| /* |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * verbs.c |
| * |
| * Encapsulates the major functions managing: |
| * o adapters |
| * o endpoints |
| * o connections |
| * o buffer memory |
| */ |
| |
| #include <linux/pci.h> /* for Tavor hack below */ |
| |
| #include "xprt_rdma.h" |
| |
| /* |
| * Globals/Macros |
| */ |
| |
| #ifdef RPC_DEBUG |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| /* |
| * internal functions |
| */ |
| |
| /* |
| * handle replies in tasklet context, using a single, global list |
| * rdma tasklet function -- just turn around and call the func |
| * for all replies on the list |
| */ |
| |
| static DEFINE_SPINLOCK(rpcrdma_tk_lock_g); |
| static LIST_HEAD(rpcrdma_tasklets_g); |
| |
| static void |
| rpcrdma_run_tasklet(unsigned long data) |
| { |
| struct rpcrdma_rep *rep; |
| void (*func)(struct rpcrdma_rep *); |
| unsigned long flags; |
| |
| data = data; |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| while (!list_empty(&rpcrdma_tasklets_g)) { |
| rep = list_entry(rpcrdma_tasklets_g.next, |
| struct rpcrdma_rep, rr_list); |
| list_del(&rep->rr_list); |
| func = rep->rr_func; |
| rep->rr_func = NULL; |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| |
| if (func) |
| func(rep); |
| else |
| rpcrdma_recv_buffer_put(rep); |
| |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| } |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| } |
| |
| static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL); |
| |
| static inline void |
| rpcrdma_schedule_tasklet(struct rpcrdma_rep *rep) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| list_add_tail(&rep->rr_list, &rpcrdma_tasklets_g); |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| tasklet_schedule(&rpcrdma_tasklet_g); |
| } |
| |
| static void |
| rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| |
| dprintk("RPC: %s: QP error %X on device %s ep %p\n", |
| __func__, event->event, event->device->name, context); |
| if (ep->rep_connected == 1) { |
| ep->rep_connected = -EIO; |
| ep->rep_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| } |
| } |
| |
| static void |
| rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| |
| dprintk("RPC: %s: CQ error %X on device %s ep %p\n", |
| __func__, event->event, event->device->name, context); |
| if (ep->rep_connected == 1) { |
| ep->rep_connected = -EIO; |
| ep->rep_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| } |
| } |
| |
| static inline |
| void rpcrdma_event_process(struct ib_wc *wc) |
| { |
| struct rpcrdma_rep *rep = |
| (struct rpcrdma_rep *)(unsigned long) wc->wr_id; |
| |
| dprintk("RPC: %s: event rep %p status %X opcode %X length %u\n", |
| __func__, rep, wc->status, wc->opcode, wc->byte_len); |
| |
| if (!rep) /* send or bind completion that we don't care about */ |
| return; |
| |
| if (IB_WC_SUCCESS != wc->status) { |
| dprintk("RPC: %s: %s WC status %X, connection lost\n", |
| __func__, (wc->opcode & IB_WC_RECV) ? "recv" : "send", |
| wc->status); |
| rep->rr_len = ~0U; |
| rpcrdma_schedule_tasklet(rep); |
| return; |
| } |
| |
| switch (wc->opcode) { |
| case IB_WC_RECV: |
| rep->rr_len = wc->byte_len; |
| ib_dma_sync_single_for_cpu( |
| rdmab_to_ia(rep->rr_buffer)->ri_id->device, |
| rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE); |
| /* Keep (only) the most recent credits, after check validity */ |
| if (rep->rr_len >= 16) { |
| struct rpcrdma_msg *p = |
| (struct rpcrdma_msg *) rep->rr_base; |
| unsigned int credits = ntohl(p->rm_credit); |
| if (credits == 0) { |
| dprintk("RPC: %s: server" |
| " dropped credits to 0!\n", __func__); |
| /* don't deadlock */ |
| credits = 1; |
| } else if (credits > rep->rr_buffer->rb_max_requests) { |
| dprintk("RPC: %s: server" |
| " over-crediting: %d (%d)\n", |
| __func__, credits, |
| rep->rr_buffer->rb_max_requests); |
| credits = rep->rr_buffer->rb_max_requests; |
| } |
| atomic_set(&rep->rr_buffer->rb_credits, credits); |
| } |
| /* fall through */ |
| case IB_WC_BIND_MW: |
| rpcrdma_schedule_tasklet(rep); |
| break; |
| default: |
| dprintk("RPC: %s: unexpected WC event %X\n", |
| __func__, wc->opcode); |
| break; |
| } |
| } |
| |
| static inline int |
| rpcrdma_cq_poll(struct ib_cq *cq) |
| { |
| struct ib_wc wc; |
| int rc; |
| |
| for (;;) { |
| rc = ib_poll_cq(cq, 1, &wc); |
| if (rc < 0) { |
| dprintk("RPC: %s: ib_poll_cq failed %i\n", |
| __func__, rc); |
| return rc; |
| } |
| if (rc == 0) |
| break; |
| |
| rpcrdma_event_process(&wc); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * rpcrdma_cq_event_upcall |
| * |
| * This upcall handles recv, send, bind and unbind events. |
| * It is reentrant but processes single events in order to maintain |
| * ordering of receives to keep server credits. |
| * |
| * It is the responsibility of the scheduled tasklet to return |
| * recv buffers to the pool. NOTE: this affects synchronization of |
| * connection shutdown. That is, the structures required for |
| * the completion of the reply handler must remain intact until |
| * all memory has been reclaimed. |
| * |
| * Note that send events are suppressed and do not result in an upcall. |
| */ |
| static void |
| rpcrdma_cq_event_upcall(struct ib_cq *cq, void *context) |
| { |
| int rc; |
| |
| rc = rpcrdma_cq_poll(cq); |
| if (rc) |
| return; |
| |
| rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); |
| if (rc) { |
| dprintk("RPC: %s: ib_req_notify_cq failed %i\n", |
| __func__, rc); |
| return; |
| } |
| |
| rpcrdma_cq_poll(cq); |
| } |
| |
| #ifdef RPC_DEBUG |
| static const char * const conn[] = { |
| "address resolved", |
| "address error", |
| "route resolved", |
| "route error", |
| "connect request", |
| "connect response", |
| "connect error", |
| "unreachable", |
| "rejected", |
| "established", |
| "disconnected", |
| "device removal" |
| }; |
| #endif |
| |
| static int |
| rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) |
| { |
| struct rpcrdma_xprt *xprt = id->context; |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| struct rpcrdma_ep *ep = &xprt->rx_ep; |
| struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr; |
| struct ib_qp_attr attr; |
| struct ib_qp_init_attr iattr; |
| int connstate = 0; |
| |
| switch (event->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| ia->ri_async_rc = -EHOSTUNREACH; |
| dprintk("RPC: %s: CM address resolution error, ep 0x%p\n", |
| __func__, ep); |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| ia->ri_async_rc = -ENETUNREACH; |
| dprintk("RPC: %s: CM route resolution error, ep 0x%p\n", |
| __func__, ep); |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| connstate = 1; |
| ib_query_qp(ia->ri_id->qp, &attr, |
| IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC, |
| &iattr); |
| dprintk("RPC: %s: %d responder resources" |
| " (%d initiator)\n", |
| __func__, attr.max_dest_rd_atomic, attr.max_rd_atomic); |
| goto connected; |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| connstate = -ENOTCONN; |
| goto connected; |
| case RDMA_CM_EVENT_UNREACHABLE: |
| connstate = -ENETDOWN; |
| goto connected; |
| case RDMA_CM_EVENT_REJECTED: |
| connstate = -ECONNREFUSED; |
| goto connected; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| connstate = -ECONNABORTED; |
| goto connected; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| connstate = -ENODEV; |
| connected: |
| dprintk("RPC: %s: %s: %u.%u.%u.%u:%u" |
| " (ep 0x%p event 0x%x)\n", |
| __func__, |
| (event->event <= 11) ? conn[event->event] : |
| "unknown connection error", |
| NIPQUAD(addr->sin_addr.s_addr), |
| ntohs(addr->sin_port), |
| ep, event->event); |
| atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1); |
| dprintk("RPC: %s: %sconnected\n", |
| __func__, connstate > 0 ? "" : "dis"); |
| ep->rep_connected = connstate; |
| ep->rep_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| break; |
| default: |
| ia->ri_async_rc = -EINVAL; |
| dprintk("RPC: %s: unexpected CM event %X\n", |
| __func__, event->event); |
| complete(&ia->ri_done); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static struct rdma_cm_id * |
| rpcrdma_create_id(struct rpcrdma_xprt *xprt, |
| struct rpcrdma_ia *ia, struct sockaddr *addr) |
| { |
| struct rdma_cm_id *id; |
| int rc; |
| |
| id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP); |
| if (IS_ERR(id)) { |
| rc = PTR_ERR(id); |
| dprintk("RPC: %s: rdma_create_id() failed %i\n", |
| __func__, rc); |
| return id; |
| } |
| |
| ia->ri_async_rc = 0; |
| rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| wait_for_completion(&ia->ri_done); |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto out; |
| |
| ia->ri_async_rc = 0; |
| rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_route() failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| wait_for_completion(&ia->ri_done); |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto out; |
| |
| return id; |
| |
| out: |
| rdma_destroy_id(id); |
| return ERR_PTR(rc); |
| } |
| |
| /* |
| * Drain any cq, prior to teardown. |
| */ |
| static void |
| rpcrdma_clean_cq(struct ib_cq *cq) |
| { |
| struct ib_wc wc; |
| int count = 0; |
| |
| while (1 == ib_poll_cq(cq, 1, &wc)) |
| ++count; |
| |
| if (count) |
| dprintk("RPC: %s: flushed %d events (last 0x%x)\n", |
| __func__, count, wc.opcode); |
| } |
| |
| /* |
| * Exported functions. |
| */ |
| |
| /* |
| * Open and initialize an Interface Adapter. |
| * o initializes fields of struct rpcrdma_ia, including |
| * interface and provider attributes and protection zone. |
| */ |
| int |
| rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) |
| { |
| int rc, mem_priv; |
| struct ib_device_attr devattr; |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| |
| init_completion(&ia->ri_done); |
| |
| ia->ri_id = rpcrdma_create_id(xprt, ia, addr); |
| if (IS_ERR(ia->ri_id)) { |
| rc = PTR_ERR(ia->ri_id); |
| goto out1; |
| } |
| |
| ia->ri_pd = ib_alloc_pd(ia->ri_id->device); |
| if (IS_ERR(ia->ri_pd)) { |
| rc = PTR_ERR(ia->ri_pd); |
| dprintk("RPC: %s: ib_alloc_pd() failed %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| /* |
| * Query the device to determine if the requested memory |
| * registration strategy is supported. If it isn't, set the |
| * strategy to a globally supported model. |
| */ |
| rc = ib_query_device(ia->ri_id->device, &devattr); |
| if (rc) { |
| dprintk("RPC: %s: ib_query_device failed %d\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) { |
| ia->ri_have_dma_lkey = 1; |
| ia->ri_dma_lkey = ia->ri_id->device->local_dma_lkey; |
| } |
| |
| switch (memreg) { |
| case RPCRDMA_MEMWINDOWS: |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| if (!(devattr.device_cap_flags & IB_DEVICE_MEM_WINDOW)) { |
| dprintk("RPC: %s: MEMWINDOWS registration " |
| "specified but not supported by adapter, " |
| "using slower RPCRDMA_REGISTER\n", |
| __func__); |
| memreg = RPCRDMA_REGISTER; |
| } |
| break; |
| case RPCRDMA_MTHCAFMR: |
| if (!ia->ri_id->device->alloc_fmr) { |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| dprintk("RPC: %s: MTHCAFMR registration " |
| "specified but not supported by adapter, " |
| "using riskier RPCRDMA_ALLPHYSICAL\n", |
| __func__); |
| memreg = RPCRDMA_ALLPHYSICAL; |
| #else |
| dprintk("RPC: %s: MTHCAFMR registration " |
| "specified but not supported by adapter, " |
| "using slower RPCRDMA_REGISTER\n", |
| __func__); |
| memreg = RPCRDMA_REGISTER; |
| #endif |
| } |
| break; |
| case RPCRDMA_FRMR: |
| /* Requires both frmr reg and local dma lkey */ |
| if ((devattr.device_cap_flags & |
| (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) != |
| (IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) { |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| dprintk("RPC: %s: FRMR registration " |
| "specified but not supported by adapter, " |
| "using riskier RPCRDMA_ALLPHYSICAL\n", |
| __func__); |
| memreg = RPCRDMA_ALLPHYSICAL; |
| #else |
| dprintk("RPC: %s: FRMR registration " |
| "specified but not supported by adapter, " |
| "using slower RPCRDMA_REGISTER\n", |
| __func__); |
| memreg = RPCRDMA_REGISTER; |
| #endif |
| } |
| break; |
| } |
| |
| /* |
| * Optionally obtain an underlying physical identity mapping in |
| * order to do a memory window-based bind. This base registration |
| * is protected from remote access - that is enabled only by binding |
| * for the specific bytes targeted during each RPC operation, and |
| * revoked after the corresponding completion similar to a storage |
| * adapter. |
| */ |
| switch (memreg) { |
| case RPCRDMA_BOUNCEBUFFERS: |
| case RPCRDMA_REGISTER: |
| case RPCRDMA_FRMR: |
| break; |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| case RPCRDMA_ALLPHYSICAL: |
| mem_priv = IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_REMOTE_WRITE | |
| IB_ACCESS_REMOTE_READ; |
| goto register_setup; |
| #endif |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| mem_priv = IB_ACCESS_LOCAL_WRITE | |
| IB_ACCESS_MW_BIND; |
| goto register_setup; |
| case RPCRDMA_MTHCAFMR: |
| if (ia->ri_have_dma_lkey) |
| break; |
| mem_priv = IB_ACCESS_LOCAL_WRITE; |
| register_setup: |
| ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv); |
| if (IS_ERR(ia->ri_bind_mem)) { |
| printk(KERN_ALERT "%s: ib_get_dma_mr for " |
| "phys register failed with %lX\n\t" |
| "Will continue with degraded performance\n", |
| __func__, PTR_ERR(ia->ri_bind_mem)); |
| memreg = RPCRDMA_REGISTER; |
| ia->ri_bind_mem = NULL; |
| } |
| break; |
| default: |
| printk(KERN_ERR "%s: invalid memory registration mode %d\n", |
| __func__, memreg); |
| rc = -EINVAL; |
| goto out2; |
| } |
| dprintk("RPC: %s: memory registration strategy is %d\n", |
| __func__, memreg); |
| |
| /* Else will do memory reg/dereg for each chunk */ |
| ia->ri_memreg_strategy = memreg; |
| |
| return 0; |
| out2: |
| rdma_destroy_id(ia->ri_id); |
| out1: |
| return rc; |
| } |
| |
| /* |
| * Clean up/close an IA. |
| * o if event handles and PD have been initialized, free them. |
| * o close the IA |
| */ |
| void |
| rpcrdma_ia_close(struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| dprintk("RPC: %s: entering\n", __func__); |
| if (ia->ri_bind_mem != NULL) { |
| rc = ib_dereg_mr(ia->ri_bind_mem); |
| dprintk("RPC: %s: ib_dereg_mr returned %i\n", |
| __func__, rc); |
| } |
| if (ia->ri_id != NULL && !IS_ERR(ia->ri_id) && ia->ri_id->qp) |
| rdma_destroy_qp(ia->ri_id); |
| if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) { |
| rc = ib_dealloc_pd(ia->ri_pd); |
| dprintk("RPC: %s: ib_dealloc_pd returned %i\n", |
| __func__, rc); |
| } |
| if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) |
| rdma_destroy_id(ia->ri_id); |
| } |
| |
| /* |
| * Create unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, |
| struct rpcrdma_create_data_internal *cdata) |
| { |
| struct ib_device_attr devattr; |
| int rc, err; |
| |
| rc = ib_query_device(ia->ri_id->device, &devattr); |
| if (rc) { |
| dprintk("RPC: %s: ib_query_device failed %d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| /* check provider's send/recv wr limits */ |
| if (cdata->max_requests > devattr.max_qp_wr) |
| cdata->max_requests = devattr.max_qp_wr; |
| |
| ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; |
| ep->rep_attr.qp_context = ep; |
| /* send_cq and recv_cq initialized below */ |
| ep->rep_attr.srq = NULL; |
| ep->rep_attr.cap.max_send_wr = cdata->max_requests; |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_FRMR: |
| /* Add room for frmr register and invalidate WRs */ |
| ep->rep_attr.cap.max_send_wr *= 3; |
| if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr) |
| return -EINVAL; |
| break; |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| /* Add room for mw_binds+unbinds - overkill! */ |
| ep->rep_attr.cap.max_send_wr++; |
| ep->rep_attr.cap.max_send_wr *= (2 * RPCRDMA_MAX_SEGS); |
| if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr) |
| return -EINVAL; |
| break; |
| default: |
| break; |
| } |
| ep->rep_attr.cap.max_recv_wr = cdata->max_requests; |
| ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2); |
| ep->rep_attr.cap.max_recv_sge = 1; |
| ep->rep_attr.cap.max_inline_data = 0; |
| ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| ep->rep_attr.qp_type = IB_QPT_RC; |
| ep->rep_attr.port_num = ~0; |
| |
| dprintk("RPC: %s: requested max: dtos: send %d recv %d; " |
| "iovs: send %d recv %d\n", |
| __func__, |
| ep->rep_attr.cap.max_send_wr, |
| ep->rep_attr.cap.max_recv_wr, |
| ep->rep_attr.cap.max_send_sge, |
| ep->rep_attr.cap.max_recv_sge); |
| |
| /* set trigger for requesting send completion */ |
| ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 /* - 1*/; |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| ep->rep_cqinit -= RPCRDMA_MAX_SEGS; |
| break; |
| default: |
| break; |
| } |
| if (ep->rep_cqinit <= 2) |
| ep->rep_cqinit = 0; |
| INIT_CQCOUNT(ep); |
| ep->rep_ia = ia; |
| init_waitqueue_head(&ep->rep_connect_wait); |
| |
| /* |
| * Create a single cq for receive dto and mw_bind (only ever |
| * care about unbind, really). Send completions are suppressed. |
| * Use single threaded tasklet upcalls to maintain ordering. |
| */ |
| ep->rep_cq = ib_create_cq(ia->ri_id->device, rpcrdma_cq_event_upcall, |
| rpcrdma_cq_async_error_upcall, NULL, |
| ep->rep_attr.cap.max_recv_wr + |
| ep->rep_attr.cap.max_send_wr + 1, 0); |
| if (IS_ERR(ep->rep_cq)) { |
| rc = PTR_ERR(ep->rep_cq); |
| dprintk("RPC: %s: ib_create_cq failed: %i\n", |
| __func__, rc); |
| goto out1; |
| } |
| |
| rc = ib_req_notify_cq(ep->rep_cq, IB_CQ_NEXT_COMP); |
| if (rc) { |
| dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| ep->rep_attr.send_cq = ep->rep_cq; |
| ep->rep_attr.recv_cq = ep->rep_cq; |
| |
| /* Initialize cma parameters */ |
| |
| /* RPC/RDMA does not use private data */ |
| ep->rep_remote_cma.private_data = NULL; |
| ep->rep_remote_cma.private_data_len = 0; |
| |
| /* Client offers RDMA Read but does not initiate */ |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_BOUNCEBUFFERS: |
| ep->rep_remote_cma.responder_resources = 0; |
| break; |
| case RPCRDMA_MTHCAFMR: |
| case RPCRDMA_REGISTER: |
| case RPCRDMA_FRMR: |
| ep->rep_remote_cma.responder_resources = cdata->max_requests * |
| (RPCRDMA_MAX_DATA_SEGS / 8); |
| break; |
| case RPCRDMA_MEMWINDOWS: |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| case RPCRDMA_ALLPHYSICAL: |
| #endif |
| ep->rep_remote_cma.responder_resources = cdata->max_requests * |
| (RPCRDMA_MAX_DATA_SEGS / 2); |
| break; |
| default: |
| break; |
| } |
| if (ep->rep_remote_cma.responder_resources > devattr.max_qp_rd_atom) |
| ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom; |
| ep->rep_remote_cma.initiator_depth = 0; |
| |
| ep->rep_remote_cma.retry_count = 7; |
| ep->rep_remote_cma.flow_control = 0; |
| ep->rep_remote_cma.rnr_retry_count = 0; |
| |
| return 0; |
| |
| out2: |
| err = ib_destroy_cq(ep->rep_cq); |
| if (err) |
| dprintk("RPC: %s: ib_destroy_cq returned %i\n", |
| __func__, err); |
| out1: |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_destroy |
| * |
| * Disconnect and destroy endpoint. After this, the only |
| * valid operations on the ep are to free it (if dynamically |
| * allocated) or re-create it. |
| * |
| * The caller's error handling must be sure to not leak the endpoint |
| * if this function fails. |
| */ |
| int |
| rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| dprintk("RPC: %s: entering, connected is %d\n", |
| __func__, ep->rep_connected); |
| |
| if (ia->ri_id->qp) { |
| rc = rpcrdma_ep_disconnect(ep, ia); |
| if (rc) |
| dprintk("RPC: %s: rpcrdma_ep_disconnect" |
| " returned %i\n", __func__, rc); |
| } |
| |
| ep->rep_func = NULL; |
| |
| /* padding - could be done in rpcrdma_buffer_destroy... */ |
| if (ep->rep_pad_mr) { |
| rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad); |
| ep->rep_pad_mr = NULL; |
| } |
| |
| if (ia->ri_id->qp) { |
| rdma_destroy_qp(ia->ri_id); |
| ia->ri_id->qp = NULL; |
| } |
| |
| rpcrdma_clean_cq(ep->rep_cq); |
| rc = ib_destroy_cq(ep->rep_cq); |
| if (rc) |
| dprintk("RPC: %s: ib_destroy_cq returned %i\n", |
| __func__, rc); |
| |
| return rc; |
| } |
| |
| /* |
| * Connect unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| struct rdma_cm_id *id; |
| int rc = 0; |
| int retry_count = 0; |
| int reconnect = (ep->rep_connected != 0); |
| |
| if (reconnect) { |
| struct rpcrdma_xprt *xprt; |
| retry: |
| rc = rpcrdma_ep_disconnect(ep, ia); |
| if (rc && rc != -ENOTCONN) |
| dprintk("RPC: %s: rpcrdma_ep_disconnect" |
| " status %i\n", __func__, rc); |
| rpcrdma_clean_cq(ep->rep_cq); |
| |
| xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); |
| id = rpcrdma_create_id(xprt, ia, |
| (struct sockaddr *)&xprt->rx_data.addr); |
| if (IS_ERR(id)) { |
| rc = PTR_ERR(id); |
| goto out; |
| } |
| /* TEMP TEMP TEMP - fail if new device: |
| * Deregister/remarshal *all* requests! |
| * Close and recreate adapter, pd, etc! |
| * Re-determine all attributes still sane! |
| * More stuff I haven't thought of! |
| * Rrrgh! |
| */ |
| if (ia->ri_id->device != id->device) { |
| printk("RPC: %s: can't reconnect on " |
| "different device!\n", __func__); |
| rdma_destroy_id(id); |
| rc = -ENETDOWN; |
| goto out; |
| } |
| /* END TEMP */ |
| rdma_destroy_id(ia->ri_id); |
| ia->ri_id = id; |
| } |
| |
| rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); |
| if (rc) { |
| dprintk("RPC: %s: rdma_create_qp failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| /* XXX Tavor device performs badly with 2K MTU! */ |
| if (strnicmp(ia->ri_id->device->dma_device->bus->name, "pci", 3) == 0) { |
| struct pci_dev *pcid = to_pci_dev(ia->ri_id->device->dma_device); |
| if (pcid->device == PCI_DEVICE_ID_MELLANOX_TAVOR && |
| (pcid->vendor == PCI_VENDOR_ID_MELLANOX || |
| pcid->vendor == PCI_VENDOR_ID_TOPSPIN)) { |
| struct ib_qp_attr attr = { |
| .path_mtu = IB_MTU_1024 |
| }; |
| rc = ib_modify_qp(ia->ri_id->qp, &attr, IB_QP_PATH_MTU); |
| } |
| } |
| |
| /* Theoretically a client initiator_depth > 0 is not needed, |
| * but many peers fail to complete the connection unless they |
| * == responder_resources! */ |
| if (ep->rep_remote_cma.initiator_depth != |
| ep->rep_remote_cma.responder_resources) |
| ep->rep_remote_cma.initiator_depth = |
| ep->rep_remote_cma.responder_resources; |
| |
| ep->rep_connected = 0; |
| |
| rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); |
| if (rc) { |
| dprintk("RPC: %s: rdma_connect() failed with %i\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| if (reconnect) |
| return 0; |
| |
| wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); |
| |
| /* |
| * Check state. A non-peer reject indicates no listener |
| * (ECONNREFUSED), which may be a transient state. All |
| * others indicate a transport condition which has already |
| * undergone a best-effort. |
| */ |
| if (ep->rep_connected == -ECONNREFUSED |
| && ++retry_count <= RDMA_CONNECT_RETRY_MAX) { |
| dprintk("RPC: %s: non-peer_reject, retry\n", __func__); |
| goto retry; |
| } |
| if (ep->rep_connected <= 0) { |
| /* Sometimes, the only way to reliably connect to remote |
| * CMs is to use same nonzero values for ORD and IRD. */ |
| ep->rep_remote_cma.initiator_depth = |
| ep->rep_remote_cma.responder_resources; |
| if (ep->rep_remote_cma.initiator_depth == 0) |
| ++ep->rep_remote_cma.initiator_depth; |
| if (ep->rep_remote_cma.responder_resources == 0) |
| ++ep->rep_remote_cma.responder_resources; |
| if (retry_count++ == 0) |
| goto retry; |
| rc = ep->rep_connected; |
| } else { |
| dprintk("RPC: %s: connected\n", __func__); |
| } |
| |
| out: |
| if (rc) |
| ep->rep_connected = rc; |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_disconnect |
| * |
| * This is separate from destroy to facilitate the ability |
| * to reconnect without recreating the endpoint. |
| * |
| * This call is not reentrant, and must not be made in parallel |
| * on the same endpoint. |
| */ |
| int |
| rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| rpcrdma_clean_cq(ep->rep_cq); |
| rc = rdma_disconnect(ia->ri_id); |
| if (!rc) { |
| /* returns without wait if not connected */ |
| wait_event_interruptible(ep->rep_connect_wait, |
| ep->rep_connected != 1); |
| dprintk("RPC: %s: after wait, %sconnected\n", __func__, |
| (ep->rep_connected == 1) ? "still " : "dis"); |
| } else { |
| dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc); |
| ep->rep_connected = rc; |
| } |
| return rc; |
| } |
| |
| /* |
| * Initialize buffer memory |
| */ |
| int |
| rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep, |
| struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata) |
| { |
| char *p; |
| size_t len; |
| int i, rc; |
| struct rpcrdma_mw *r; |
| |
| buf->rb_max_requests = cdata->max_requests; |
| spin_lock_init(&buf->rb_lock); |
| atomic_set(&buf->rb_credits, 1); |
| |
| /* Need to allocate: |
| * 1. arrays for send and recv pointers |
| * 2. arrays of struct rpcrdma_req to fill in pointers |
| * 3. array of struct rpcrdma_rep for replies |
| * 4. padding, if any |
| * 5. mw's, fmr's or frmr's, if any |
| * Send/recv buffers in req/rep need to be registered |
| */ |
| |
| len = buf->rb_max_requests * |
| (sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *)); |
| len += cdata->padding; |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_FRMR: |
| len += buf->rb_max_requests * RPCRDMA_MAX_SEGS * |
| sizeof(struct rpcrdma_mw); |
| break; |
| case RPCRDMA_MTHCAFMR: |
| /* TBD we are perhaps overallocating here */ |
| len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS * |
| sizeof(struct rpcrdma_mw); |
| break; |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS * |
| sizeof(struct rpcrdma_mw); |
| break; |
| default: |
| break; |
| } |
| |
| /* allocate 1, 4 and 5 in one shot */ |
| p = kzalloc(len, GFP_KERNEL); |
| if (p == NULL) { |
| dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n", |
| __func__, len); |
| rc = -ENOMEM; |
| goto out; |
| } |
| buf->rb_pool = p; /* for freeing it later */ |
| |
| buf->rb_send_bufs = (struct rpcrdma_req **) p; |
| p = (char *) &buf->rb_send_bufs[buf->rb_max_requests]; |
| buf->rb_recv_bufs = (struct rpcrdma_rep **) p; |
| p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests]; |
| |
| /* |
| * Register the zeroed pad buffer, if any. |
| */ |
| if (cdata->padding) { |
| rc = rpcrdma_register_internal(ia, p, cdata->padding, |
| &ep->rep_pad_mr, &ep->rep_pad); |
| if (rc) |
| goto out; |
| } |
| p += cdata->padding; |
| |
| /* |
| * Allocate the fmr's, or mw's for mw_bind chunk registration. |
| * We "cycle" the mw's in order to minimize rkey reuse, |
| * and also reduce unbind-to-bind collision. |
| */ |
| INIT_LIST_HEAD(&buf->rb_mws); |
| r = (struct rpcrdma_mw *)p; |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_FRMR: |
| for (i = buf->rb_max_requests * RPCRDMA_MAX_SEGS; i; i--) { |
| r->r.frmr.fr_mr = ib_alloc_fast_reg_mr(ia->ri_pd, |
| RPCRDMA_MAX_SEGS); |
| if (IS_ERR(r->r.frmr.fr_mr)) { |
| rc = PTR_ERR(r->r.frmr.fr_mr); |
| dprintk("RPC: %s: ib_alloc_fast_reg_mr" |
| " failed %i\n", __func__, rc); |
| goto out; |
| } |
| r->r.frmr.fr_pgl = |
| ib_alloc_fast_reg_page_list(ia->ri_id->device, |
| RPCRDMA_MAX_SEGS); |
| if (IS_ERR(r->r.frmr.fr_pgl)) { |
| rc = PTR_ERR(r->r.frmr.fr_pgl); |
| dprintk("RPC: %s: " |
| "ib_alloc_fast_reg_page_list " |
| "failed %i\n", __func__, rc); |
| goto out; |
| } |
| list_add(&r->mw_list, &buf->rb_mws); |
| ++r; |
| } |
| break; |
| case RPCRDMA_MTHCAFMR: |
| /* TBD we are perhaps overallocating here */ |
| for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) { |
| static struct ib_fmr_attr fa = |
| { RPCRDMA_MAX_DATA_SEGS, 1, PAGE_SHIFT }; |
| r->r.fmr = ib_alloc_fmr(ia->ri_pd, |
| IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ, |
| &fa); |
| if (IS_ERR(r->r.fmr)) { |
| rc = PTR_ERR(r->r.fmr); |
| dprintk("RPC: %s: ib_alloc_fmr" |
| " failed %i\n", __func__, rc); |
| goto out; |
| } |
| list_add(&r->mw_list, &buf->rb_mws); |
| ++r; |
| } |
| break; |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| /* Allocate one extra request's worth, for full cycling */ |
| for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) { |
| r->r.mw = ib_alloc_mw(ia->ri_pd); |
| if (IS_ERR(r->r.mw)) { |
| rc = PTR_ERR(r->r.mw); |
| dprintk("RPC: %s: ib_alloc_mw" |
| " failed %i\n", __func__, rc); |
| goto out; |
| } |
| list_add(&r->mw_list, &buf->rb_mws); |
| ++r; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Allocate/init the request/reply buffers. Doing this |
| * using kmalloc for now -- one for each buf. |
| */ |
| for (i = 0; i < buf->rb_max_requests; i++) { |
| struct rpcrdma_req *req; |
| struct rpcrdma_rep *rep; |
| |
| len = cdata->inline_wsize + sizeof(struct rpcrdma_req); |
| /* RPC layer requests *double* size + 1K RPC_SLACK_SPACE! */ |
| /* Typical ~2400b, so rounding up saves work later */ |
| if (len < 4096) |
| len = 4096; |
| req = kmalloc(len, GFP_KERNEL); |
| if (req == NULL) { |
| dprintk("RPC: %s: request buffer %d alloc" |
| " failed\n", __func__, i); |
| rc = -ENOMEM; |
| goto out; |
| } |
| memset(req, 0, sizeof(struct rpcrdma_req)); |
| buf->rb_send_bufs[i] = req; |
| buf->rb_send_bufs[i]->rl_buffer = buf; |
| |
| rc = rpcrdma_register_internal(ia, req->rl_base, |
| len - offsetof(struct rpcrdma_req, rl_base), |
| &buf->rb_send_bufs[i]->rl_handle, |
| &buf->rb_send_bufs[i]->rl_iov); |
| if (rc) |
| goto out; |
| |
| buf->rb_send_bufs[i]->rl_size = len-sizeof(struct rpcrdma_req); |
| |
| len = cdata->inline_rsize + sizeof(struct rpcrdma_rep); |
| rep = kmalloc(len, GFP_KERNEL); |
| if (rep == NULL) { |
| dprintk("RPC: %s: reply buffer %d alloc failed\n", |
| __func__, i); |
| rc = -ENOMEM; |
| goto out; |
| } |
| memset(rep, 0, sizeof(struct rpcrdma_rep)); |
| buf->rb_recv_bufs[i] = rep; |
| buf->rb_recv_bufs[i]->rr_buffer = buf; |
| init_waitqueue_head(&rep->rr_unbind); |
| |
| rc = rpcrdma_register_internal(ia, rep->rr_base, |
| len - offsetof(struct rpcrdma_rep, rr_base), |
| &buf->rb_recv_bufs[i]->rr_handle, |
| &buf->rb_recv_bufs[i]->rr_iov); |
| if (rc) |
| goto out; |
| |
| } |
| dprintk("RPC: %s: max_requests %d\n", |
| __func__, buf->rb_max_requests); |
| /* done */ |
| return 0; |
| out: |
| rpcrdma_buffer_destroy(buf); |
| return rc; |
| } |
| |
| /* |
| * Unregister and destroy buffer memory. Need to deal with |
| * partial initialization, so it's callable from failed create. |
| * Must be called before destroying endpoint, as registrations |
| * reference it. |
| */ |
| void |
| rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) |
| { |
| int rc, i; |
| struct rpcrdma_ia *ia = rdmab_to_ia(buf); |
| struct rpcrdma_mw *r; |
| |
| /* clean up in reverse order from create |
| * 1. recv mr memory (mr free, then kfree) |
| * 1a. bind mw memory |
| * 2. send mr memory (mr free, then kfree) |
| * 3. padding (if any) [moved to rpcrdma_ep_destroy] |
| * 4. arrays |
| */ |
| dprintk("RPC: %s: entering\n", __func__); |
| |
| for (i = 0; i < buf->rb_max_requests; i++) { |
| if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) { |
| rpcrdma_deregister_internal(ia, |
| buf->rb_recv_bufs[i]->rr_handle, |
| &buf->rb_recv_bufs[i]->rr_iov); |
| kfree(buf->rb_recv_bufs[i]); |
| } |
| if (buf->rb_send_bufs && buf->rb_send_bufs[i]) { |
| while (!list_empty(&buf->rb_mws)) { |
| r = list_entry(buf->rb_mws.next, |
| struct rpcrdma_mw, mw_list); |
| list_del(&r->mw_list); |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_FRMR: |
| rc = ib_dereg_mr(r->r.frmr.fr_mr); |
| if (rc) |
| dprintk("RPC: %s:" |
| " ib_dereg_mr" |
| " failed %i\n", |
| __func__, rc); |
| ib_free_fast_reg_page_list(r->r.frmr.fr_pgl); |
| break; |
| case RPCRDMA_MTHCAFMR: |
| rc = ib_dealloc_fmr(r->r.fmr); |
| if (rc) |
| dprintk("RPC: %s:" |
| " ib_dealloc_fmr" |
| " failed %i\n", |
| __func__, rc); |
| break; |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| rc = ib_dealloc_mw(r->r.mw); |
| if (rc) |
| dprintk("RPC: %s:" |
| " ib_dealloc_mw" |
| " failed %i\n", |
| __func__, rc); |
| break; |
| default: |
| break; |
| } |
| } |
| rpcrdma_deregister_internal(ia, |
| buf->rb_send_bufs[i]->rl_handle, |
| &buf->rb_send_bufs[i]->rl_iov); |
| kfree(buf->rb_send_bufs[i]); |
| } |
| } |
| |
| kfree(buf->rb_pool); |
| } |
| |
| /* |
| * Get a set of request/reply buffers. |
| * |
| * Reply buffer (if needed) is attached to send buffer upon return. |
| * Rule: |
| * rb_send_index and rb_recv_index MUST always be pointing to the |
| * *next* available buffer (non-NULL). They are incremented after |
| * removing buffers, and decremented *before* returning them. |
| */ |
| struct rpcrdma_req * |
| rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) |
| { |
| struct rpcrdma_req *req; |
| unsigned long flags; |
| int i; |
| struct rpcrdma_mw *r; |
| |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| if (buffers->rb_send_index == buffers->rb_max_requests) { |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| dprintk("RPC: %s: out of request buffers\n", __func__); |
| return ((struct rpcrdma_req *)NULL); |
| } |
| |
| req = buffers->rb_send_bufs[buffers->rb_send_index]; |
| if (buffers->rb_send_index < buffers->rb_recv_index) { |
| dprintk("RPC: %s: %d extra receives outstanding (ok)\n", |
| __func__, |
| buffers->rb_recv_index - buffers->rb_send_index); |
| req->rl_reply = NULL; |
| } else { |
| req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; |
| buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; |
| } |
| buffers->rb_send_bufs[buffers->rb_send_index++] = NULL; |
| if (!list_empty(&buffers->rb_mws)) { |
| i = RPCRDMA_MAX_SEGS - 1; |
| do { |
| r = list_entry(buffers->rb_mws.next, |
| struct rpcrdma_mw, mw_list); |
| list_del(&r->mw_list); |
| req->rl_segments[i].mr_chunk.rl_mw = r; |
| } while (--i >= 0); |
| } |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| return req; |
| } |
| |
| /* |
| * Put request/reply buffers back into pool. |
| * Pre-decrement counter/array index. |
| */ |
| void |
| rpcrdma_buffer_put(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_buffer *buffers = req->rl_buffer; |
| struct rpcrdma_ia *ia = rdmab_to_ia(buffers); |
| int i; |
| unsigned long flags; |
| |
| BUG_ON(req->rl_nchunks != 0); |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| buffers->rb_send_bufs[--buffers->rb_send_index] = req; |
| req->rl_niovs = 0; |
| if (req->rl_reply) { |
| buffers->rb_recv_bufs[--buffers->rb_recv_index] = req->rl_reply; |
| init_waitqueue_head(&req->rl_reply->rr_unbind); |
| req->rl_reply->rr_func = NULL; |
| req->rl_reply = NULL; |
| } |
| switch (ia->ri_memreg_strategy) { |
| case RPCRDMA_FRMR: |
| case RPCRDMA_MTHCAFMR: |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| /* |
| * Cycle mw's back in reverse order, and "spin" them. |
| * This delays and scrambles reuse as much as possible. |
| */ |
| i = 1; |
| do { |
| struct rpcrdma_mw **mw; |
| mw = &req->rl_segments[i].mr_chunk.rl_mw; |
| list_add_tail(&(*mw)->mw_list, &buffers->rb_mws); |
| *mw = NULL; |
| } while (++i < RPCRDMA_MAX_SEGS); |
| list_add_tail(&req->rl_segments[0].mr_chunk.rl_mw->mw_list, |
| &buffers->rb_mws); |
| req->rl_segments[0].mr_chunk.rl_mw = NULL; |
| break; |
| default: |
| break; |
| } |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Recover reply buffers from pool. |
| * This happens when recovering from error conditions. |
| * Post-increment counter/array index. |
| */ |
| void |
| rpcrdma_recv_buffer_get(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_buffer *buffers = req->rl_buffer; |
| unsigned long flags; |
| |
| if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */ |
| buffers = ((struct rpcrdma_req *) buffers)->rl_buffer; |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| if (buffers->rb_recv_index < buffers->rb_max_requests) { |
| req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; |
| buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; |
| } |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Put reply buffers back into pool when not attached to |
| * request. This happens in error conditions, and when |
| * aborting unbinds. Pre-decrement counter/array index. |
| */ |
| void |
| rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_buffer *buffers = rep->rr_buffer; |
| unsigned long flags; |
| |
| rep->rr_func = NULL; |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep; |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Wrappers for internal-use kmalloc memory registration, used by buffer code. |
| */ |
| |
| int |
| rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len, |
| struct ib_mr **mrp, struct ib_sge *iov) |
| { |
| struct ib_phys_buf ipb; |
| struct ib_mr *mr; |
| int rc; |
| |
| /* |
| * All memory passed here was kmalloc'ed, therefore phys-contiguous. |
| */ |
| iov->addr = ib_dma_map_single(ia->ri_id->device, |
| va, len, DMA_BIDIRECTIONAL); |
| iov->length = len; |
| |
| if (ia->ri_have_dma_lkey) { |
| *mrp = NULL; |
| iov->lkey = ia->ri_dma_lkey; |
| return 0; |
| } else if (ia->ri_bind_mem != NULL) { |
| *mrp = NULL; |
| iov->lkey = ia->ri_bind_mem->lkey; |
| return 0; |
| } |
| |
| ipb.addr = iov->addr; |
| ipb.size = iov->length; |
| mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1, |
| IB_ACCESS_LOCAL_WRITE, &iov->addr); |
| |
| dprintk("RPC: %s: phys convert: 0x%llx " |
| "registered 0x%llx length %d\n", |
| __func__, (unsigned long long)ipb.addr, |
| (unsigned long long)iov->addr, len); |
| |
| if (IS_ERR(mr)) { |
| *mrp = NULL; |
| rc = PTR_ERR(mr); |
| dprintk("RPC: %s: failed with %i\n", __func__, rc); |
| } else { |
| *mrp = mr; |
| iov->lkey = mr->lkey; |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| int |
| rpcrdma_deregister_internal(struct rpcrdma_ia *ia, |
| struct ib_mr *mr, struct ib_sge *iov) |
| { |
| int rc; |
| |
| ib_dma_unmap_single(ia->ri_id->device, |
| iov->addr, iov->length, DMA_BIDIRECTIONAL); |
| |
| if (NULL == mr) |
| return 0; |
| |
| rc = ib_dereg_mr(mr); |
| if (rc) |
| dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc); |
| return rc; |
| } |
| |
| /* |
| * Wrappers for chunk registration, shared by read/write chunk code. |
| */ |
| |
| static void |
| rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing) |
| { |
| seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; |
| seg->mr_dmalen = seg->mr_len; |
| if (seg->mr_page) |
| seg->mr_dma = ib_dma_map_page(ia->ri_id->device, |
| seg->mr_page, offset_in_page(seg->mr_offset), |
| seg->mr_dmalen, seg->mr_dir); |
| else |
| seg->mr_dma = ib_dma_map_single(ia->ri_id->device, |
| seg->mr_offset, |
| seg->mr_dmalen, seg->mr_dir); |
| } |
| |
| static void |
| rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg) |
| { |
| if (seg->mr_page) |
| ib_dma_unmap_page(ia->ri_id->device, |
| seg->mr_dma, seg->mr_dmalen, seg->mr_dir); |
| else |
| ib_dma_unmap_single(ia->ri_id->device, |
| seg->mr_dma, seg->mr_dmalen, seg->mr_dir); |
| } |
| |
| static int |
| rpcrdma_register_frmr_external(struct rpcrdma_mr_seg *seg, |
| int *nsegs, int writing, struct rpcrdma_ia *ia, |
| struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_mr_seg *seg1 = seg; |
| struct ib_send_wr frmr_wr, *bad_wr; |
| u8 key; |
| int len, pageoff; |
| int i, rc; |
| |
| pageoff = offset_in_page(seg1->mr_offset); |
| seg1->mr_offset -= pageoff; /* start of page */ |
| seg1->mr_len += pageoff; |
| len = -pageoff; |
| if (*nsegs > RPCRDMA_MAX_DATA_SEGS) |
| *nsegs = RPCRDMA_MAX_DATA_SEGS; |
| for (i = 0; i < *nsegs;) { |
| rpcrdma_map_one(ia, seg, writing); |
| seg1->mr_chunk.rl_mw->r.frmr.fr_pgl->page_list[i] = seg->mr_dma; |
| len += seg->mr_len; |
| ++seg; |
| ++i; |
| /* Check for holes */ |
| if ((i < *nsegs && offset_in_page(seg->mr_offset)) || |
| offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) |
| break; |
| } |
| dprintk("RPC: %s: Using frmr %p to map %d segments\n", |
| __func__, seg1->mr_chunk.rl_mw, i); |
| |
| /* Bump the key */ |
| key = (u8)(seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey & 0x000000FF); |
| ib_update_fast_reg_key(seg1->mr_chunk.rl_mw->r.frmr.fr_mr, ++key); |
| |
| /* Prepare FRMR WR */ |
| memset(&frmr_wr, 0, sizeof frmr_wr); |
| frmr_wr.opcode = IB_WR_FAST_REG_MR; |
| frmr_wr.send_flags = 0; /* unsignaled */ |
| frmr_wr.wr.fast_reg.iova_start = (unsigned long)seg1->mr_dma; |
| frmr_wr.wr.fast_reg.page_list = seg1->mr_chunk.rl_mw->r.frmr.fr_pgl; |
| frmr_wr.wr.fast_reg.page_list_len = i; |
| frmr_wr.wr.fast_reg.page_shift = PAGE_SHIFT; |
| frmr_wr.wr.fast_reg.length = i << PAGE_SHIFT; |
| frmr_wr.wr.fast_reg.access_flags = (writing ? |
| IB_ACCESS_REMOTE_WRITE : IB_ACCESS_REMOTE_READ); |
| frmr_wr.wr.fast_reg.rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey; |
| DECR_CQCOUNT(&r_xprt->rx_ep); |
| |
| rc = ib_post_send(ia->ri_id->qp, &frmr_wr, &bad_wr); |
| |
| if (rc) { |
| dprintk("RPC: %s: failed ib_post_send for register," |
| " status %i\n", __func__, rc); |
| while (i--) |
| rpcrdma_unmap_one(ia, --seg); |
| } else { |
| seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey; |
| seg1->mr_base = seg1->mr_dma + pageoff; |
| seg1->mr_nsegs = i; |
| seg1->mr_len = len; |
| } |
| *nsegs = i; |
| return rc; |
| } |
| |
| static int |
| rpcrdma_deregister_frmr_external(struct rpcrdma_mr_seg *seg, |
| struct rpcrdma_ia *ia, struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_mr_seg *seg1 = seg; |
| struct ib_send_wr invalidate_wr, *bad_wr; |
| int rc; |
| |
| while (seg1->mr_nsegs--) |
| rpcrdma_unmap_one(ia, seg++); |
| |
| memset(&invalidate_wr, 0, sizeof invalidate_wr); |
| invalidate_wr.opcode = IB_WR_LOCAL_INV; |
| invalidate_wr.send_flags = 0; /* unsignaled */ |
| invalidate_wr.ex.invalidate_rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey; |
| DECR_CQCOUNT(&r_xprt->rx_ep); |
| |
| rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr); |
| if (rc) |
| dprintk("RPC: %s: failed ib_post_send for invalidate," |
| " status %i\n", __func__, rc); |
| return rc; |
| } |
| |
| static int |
| rpcrdma_register_fmr_external(struct rpcrdma_mr_seg *seg, |
| int *nsegs, int writing, struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_mr_seg *seg1 = seg; |
| u64 physaddrs[RPCRDMA_MAX_DATA_SEGS]; |
| int len, pageoff, i, rc; |
| |
| pageoff = offset_in_page(seg1->mr_offset); |
| seg1->mr_offset -= pageoff; /* start of page */ |
| seg1->mr_len += pageoff; |
| len = -pageoff; |
| if (*nsegs > RPCRDMA_MAX_DATA_SEGS) |
| *nsegs = RPCRDMA_MAX_DATA_SEGS; |
| for (i = 0; i < *nsegs;) { |
| rpcrdma_map_one(ia, seg, writing); |
| physaddrs[i] = seg->mr_dma; |
| len += seg->mr_len; |
| ++seg; |
| ++i; |
| /* Check for holes */ |
| if ((i < *nsegs && offset_in_page(seg->mr_offset)) || |
| offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) |
| break; |
| } |
| rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr, |
| physaddrs, i, seg1->mr_dma); |
| if (rc) { |
| dprintk("RPC: %s: failed ib_map_phys_fmr " |
| "%u@0x%llx+%i (%d)... status %i\n", __func__, |
| len, (unsigned long long)seg1->mr_dma, |
| pageoff, i, rc); |
| while (i--) |
| rpcrdma_unmap_one(ia, --seg); |
| } else { |
| seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey; |
| seg1->mr_base = seg1->mr_dma + pageoff; |
| seg1->mr_nsegs = i; |
| seg1->mr_len = len; |
| } |
| *nsegs = i; |
| return rc; |
| } |
| |
| static int |
| rpcrdma_deregister_fmr_external(struct rpcrdma_mr_seg *seg, |
| struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_mr_seg *seg1 = seg; |
| LIST_HEAD(l); |
| int rc; |
| |
| list_add(&seg1->mr_chunk.rl_mw->r.fmr->list, &l); |
| rc = ib_unmap_fmr(&l); |
| while (seg1->mr_nsegs--) |
| rpcrdma_unmap_one(ia, seg++); |
| if (rc) |
| dprintk("RPC: %s: failed ib_unmap_fmr," |
| " status %i\n", __func__, rc); |
| return rc; |
| } |
| |
| static int |
| rpcrdma_register_memwin_external(struct rpcrdma_mr_seg *seg, |
| int *nsegs, int writing, struct rpcrdma_ia *ia, |
| struct rpcrdma_xprt *r_xprt) |
| { |
| int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE : |
| IB_ACCESS_REMOTE_READ); |
| struct ib_mw_bind param; |
| int rc; |
| |
| *nsegs = 1; |
| rpcrdma_map_one(ia, seg, writing); |
| param.mr = ia->ri_bind_mem; |
| param.wr_id = 0ULL; /* no send cookie */ |
| param.addr = seg->mr_dma; |
| param.length = seg->mr_len; |
| param.send_flags = 0; |
| param.mw_access_flags = mem_priv; |
| |
| DECR_CQCOUNT(&r_xprt->rx_ep); |
| rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, ¶m); |
| if (rc) { |
| dprintk("RPC: %s: failed ib_bind_mw " |
| "%u@0x%llx status %i\n", |
| __func__, seg->mr_len, |
| (unsigned long long)seg->mr_dma, rc); |
| rpcrdma_unmap_one(ia, seg); |
| } else { |
| seg->mr_rkey = seg->mr_chunk.rl_mw->r.mw->rkey; |
| seg->mr_base = param.addr; |
| seg->mr_nsegs = 1; |
| } |
| return rc; |
| } |
| |
| static int |
| rpcrdma_deregister_memwin_external(struct rpcrdma_mr_seg *seg, |
| struct rpcrdma_ia *ia, |
| struct rpcrdma_xprt *r_xprt, void **r) |
| { |
| struct ib_mw_bind param; |
| LIST_HEAD(l); |
| int rc; |
| |
| BUG_ON(seg->mr_nsegs != 1); |
| param.mr = ia->ri_bind_mem; |
| param.addr = 0ULL; /* unbind */ |
| param.length = 0; |
| param.mw_access_flags = 0; |
| if (*r) { |
| param.wr_id = (u64) (unsigned long) *r; |
| param.send_flags = IB_SEND_SIGNALED; |
| INIT_CQCOUNT(&r_xprt->rx_ep); |
| } else { |
| param.wr_id = 0ULL; |
| param.send_flags = 0; |
| DECR_CQCOUNT(&r_xprt->rx_ep); |
| } |
| rc = ib_bind_mw(ia->ri_id->qp, seg->mr_chunk.rl_mw->r.mw, ¶m); |
| rpcrdma_unmap_one(ia, seg); |
| if (rc) |
| dprintk("RPC: %s: failed ib_(un)bind_mw," |
| " status %i\n", __func__, rc); |
| else |
| *r = NULL; /* will upcall on completion */ |
| return rc; |
| } |
| |
| static int |
| rpcrdma_register_default_external(struct rpcrdma_mr_seg *seg, |
| int *nsegs, int writing, struct rpcrdma_ia *ia) |
| { |
| int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE : |
| IB_ACCESS_REMOTE_READ); |
| struct rpcrdma_mr_seg *seg1 = seg; |
| struct ib_phys_buf ipb[RPCRDMA_MAX_DATA_SEGS]; |
| int len, i, rc = 0; |
| |
| if (*nsegs > RPCRDMA_MAX_DATA_SEGS) |
| *nsegs = RPCRDMA_MAX_DATA_SEGS; |
| for (len = 0, i = 0; i < *nsegs;) { |
| rpcrdma_map_one(ia, seg, writing); |
| ipb[i].addr = seg->mr_dma; |
| ipb[i].size = seg->mr_len; |
| len += seg->mr_len; |
| ++seg; |
| ++i; |
| /* Check for holes */ |
| if ((i < *nsegs && offset_in_page(seg->mr_offset)) || |
| offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len)) |
| break; |
| } |
| seg1->mr_base = seg1->mr_dma; |
| seg1->mr_chunk.rl_mr = ib_reg_phys_mr(ia->ri_pd, |
| ipb, i, mem_priv, &seg1->mr_base); |
| if (IS_ERR(seg1->mr_chunk.rl_mr)) { |
| rc = PTR_ERR(seg1->mr_chunk.rl_mr); |
| dprintk("RPC: %s: failed ib_reg_phys_mr " |
| "%u@0x%llx (%d)... status %i\n", |
| __func__, len, |
| (unsigned long long)seg1->mr_dma, i, rc); |
| while (i--) |
| rpcrdma_unmap_one(ia, --seg); |
| } else { |
| seg1->mr_rkey = seg1->mr_chunk.rl_mr->rkey; |
| seg1->mr_nsegs = i; |
| seg1->mr_len = len; |
| } |
| *nsegs = i; |
| return rc; |
| } |
| |
| static int |
| rpcrdma_deregister_default_external(struct rpcrdma_mr_seg *seg, |
| struct rpcrdma_ia *ia) |
| { |
| struct rpcrdma_mr_seg *seg1 = seg; |
| int rc; |
| |
| rc = ib_dereg_mr(seg1->mr_chunk.rl_mr); |
| seg1->mr_chunk.rl_mr = NULL; |
| while (seg1->mr_nsegs--) |
| rpcrdma_unmap_one(ia, seg++); |
| if (rc) |
| dprintk("RPC: %s: failed ib_dereg_mr," |
| " status %i\n", __func__, rc); |
| return rc; |
| } |
| |
| int |
| rpcrdma_register_external(struct rpcrdma_mr_seg *seg, |
| int nsegs, int writing, struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| int rc = 0; |
| |
| switch (ia->ri_memreg_strategy) { |
| |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| case RPCRDMA_ALLPHYSICAL: |
| rpcrdma_map_one(ia, seg, writing); |
| seg->mr_rkey = ia->ri_bind_mem->rkey; |
| seg->mr_base = seg->mr_dma; |
| seg->mr_nsegs = 1; |
| nsegs = 1; |
| break; |
| #endif |
| |
| /* Registration using frmr registration */ |
| case RPCRDMA_FRMR: |
| rc = rpcrdma_register_frmr_external(seg, &nsegs, writing, ia, r_xprt); |
| break; |
| |
| /* Registration using fmr memory registration */ |
| case RPCRDMA_MTHCAFMR: |
| rc = rpcrdma_register_fmr_external(seg, &nsegs, writing, ia); |
| break; |
| |
| /* Registration using memory windows */ |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| rc = rpcrdma_register_memwin_external(seg, &nsegs, writing, ia, r_xprt); |
| break; |
| |
| /* Default registration each time */ |
| default: |
| rc = rpcrdma_register_default_external(seg, &nsegs, writing, ia); |
| break; |
| } |
| if (rc) |
| return -1; |
| |
| return nsegs; |
| } |
| |
| int |
| rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg, |
| struct rpcrdma_xprt *r_xprt, void *r) |
| { |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| int nsegs = seg->mr_nsegs, rc; |
| |
| switch (ia->ri_memreg_strategy) { |
| |
| #if RPCRDMA_PERSISTENT_REGISTRATION |
| case RPCRDMA_ALLPHYSICAL: |
| BUG_ON(nsegs != 1); |
| rpcrdma_unmap_one(ia, seg); |
| rc = 0; |
| break; |
| #endif |
| |
| case RPCRDMA_FRMR: |
| rc = rpcrdma_deregister_frmr_external(seg, ia, r_xprt); |
| break; |
| |
| case RPCRDMA_MTHCAFMR: |
| rc = rpcrdma_deregister_fmr_external(seg, ia); |
| break; |
| |
| case RPCRDMA_MEMWINDOWS_ASYNC: |
| case RPCRDMA_MEMWINDOWS: |
| rc = rpcrdma_deregister_memwin_external(seg, ia, r_xprt, &r); |
| break; |
| |
| default: |
| rc = rpcrdma_deregister_default_external(seg, ia); |
| break; |
| } |
| if (r) { |
| struct rpcrdma_rep *rep = r; |
| void (*func)(struct rpcrdma_rep *) = rep->rr_func; |
| rep->rr_func = NULL; |
| func(rep); /* dereg done, callback now */ |
| } |
| return nsegs; |
| } |
| |
| /* |
| * Prepost any receive buffer, then post send. |
| * |
| * Receive buffer is donated to hardware, reclaimed upon recv completion. |
| */ |
| int |
| rpcrdma_ep_post(struct rpcrdma_ia *ia, |
| struct rpcrdma_ep *ep, |
| struct rpcrdma_req *req) |
| { |
| struct ib_send_wr send_wr, *send_wr_fail; |
| struct rpcrdma_rep *rep = req->rl_reply; |
| int rc; |
| |
| if (rep) { |
| rc = rpcrdma_ep_post_recv(ia, ep, rep); |
| if (rc) |
| goto out; |
| req->rl_reply = NULL; |
| } |
| |
| send_wr.next = NULL; |
| send_wr.wr_id = 0ULL; /* no send cookie */ |
| send_wr.sg_list = req->rl_send_iov; |
| send_wr.num_sge = req->rl_niovs; |
| send_wr.opcode = IB_WR_SEND; |
| if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */ |
| ib_dma_sync_single_for_device(ia->ri_id->device, |
| req->rl_send_iov[3].addr, req->rl_send_iov[3].length, |
| DMA_TO_DEVICE); |
| ib_dma_sync_single_for_device(ia->ri_id->device, |
| req->rl_send_iov[1].addr, req->rl_send_iov[1].length, |
| DMA_TO_DEVICE); |
| ib_dma_sync_single_for_device(ia->ri_id->device, |
| req->rl_send_iov[0].addr, req->rl_send_iov[0].length, |
| DMA_TO_DEVICE); |
| |
| if (DECR_CQCOUNT(ep) > 0) |
| send_wr.send_flags = 0; |
| else { /* Provider must take a send completion every now and then */ |
| INIT_CQCOUNT(ep); |
| send_wr.send_flags = IB_SEND_SIGNALED; |
| } |
| |
| rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); |
| if (rc) |
| dprintk("RPC: %s: ib_post_send returned %i\n", __func__, |
| rc); |
| out: |
| return rc; |
| } |
| |
| /* |
| * (Re)post a receive buffer. |
| */ |
| int |
| rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, |
| struct rpcrdma_ep *ep, |
| struct rpcrdma_rep *rep) |
| { |
| struct ib_recv_wr recv_wr, *recv_wr_fail; |
| int rc; |
| |
| recv_wr.next = NULL; |
| recv_wr.wr_id = (u64) (unsigned long) rep; |
| recv_wr.sg_list = &rep->rr_iov; |
| recv_wr.num_sge = 1; |
| |
| ib_dma_sync_single_for_cpu(ia->ri_id->device, |
| rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL); |
| |
| DECR_CQCOUNT(ep); |
| rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); |
| |
| if (rc) |
| dprintk("RPC: %s: ib_post_recv returned %i\n", __func__, |
| rc); |
| return rc; |
| } |