| // SPDX-License-Identifier: GPL-2.0+ |
| // Copyright 2017 IBM Corp. |
| #include <asm/pnv-ocxl.h> |
| #include <asm/opal.h> |
| #include <misc/ocxl-config.h> |
| #include "pci.h" |
| |
| #define PNV_OCXL_TL_P9_RECV_CAP 0x000000000000000Full |
| #define PNV_OCXL_ACTAG_MAX 64 |
| /* PASIDs are 20-bit, but on P9, NPU can only handle 15 bits */ |
| #define PNV_OCXL_PASID_BITS 15 |
| #define PNV_OCXL_PASID_MAX ((1 << PNV_OCXL_PASID_BITS) - 1) |
| |
| #define AFU_PRESENT (1 << 31) |
| #define AFU_INDEX_MASK 0x3F000000 |
| #define AFU_INDEX_SHIFT 24 |
| #define ACTAG_MASK 0xFFF |
| |
| |
| struct actag_range { |
| u16 start; |
| u16 count; |
| }; |
| |
| struct npu_link { |
| struct list_head list; |
| int domain; |
| int bus; |
| int dev; |
| u16 fn_desired_actags[8]; |
| struct actag_range fn_actags[8]; |
| bool assignment_done; |
| }; |
| static struct list_head links_list = LIST_HEAD_INIT(links_list); |
| static DEFINE_MUTEX(links_list_lock); |
| |
| |
| /* |
| * opencapi actags handling: |
| * |
| * When sending commands, the opencapi device references the memory |
| * context it's targeting with an 'actag', which is really an alias |
| * for a (BDF, pasid) combination. When it receives a command, the NPU |
| * must do a lookup of the actag to identify the memory context. The |
| * hardware supports a finite number of actags per link (64 for |
| * POWER9). |
| * |
| * The device can carry multiple functions, and each function can have |
| * multiple AFUs. Each AFU advertises in its config space the number |
| * of desired actags. The host must configure in the config space of |
| * the AFU how many actags the AFU is really allowed to use (which can |
| * be less than what the AFU desires). |
| * |
| * When a PCI function is probed by the driver, it has no visibility |
| * about the other PCI functions and how many actags they'd like, |
| * which makes it impossible to distribute actags fairly among AFUs. |
| * |
| * Unfortunately, the only way to know how many actags a function |
| * desires is by looking at the data for each AFU in the config space |
| * and add them up. Similarly, the only way to know how many actags |
| * all the functions of the physical device desire is by adding the |
| * previously computed function counts. Then we can match that against |
| * what the hardware supports. |
| * |
| * To get a comprehensive view, we use a 'pci fixup': at the end of |
| * PCI enumeration, each function counts how many actags its AFUs |
| * desire and we save it in a 'npu_link' structure, shared between all |
| * the PCI functions of a same device. Therefore, when the first |
| * function is probed by the driver, we can get an idea of the total |
| * count of desired actags for the device, and assign the actags to |
| * the AFUs, by pro-rating if needed. |
| */ |
| |
| static int find_dvsec_from_pos(struct pci_dev *dev, int dvsec_id, int pos) |
| { |
| int vsec = pos; |
| u16 vendor, id; |
| |
| while ((vsec = pci_find_next_ext_capability(dev, vsec, |
| OCXL_EXT_CAP_ID_DVSEC))) { |
| pci_read_config_word(dev, vsec + OCXL_DVSEC_VENDOR_OFFSET, |
| &vendor); |
| pci_read_config_word(dev, vsec + OCXL_DVSEC_ID_OFFSET, &id); |
| if (vendor == PCI_VENDOR_ID_IBM && id == dvsec_id) |
| return vsec; |
| } |
| return 0; |
| } |
| |
| static int find_dvsec_afu_ctrl(struct pci_dev *dev, u8 afu_idx) |
| { |
| int vsec = 0; |
| u8 idx; |
| |
| while ((vsec = find_dvsec_from_pos(dev, OCXL_DVSEC_AFU_CTRL_ID, |
| vsec))) { |
| pci_read_config_byte(dev, vsec + OCXL_DVSEC_AFU_CTRL_AFU_IDX, |
| &idx); |
| if (idx == afu_idx) |
| return vsec; |
| } |
| return 0; |
| } |
| |
| static int get_max_afu_index(struct pci_dev *dev, int *afu_idx) |
| { |
| int pos; |
| u32 val; |
| |
| pos = find_dvsec_from_pos(dev, OCXL_DVSEC_FUNC_ID, 0); |
| if (!pos) |
| return -ESRCH; |
| |
| pci_read_config_dword(dev, pos + OCXL_DVSEC_FUNC_OFF_INDEX, &val); |
| if (val & AFU_PRESENT) |
| *afu_idx = (val & AFU_INDEX_MASK) >> AFU_INDEX_SHIFT; |
| else |
| *afu_idx = -1; |
| return 0; |
| } |
| |
| static int get_actag_count(struct pci_dev *dev, int afu_idx, int *actag) |
| { |
| int pos; |
| u16 actag_sup; |
| |
| pos = find_dvsec_afu_ctrl(dev, afu_idx); |
| if (!pos) |
| return -ESRCH; |
| |
| pci_read_config_word(dev, pos + OCXL_DVSEC_AFU_CTRL_ACTAG_SUP, |
| &actag_sup); |
| *actag = actag_sup & ACTAG_MASK; |
| return 0; |
| } |
| |
| static struct npu_link *find_link(struct pci_dev *dev) |
| { |
| struct npu_link *link; |
| |
| list_for_each_entry(link, &links_list, list) { |
| /* The functions of a device all share the same link */ |
| if (link->domain == pci_domain_nr(dev->bus) && |
| link->bus == dev->bus->number && |
| link->dev == PCI_SLOT(dev->devfn)) { |
| return link; |
| } |
| } |
| |
| /* link doesn't exist yet. Allocate one */ |
| link = kzalloc(sizeof(struct npu_link), GFP_KERNEL); |
| if (!link) |
| return NULL; |
| link->domain = pci_domain_nr(dev->bus); |
| link->bus = dev->bus->number; |
| link->dev = PCI_SLOT(dev->devfn); |
| list_add(&link->list, &links_list); |
| return link; |
| } |
| |
| static void pnv_ocxl_fixup_actag(struct pci_dev *dev) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| struct pnv_phb *phb = hose->private_data; |
| struct npu_link *link; |
| int rc, afu_idx = -1, i, actag; |
| |
| if (!machine_is(powernv)) |
| return; |
| |
| if (phb->type != PNV_PHB_NPU_OCAPI) |
| return; |
| |
| mutex_lock(&links_list_lock); |
| |
| link = find_link(dev); |
| if (!link) { |
| dev_warn(&dev->dev, "couldn't update actag information\n"); |
| mutex_unlock(&links_list_lock); |
| return; |
| } |
| |
| /* |
| * Check how many actags are desired for the AFUs under that |
| * function and add it to the count for the link |
| */ |
| rc = get_max_afu_index(dev, &afu_idx); |
| if (rc) { |
| /* Most likely an invalid config space */ |
| dev_dbg(&dev->dev, "couldn't find AFU information\n"); |
| afu_idx = -1; |
| } |
| |
| link->fn_desired_actags[PCI_FUNC(dev->devfn)] = 0; |
| for (i = 0; i <= afu_idx; i++) { |
| /* |
| * AFU index 'holes' are allowed. So don't fail if we |
| * can't read the actag info for an index |
| */ |
| rc = get_actag_count(dev, i, &actag); |
| if (rc) |
| continue; |
| link->fn_desired_actags[PCI_FUNC(dev->devfn)] += actag; |
| } |
| dev_dbg(&dev->dev, "total actags for function: %d\n", |
| link->fn_desired_actags[PCI_FUNC(dev->devfn)]); |
| |
| mutex_unlock(&links_list_lock); |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_ocxl_fixup_actag); |
| |
| static u16 assign_fn_actags(u16 desired, u16 total) |
| { |
| u16 count; |
| |
| if (total <= PNV_OCXL_ACTAG_MAX) |
| count = desired; |
| else |
| count = PNV_OCXL_ACTAG_MAX * desired / total; |
| |
| return count; |
| } |
| |
| static void assign_actags(struct npu_link *link) |
| { |
| u16 actag_count, range_start = 0, total_desired = 0; |
| int i; |
| |
| for (i = 0; i < 8; i++) |
| total_desired += link->fn_desired_actags[i]; |
| |
| for (i = 0; i < 8; i++) { |
| if (link->fn_desired_actags[i]) { |
| actag_count = assign_fn_actags( |
| link->fn_desired_actags[i], |
| total_desired); |
| link->fn_actags[i].start = range_start; |
| link->fn_actags[i].count = actag_count; |
| range_start += actag_count; |
| WARN_ON(range_start >= PNV_OCXL_ACTAG_MAX); |
| } |
| pr_debug("link %x:%x:%x fct %d actags: start=%d count=%d (desired=%d)\n", |
| link->domain, link->bus, link->dev, i, |
| link->fn_actags[i].start, link->fn_actags[i].count, |
| link->fn_desired_actags[i]); |
| } |
| link->assignment_done = true; |
| } |
| |
| int pnv_ocxl_get_actag(struct pci_dev *dev, u16 *base, u16 *enabled, |
| u16 *supported) |
| { |
| struct npu_link *link; |
| |
| mutex_lock(&links_list_lock); |
| |
| link = find_link(dev); |
| if (!link) { |
| dev_err(&dev->dev, "actag information not found\n"); |
| mutex_unlock(&links_list_lock); |
| return -ENODEV; |
| } |
| /* |
| * On p9, we only have 64 actags per link, so they must be |
| * shared by all the functions of the same adapter. We counted |
| * the desired actag counts during PCI enumeration, so that we |
| * can allocate a pro-rated number of actags to each function. |
| */ |
| if (!link->assignment_done) |
| assign_actags(link); |
| |
| *base = link->fn_actags[PCI_FUNC(dev->devfn)].start; |
| *enabled = link->fn_actags[PCI_FUNC(dev->devfn)].count; |
| *supported = link->fn_desired_actags[PCI_FUNC(dev->devfn)]; |
| |
| mutex_unlock(&links_list_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_get_actag); |
| |
| int pnv_ocxl_get_pasid_count(struct pci_dev *dev, int *count) |
| { |
| struct npu_link *link; |
| int i, rc = -EINVAL; |
| |
| /* |
| * The number of PASIDs (process address space ID) which can |
| * be used by a function depends on how many functions exist |
| * on the device. The NPU needs to be configured to know how |
| * many bits are available to PASIDs and how many are to be |
| * used by the function BDF indentifier. |
| * |
| * We only support one AFU-carrying function for now. |
| */ |
| mutex_lock(&links_list_lock); |
| |
| link = find_link(dev); |
| if (!link) { |
| dev_err(&dev->dev, "actag information not found\n"); |
| mutex_unlock(&links_list_lock); |
| return -ENODEV; |
| } |
| |
| for (i = 0; i < 8; i++) |
| if (link->fn_desired_actags[i] && (i == PCI_FUNC(dev->devfn))) { |
| *count = PNV_OCXL_PASID_MAX; |
| rc = 0; |
| break; |
| } |
| |
| mutex_unlock(&links_list_lock); |
| dev_dbg(&dev->dev, "%d PASIDs available for function\n", |
| rc ? 0 : *count); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_get_pasid_count); |
| |
| static void set_templ_rate(unsigned int templ, unsigned int rate, char *buf) |
| { |
| int shift, idx; |
| |
| WARN_ON(templ > PNV_OCXL_TL_MAX_TEMPLATE); |
| idx = (PNV_OCXL_TL_MAX_TEMPLATE - templ) / 2; |
| shift = 4 * (1 - ((PNV_OCXL_TL_MAX_TEMPLATE - templ) % 2)); |
| buf[idx] |= rate << shift; |
| } |
| |
| int pnv_ocxl_get_tl_cap(struct pci_dev *dev, long *cap, |
| char *rate_buf, int rate_buf_size) |
| { |
| if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE) |
| return -EINVAL; |
| /* |
| * The TL capabilities are a characteristic of the NPU, so |
| * we go with hard-coded values. |
| * |
| * The receiving rate of each template is encoded on 4 bits. |
| * |
| * On P9: |
| * - templates 0 -> 3 are supported |
| * - templates 0, 1 and 3 have a 0 receiving rate |
| * - template 2 has receiving rate of 1 (extra cycle) |
| */ |
| memset(rate_buf, 0, rate_buf_size); |
| set_templ_rate(2, 1, rate_buf); |
| *cap = PNV_OCXL_TL_P9_RECV_CAP; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_get_tl_cap); |
| |
| int pnv_ocxl_set_tl_conf(struct pci_dev *dev, long cap, |
| uint64_t rate_buf_phys, int rate_buf_size) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| struct pnv_phb *phb = hose->private_data; |
| int rc; |
| |
| if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE) |
| return -EINVAL; |
| |
| rc = opal_npu_tl_set(phb->opal_id, dev->devfn, cap, |
| rate_buf_phys, rate_buf_size); |
| if (rc) { |
| dev_err(&dev->dev, "Can't configure host TL: %d\n", rc); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_set_tl_conf); |
| |
| int pnv_ocxl_get_xsl_irq(struct pci_dev *dev, int *hwirq) |
| { |
| int rc; |
| |
| rc = of_property_read_u32(dev->dev.of_node, "ibm,opal-xsl-irq", hwirq); |
| if (rc) { |
| dev_err(&dev->dev, |
| "Can't get translation interrupt for device\n"); |
| return rc; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_get_xsl_irq); |
| |
| void pnv_ocxl_unmap_xsl_regs(void __iomem *dsisr, void __iomem *dar, |
| void __iomem *tfc, void __iomem *pe_handle) |
| { |
| iounmap(dsisr); |
| iounmap(dar); |
| iounmap(tfc); |
| iounmap(pe_handle); |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_unmap_xsl_regs); |
| |
| int pnv_ocxl_map_xsl_regs(struct pci_dev *dev, void __iomem **dsisr, |
| void __iomem **dar, void __iomem **tfc, |
| void __iomem **pe_handle) |
| { |
| u64 reg; |
| int i, j, rc = 0; |
| void __iomem *regs[4]; |
| |
| /* |
| * opal stores the mmio addresses of the DSISR, DAR, TFC and |
| * PE_HANDLE registers in a device tree property, in that |
| * order |
| */ |
| for (i = 0; i < 4; i++) { |
| rc = of_property_read_u64_index(dev->dev.of_node, |
| "ibm,opal-xsl-mmio", i, ®); |
| if (rc) |
| break; |
| regs[i] = ioremap(reg, 8); |
| if (!regs[i]) { |
| rc = -EINVAL; |
| break; |
| } |
| } |
| if (rc) { |
| dev_err(&dev->dev, "Can't map translation mmio registers\n"); |
| for (j = i - 1; j >= 0; j--) |
| iounmap(regs[j]); |
| } else { |
| *dsisr = regs[0]; |
| *dar = regs[1]; |
| *tfc = regs[2]; |
| *pe_handle = regs[3]; |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_map_xsl_regs); |
| |
| struct spa_data { |
| u64 phb_opal_id; |
| u32 bdfn; |
| }; |
| |
| int pnv_ocxl_spa_setup(struct pci_dev *dev, void *spa_mem, int PE_mask, |
| void **platform_data) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| struct pnv_phb *phb = hose->private_data; |
| struct spa_data *data; |
| u32 bdfn; |
| int rc; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| bdfn = (dev->bus->number << 8) | dev->devfn; |
| rc = opal_npu_spa_setup(phb->opal_id, bdfn, virt_to_phys(spa_mem), |
| PE_mask); |
| if (rc) { |
| dev_err(&dev->dev, "Can't setup Shared Process Area: %d\n", rc); |
| kfree(data); |
| return rc; |
| } |
| data->phb_opal_id = phb->opal_id; |
| data->bdfn = bdfn; |
| *platform_data = (void *) data; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_spa_setup); |
| |
| void pnv_ocxl_spa_release(void *platform_data) |
| { |
| struct spa_data *data = (struct spa_data *) platform_data; |
| int rc; |
| |
| rc = opal_npu_spa_setup(data->phb_opal_id, data->bdfn, 0, 0); |
| WARN_ON(rc); |
| kfree(data); |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_spa_release); |
| |
| int pnv_ocxl_spa_remove_pe(void *platform_data, int pe_handle) |
| { |
| struct spa_data *data = (struct spa_data *) platform_data; |
| int rc; |
| |
| rc = opal_npu_spa_clear_cache(data->phb_opal_id, data->bdfn, pe_handle); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pnv_ocxl_spa_remove_pe); |