) { k += 2; word >>= 2; } |
| if (!(word & 0x00000001)) { k += 1;} |
| |
| return k; |
| } |
| |
| /* |
| * fls: find last bit set. |
| */ |
| #define fls(x) generic_fls(x) |
| #define fls64(x) generic_fls64(x) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| /** |
| * find_next_bit - find the first set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| unsigned int result = offset & ~31UL; |
| unsigned int tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp &= ~0UL << offset; |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = *p++) != 0) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (32 - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| /** |
| * ffs - find first bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| #define ffs(x) generic_ffs(x) |
| |
| /** |
| * hweightN - returns the hamming weight of a N-bit word |
| * @x: the word to weigh |
| * |
| * The Hamming Weight of a number is the total number of bits set in it. |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| #endif /* __KERNEL__ */ |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * ext2_XXXX function |
| * orig: include/asm-sh/bitops.h |
| */ |
| |
| #ifdef __LITTLE_ENDIAN__ |
| #define ext2_set_bit test_and_set_bit |
| #define ext2_clear_bit __test_and_clear_bit |
| #define ext2_test_bit test_bit |
| #define ext2_find_first_zero_bit find_first_zero_bit |
| #define ext2_find_next_zero_bit find_next_zero_bit |
| #else |
| static inline int ext2_set_bit(int nr, volatile void * addr) |
| { |
| __u8 mask, oldbit; |
| volatile __u8 *a = addr; |
| |
| a += (nr >> 3); |
| mask = (1 << (nr & 0x07)); |
| oldbit = (*a & mask); |
| *a |= mask; |
| |
| return (oldbit != 0); |
| } |
| |
| static inline int ext2_clear_bit(int nr, volatile void * addr) |
| { |
| __u8 mask, oldbit; |
| volatile __u8 *a = addr; |
| |
| a += (nr >> 3); |
| mask = (1 << (nr & 0x07)); |
| oldbit = (*a & mask); |
| *a &= ~mask; |
| |
| return (oldbit != 0); |
| } |
| |
| static inline int ext2_test_bit(int nr, const volatile void * addr) |
| { |
| __u32 mask; |
| const volatile __u8 *a = addr; |
| |
| a += (nr >> 3); |
| mask = (1 << (nr & 0x07)); |
| |
| return ((mask & *a) != 0); |
| } |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static inline unsigned long ext2_find_next_zero_bit(void *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| #endif |
| |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_set_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_clear_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) __set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_M32R_BITOPS_H */ |