| /* |
| Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> |
| Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> |
| Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> |
| Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> |
| Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> |
| Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> |
| Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2800pci |
| Abstract: rt2800pci device specific routines. |
| Supported chipsets: RT2800E & RT2800ED. |
| */ |
| |
| #include <linux/crc-ccitt.h> |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/platform_device.h> |
| #include <linux/eeprom_93cx6.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00pci.h" |
| #include "rt2x00soc.h" |
| #include "rt2800lib.h" |
| #include "rt2800.h" |
| #include "rt2800pci.h" |
| |
| #ifdef CONFIG_RT2800PCI_PCI_MODULE |
| #define CONFIG_RT2800PCI_PCI |
| #endif |
| |
| #ifdef CONFIG_RT2800PCI_WISOC_MODULE |
| #define CONFIG_RT2800PCI_WISOC |
| #endif |
| |
| /* |
| * Allow hardware encryption to be disabled. |
| */ |
| static int modparam_nohwcrypt = 1; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); |
| |
| static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| for (i = 0; i < 200; i++) { |
| rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); |
| |
| if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) |
| break; |
| |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| if (i == 200) |
| ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); |
| |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); |
| } |
| |
| #ifdef CONFIG_RT2800PCI_WISOC |
| static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */ |
| |
| memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); |
| } |
| #else |
| static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| #endif /* CONFIG_RT2800PCI_WISOC */ |
| |
| #ifdef CONFIG_RT2800PCI_PCI |
| static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); |
| eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); |
| eeprom->reg_data_clock = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); |
| eeprom->reg_chip_select = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); |
| } |
| |
| static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg = 0; |
| |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, |
| !!eeprom->reg_data_clock); |
| rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, |
| !!eeprom->reg_chip_select); |
| |
| rt2800_register_write(rt2x00dev, E2PROM_CSR, reg); |
| } |
| |
| static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) |
| { |
| struct eeprom_93cx6 eeprom; |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom.data = rt2x00dev; |
| eeprom.register_read = rt2800pci_eepromregister_read; |
| eeprom.register_write = rt2800pci_eepromregister_write; |
| eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ? |
| PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; |
| eeprom.reg_data_in = 0; |
| eeprom.reg_data_out = 0; |
| eeprom.reg_data_clock = 0; |
| eeprom.reg_chip_select = 0; |
| |
| eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| EEPROM_SIZE / sizeof(u16)); |
| } |
| |
| static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| return rt2800_efuse_detect(rt2x00dev); |
| } |
| |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2800_read_eeprom_efuse(rt2x00dev); |
| } |
| #else |
| static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| |
| static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| return 0; |
| } |
| |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| #endif /* CONFIG_RT2800PCI_PCI */ |
| |
| /* |
| * Firmware functions |
| */ |
| static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) |
| { |
| return FIRMWARE_RT2860; |
| } |
| |
| static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| u16 fw_crc; |
| u16 crc; |
| |
| /* |
| * Only support 8kb firmware files. |
| */ |
| if (len != 8192) |
| return FW_BAD_LENGTH; |
| |
| /* |
| * The last 2 bytes in the firmware array are the crc checksum itself, |
| * this means that we should never pass those 2 bytes to the crc |
| * algorithm. |
| */ |
| fw_crc = (data[len - 2] << 8 | data[len - 1]); |
| |
| /* |
| * Use the crc ccitt algorithm. |
| * This will return the same value as the legacy driver which |
| * used bit ordering reversion on the both the firmware bytes |
| * before input input as well as on the final output. |
| * Obviously using crc ccitt directly is much more efficient. |
| */ |
| crc = crc_ccitt(~0, data, len - 2); |
| |
| /* |
| * There is a small difference between the crc-itu-t + bitrev and |
| * the crc-ccitt crc calculation. In the latter method the 2 bytes |
| * will be swapped, use swab16 to convert the crc to the correct |
| * value. |
| */ |
| crc = swab16(crc); |
| |
| return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; |
| } |
| |
| static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * Wait for stable hardware. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (reg && reg != ~0) |
| break; |
| msleep(1); |
| } |
| |
| if (i == REGISTER_BUSY_COUNT) { |
| ERROR(rt2x00dev, "Unstable hardware.\n"); |
| return -EBUSY; |
| } |
| |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002); |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000); |
| |
| /* |
| * Disable DMA, will be reenabled later when enabling |
| * the radio. |
| */ |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| /* |
| * enable Host program ram write selection |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg); |
| |
| /* |
| * Write firmware to device. |
| */ |
| rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, |
| data, len); |
| |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); |
| |
| /* |
| * Wait for device to stabilize. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); |
| if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) |
| break; |
| msleep(1); |
| } |
| |
| if (i == REGISTER_BUSY_COUNT) { |
| ERROR(rt2x00dev, "PBF system register not ready.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Disable interrupts |
| */ |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); |
| |
| /* |
| * Initialize BBP R/W access agent |
| */ |
| rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static bool rt2800pci_get_entry_state(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); |
| } |
| } |
| |
| static void rt2800pci_clear_entry(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| } |
| } |
| |
| static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct queue_entry_priv_pci *entry_priv; |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); |
| |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); |
| |
| /* |
| * Initialize registers. |
| */ |
| entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); |
| rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); |
| rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0); |
| rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0); |
| |
| entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); |
| rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); |
| rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0); |
| rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0); |
| |
| entry_priv = rt2x00dev->tx[2].entries[0].priv_data; |
| rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); |
| rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); |
| rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0); |
| rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0); |
| |
| entry_priv = rt2x00dev->tx[3].entries[0].priv_data; |
| rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); |
| rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); |
| rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0); |
| rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0); |
| |
| entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); |
| rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); |
| rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); |
| rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0); |
| |
| /* |
| * Enable global DMA configuration |
| */ |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, |
| (state == STATE_RADIO_RX_ON) || |
| (state == STATE_RADIO_RX_ON_LINK)); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| } |
| |
| static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int mask = (state == STATE_RADIO_IRQ_ON); |
| u32 reg; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| } |
| |
| rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, mask); |
| rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, mask); |
| rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| } |
| |
| static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && |
| !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) |
| return 0; |
| |
| msleep(1); |
| } |
| |
| ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 word; |
| |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) || |
| rt2800pci_init_queues(rt2x00dev) || |
| rt2800_init_registers(rt2x00dev) || |
| rt2800pci_wait_wpdma_ready(rt2x00dev) || |
| rt2800_init_bbp(rt2x00dev) || |
| rt2800_init_rfcsr(rt2x00dev))) |
| return -EIO; |
| |
| /* |
| * Send signal to firmware during boot time. |
| */ |
| rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0); |
| |
| /* |
| * Enable RX. |
| */ |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| /* |
| * Initialize LED control |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| return 0; |
| } |
| |
| static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0); |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0); |
| rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0); |
| |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280); |
| |
| rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); |
| |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); |
| |
| /* Wait for DMA, ignore error */ |
| rt2800pci_wait_wpdma_ready(rt2x00dev); |
| } |
| |
| static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| /* |
| * Always put the device to sleep (even when we intend to wakeup!) |
| * if the device is booting and wasn't asleep it will return |
| * failure when attempting to wakeup. |
| */ |
| rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2); |
| |
| if (state == STATE_AWAKE) { |
| rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0); |
| rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP); |
| } |
| |
| return 0; |
| } |
| |
| static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| /* |
| * Before the radio can be enabled, the device first has |
| * to be woken up. After that it needs a bit of time |
| * to be fully awake and then the radio can be enabled. |
| */ |
| rt2800pci_set_state(rt2x00dev, STATE_AWAKE); |
| msleep(1); |
| retval = rt2800pci_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| /* |
| * After the radio has been disabled, the device should |
| * be put to sleep for powersaving. |
| */ |
| rt2800pci_disable_radio(rt2x00dev); |
| rt2800pci_set_state(rt2x00dev, STATE_SLEEP); |
| break; |
| case STATE_RADIO_RX_ON: |
| case STATE_RADIO_RX_ON_LINK: |
| case STATE_RADIO_RX_OFF: |
| case STATE_RADIO_RX_OFF_LINK: |
| rt2800pci_toggle_rx(rt2x00dev, state); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| rt2800pci_toggle_irq(rt2x00dev, state); |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt2800pci_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); |
| __le32 *txd = skbdesc->desc; |
| __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom); |
| u32 word; |
| |
| /* |
| * Initialize TX Info descriptor |
| */ |
| rt2x00_desc_read(txwi, 0, &word); |
| rt2x00_set_field32(&word, TXWI_W0_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0); |
| rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); |
| rt2x00_set_field32(&word, TXWI_W0_TS, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_AMPDU, |
| test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density); |
| rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs); |
| rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs); |
| rt2x00_set_field32(&word, TXWI_W0_BW, |
| test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, |
| test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc); |
| rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); |
| rt2x00_desc_write(txwi, 0, word); |
| |
| rt2x00_desc_read(txwi, 1, &word); |
| rt2x00_set_field32(&word, TXWI_W1_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W1_NSEQ, |
| test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size); |
| rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, |
| test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? |
| txdesc->key_idx : 0xff); |
| rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, |
| skb->len - txdesc->l2pad); |
| rt2x00_set_field32(&word, TXWI_W1_PACKETID, |
| skbdesc->entry->queue->qid + 1); |
| rt2x00_desc_write(txwi, 1, word); |
| |
| /* |
| * Always write 0 to IV/EIV fields, hardware will insert the IV |
| * from the IVEIV register when TXD_W3_WIV is set to 0. |
| * When TXD_W3_WIV is set to 1 it will use the IV data |
| * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which |
| * crypto entry in the registers should be used to encrypt the frame. |
| */ |
| _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); |
| _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); |
| |
| /* |
| * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 |
| * must contains a TXWI structure + 802.11 header + padding + 802.11 |
| * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and |
| * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 |
| * data. It means that LAST_SEC0 is always 0. |
| */ |
| |
| /* |
| * Initialize TX descriptor |
| */ |
| rt2x00_desc_read(txd, 0, &word); |
| rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); |
| rt2x00_desc_write(txd, 0, word); |
| |
| rt2x00_desc_read(txd, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, |
| !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_BURST, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN0, |
| rt2x00dev->hw->extra_tx_headroom); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(txd, 1, word); |
| |
| rt2x00_desc_read(txd, 2, &word); |
| rt2x00_set_field32(&word, TXD_W2_SD_PTR1, |
| skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom); |
| rt2x00_desc_write(txd, 2, word); |
| |
| rt2x00_desc_read(txd, 3, &word); |
| rt2x00_set_field32(&word, TXD_W3_WIV, |
| !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W3_QSEL, 2); |
| rt2x00_desc_write(txd, 3, word); |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt2800pci_write_beacon(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| unsigned int beacon_base; |
| u32 reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| /* |
| * Write entire beacon with descriptor to register. |
| */ |
| beacon_base = HW_BEACON_OFFSET(entry->entry_idx); |
| rt2800_register_multiwrite(rt2x00dev, |
| beacon_base, |
| skbdesc->desc, skbdesc->desc_len); |
| rt2800_register_multiwrite(rt2x00dev, |
| beacon_base + skbdesc->desc_len, |
| entry->skb->data, entry->skb->len); |
| |
| /* |
| * Clean up beacon skb. |
| */ |
| dev_kfree_skb_any(entry->skb); |
| entry->skb = NULL; |
| } |
| |
| static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid queue_idx) |
| { |
| struct data_queue *queue; |
| unsigned int idx, qidx = 0; |
| u32 reg; |
| |
| if (queue_idx == QID_BEACON) { |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) { |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| return; |
| } |
| |
| if (queue_idx > QID_HCCA && queue_idx != QID_MGMT) |
| return; |
| |
| queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); |
| idx = queue->index[Q_INDEX]; |
| |
| if (queue_idx == QID_MGMT) |
| qidx = 5; |
| else |
| qidx = queue_idx; |
| |
| rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx); |
| } |
| |
| static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid qid) |
| { |
| u32 reg; |
| |
| if (qid == QID_BEACON) { |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0); |
| return; |
| } |
| |
| rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE)); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK)); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI)); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO)); |
| rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static void rt2800pci_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| __le32 *rxd = entry_priv->desc; |
| __le32 *rxwi = (__le32 *)entry->skb->data; |
| u32 rxd3; |
| u32 rxwi0; |
| u32 rxwi1; |
| u32 rxwi2; |
| u32 rxwi3; |
| |
| rt2x00_desc_read(rxd, 3, &rxd3); |
| rt2x00_desc_read(rxwi, 0, &rxwi0); |
| rt2x00_desc_read(rxwi, 1, &rxwi1); |
| rt2x00_desc_read(rxwi, 2, &rxwi2); |
| rt2x00_desc_read(rxwi, 3, &rxwi3); |
| |
| if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| |
| if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { |
| /* |
| * Unfortunately we don't know the cipher type used during |
| * decryption. This prevents us from correct providing |
| * correct statistics through debugfs. |
| */ |
| rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF); |
| rxdesc->cipher_status = |
| rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR); |
| } |
| |
| if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) { |
| /* |
| * Hardware has stripped IV/EIV data from 802.11 frame during |
| * decryption. Unfortunately the descriptor doesn't contain |
| * any fields with the EIV/IV data either, so they can't |
| * be restored by rt2x00lib. |
| */ |
| rxdesc->flags |= RX_FLAG_IV_STRIPPED; |
| |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| |
| if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) { |
| rxdesc->dev_flags |= RXDONE_L2PAD; |
| skbdesc->flags |= SKBDESC_L2_PADDED; |
| } |
| |
| if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI)) |
| rxdesc->flags |= RX_FLAG_SHORT_GI; |
| |
| if (rt2x00_get_field32(rxwi1, RXWI_W1_BW)) |
| rxdesc->flags |= RX_FLAG_40MHZ; |
| |
| /* |
| * Detect RX rate, always use MCS as signal type. |
| */ |
| rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; |
| rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE); |
| rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS); |
| |
| /* |
| * Mask of 0x8 bit to remove the short preamble flag. |
| */ |
| if (rxdesc->rate_mode == RATE_MODE_CCK) |
| rxdesc->signal &= ~0x8; |
| |
| rxdesc->rssi = |
| (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) + |
| rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2; |
| |
| rxdesc->noise = |
| (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) + |
| rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2; |
| |
| rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); |
| |
| /* |
| * Set RX IDX in register to inform hardware that we have handled |
| * this entry and it is available for reuse again. |
| */ |
| rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); |
| |
| /* |
| * Remove TXWI descriptor from start of buffer. |
| */ |
| skb_pull(entry->skb, RXWI_DESC_SIZE); |
| skb_trim(entry->skb, rxdesc->size); |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| struct queue_entry *entry; |
| struct queue_entry *entry_done; |
| struct queue_entry_priv_pci *entry_priv; |
| struct txdone_entry_desc txdesc; |
| u32 word; |
| u32 reg; |
| u32 old_reg; |
| unsigned int type; |
| unsigned int index; |
| u16 mcs, real_mcs; |
| |
| /* |
| * During each loop we will compare the freshly read |
| * TX_STA_FIFO register value with the value read from |
| * the previous loop. If the 2 values are equal then |
| * we should stop processing because the chance it |
| * quite big that the device has been unplugged and |
| * we risk going into an endless loop. |
| */ |
| old_reg = 0; |
| |
| while (1) { |
| rt2800_register_read(rt2x00dev, TX_STA_FIFO, ®); |
| if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID)) |
| break; |
| |
| if (old_reg == reg) |
| break; |
| old_reg = reg; |
| |
| /* |
| * Skip this entry when it contains an invalid |
| * queue identication number. |
| */ |
| type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1; |
| if (type >= QID_RX) |
| continue; |
| |
| queue = rt2x00queue_get_queue(rt2x00dev, type); |
| if (unlikely(!queue)) |
| continue; |
| |
| /* |
| * Skip this entry when it contains an invalid |
| * index number. |
| */ |
| index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1; |
| if (unlikely(index >= queue->limit)) |
| continue; |
| |
| entry = &queue->entries[index]; |
| entry_priv = entry->priv_data; |
| rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word); |
| |
| entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| while (entry != entry_done) { |
| /* |
| * Catch up. |
| * Just report any entries we missed as failed. |
| */ |
| WARNING(rt2x00dev, |
| "TX status report missed for entry %d\n", |
| entry_done->entry_idx); |
| |
| txdesc.flags = 0; |
| __set_bit(TXDONE_UNKNOWN, &txdesc.flags); |
| txdesc.retry = 0; |
| |
| rt2x00lib_txdone(entry_done, &txdesc); |
| entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| } |
| |
| /* |
| * Obtain the status about this packet. |
| */ |
| txdesc.flags = 0; |
| if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) |
| __set_bit(TXDONE_SUCCESS, &txdesc.flags); |
| else |
| __set_bit(TXDONE_FAILURE, &txdesc.flags); |
| |
| /* |
| * Ralink has a retry mechanism using a global fallback |
| * table. We setup this fallback table to try immediate |
| * lower rate for all rates. In the TX_STA_FIFO, |
| * the MCS field contains the MCS used for the successfull |
| * transmission. If the first transmission succeed, |
| * we have mcs == tx_mcs. On the second transmission, |
| * we have mcs = tx_mcs - 1. So the number of |
| * retry is (tx_mcs - mcs). |
| */ |
| mcs = rt2x00_get_field32(word, TXWI_W0_MCS); |
| real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS); |
| __set_bit(TXDONE_FALLBACK, &txdesc.flags); |
| txdesc.retry = mcs - min(mcs, real_mcs); |
| |
| rt2x00lib_txdone(entry, &txdesc); |
| } |
| } |
| |
| static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg; |
| |
| /* Read status and ACK all interrupts */ |
| rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| |
| if (!reg) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| /* |
| * 1 - Rx ring done interrupt. |
| */ |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) |
| rt2x00pci_rxdone(rt2x00dev); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) |
| rt2800pci_txdone(rt2x00dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Read EEPROM into buffer |
| */ |
| switch (rt2x00dev->chip.rt) { |
| case RT2880: |
| case RT3052: |
| rt2800pci_read_eeprom_soc(rt2x00dev); |
| break; |
| default: |
| if (rt2800pci_efuse_detect(rt2x00dev)) |
| rt2800pci_read_eeprom_efuse(rt2x00dev); |
| else |
| rt2800pci_read_eeprom_pci(rt2x00dev); |
| break; |
| } |
| |
| return rt2800_validate_eeprom(rt2x00dev); |
| } |
| |
| static const struct rt2800_ops rt2800pci_rt2800_ops = { |
| .register_read = rt2x00pci_register_read, |
| .register_read_lock = rt2x00pci_register_read, /* same for PCI */ |
| .register_write = rt2x00pci_register_write, |
| .register_write_lock = rt2x00pci_register_write, /* same for PCI */ |
| |
| .register_multiread = rt2x00pci_register_multiread, |
| .register_multiwrite = rt2x00pci_register_multiwrite, |
| |
| .regbusy_read = rt2x00pci_regbusy_read, |
| }; |
| |
| static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt2800pci_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt2800_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt2800_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device has multiple filters for control frames |
| * and has a separate filter for PS Poll frames. |
| */ |
| __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags); |
| __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags); |
| |
| /* |
| * This device requires firmware. |
| */ |
| if (!rt2x00_rt(&rt2x00dev->chip, RT2880) && |
| !rt2x00_rt(&rt2x00dev->chip, RT3052)) |
| __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); |
| __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); |
| __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags); |
| if (!modparam_nohwcrypt) |
| __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { |
| .irq_handler = rt2800pci_interrupt, |
| .probe_hw = rt2800pci_probe_hw, |
| .get_firmware_name = rt2800pci_get_firmware_name, |
| .check_firmware = rt2800pci_check_firmware, |
| .load_firmware = rt2800pci_load_firmware, |
| .initialize = rt2x00pci_initialize, |
| .uninitialize = rt2x00pci_uninitialize, |
| .get_entry_state = rt2800pci_get_entry_state, |
| .clear_entry = rt2800pci_clear_entry, |
| .set_device_state = rt2800pci_set_device_state, |
| .rfkill_poll = rt2800_rfkill_poll, |
| .link_stats = rt2800_link_stats, |
| .reset_tuner = rt2800_reset_tuner, |
| .link_tuner = rt2800_link_tuner, |
| .write_tx_desc = rt2800pci_write_tx_desc, |
| .write_tx_data = rt2x00pci_write_tx_data, |
| .write_beacon = rt2800pci_write_beacon, |
| .kick_tx_queue = rt2800pci_kick_tx_queue, |
| .kill_tx_queue = rt2800pci_kill_tx_queue, |
| .fill_rxdone = rt2800pci_fill_rxdone, |
| .config_shared_key = rt2800_config_shared_key, |
| .config_pairwise_key = rt2800_config_pairwise_key, |
| .config_filter = rt2800_config_filter, |
| .config_intf = rt2800_config_intf, |
| .config_erp = rt2800_config_erp, |
| .config_ant = rt2800_config_ant, |
| .config = rt2800_config, |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_rx = { |
| .entry_num = RX_ENTRIES, |
| .data_size = AGGREGATION_SIZE, |
| .desc_size = RXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_tx = { |
| .entry_num = TX_ENTRIES, |
| .data_size = AGGREGATION_SIZE, |
| .desc_size = TXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_bcn = { |
| .entry_num = 8 * BEACON_ENTRIES, |
| .data_size = 0, /* No DMA required for beacons */ |
| .desc_size = TXWI_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct rt2x00_ops rt2800pci_ops = { |
| .name = KBUILD_MODNAME, |
| .max_sta_intf = 1, |
| .max_ap_intf = 8, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .rx = &rt2800pci_queue_rx, |
| .tx = &rt2800pci_queue_tx, |
| .bcn = &rt2800pci_queue_bcn, |
| .lib = &rt2800pci_rt2x00_ops, |
| .hw = &rt2800_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt2800_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * RT2800pci module information. |
| */ |
| static struct pci_device_id rt2800pci_device_table[] = { |
| { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); |
| MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); |
| #ifdef CONFIG_RT2800PCI_PCI |
| MODULE_FIRMWARE(FIRMWARE_RT2860); |
| MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); |
| #endif /* CONFIG_RT2800PCI_PCI */ |
| MODULE_LICENSE("GPL"); |
| |
| #ifdef CONFIG_RT2800PCI_WISOC |
| #if defined(CONFIG_RALINK_RT288X) |
| __rt2x00soc_probe(RT2880, &rt2800pci_ops); |
| #elif defined(CONFIG_RALINK_RT305X) |
| __rt2x00soc_probe(RT3052, &rt2800pci_ops); |
| #endif |
| |
| static struct platform_driver rt2800soc_driver = { |
| .driver = { |
| .name = "rt2800_wmac", |
| .owner = THIS_MODULE, |
| .mod_name = KBUILD_MODNAME, |
| }, |
| .probe = __rt2x00soc_probe, |
| .remove = __devexit_p(rt2x00soc_remove), |
| .suspend = rt2x00soc_suspend, |
| .resume = rt2x00soc_resume, |
| }; |
| #endif /* CONFIG_RT2800PCI_WISOC */ |
| |
| #ifdef CONFIG_RT2800PCI_PCI |
| static struct pci_driver rt2800pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt2800pci_device_table, |
| .probe = rt2x00pci_probe, |
| .remove = __devexit_p(rt2x00pci_remove), |
| .suspend = rt2x00pci_suspend, |
| .resume = rt2x00pci_resume, |
| }; |
| #endif /* CONFIG_RT2800PCI_PCI */ |
| |
| static int __init rt2800pci_init(void) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_RT2800PCI_WISOC |
| ret = platform_driver_register(&rt2800soc_driver); |
| if (ret) |
| return ret; |
| #endif |
| #ifdef CONFIG_RT2800PCI_PCI |
| ret = pci_register_driver(&rt2800pci_driver); |
| if (ret) { |
| #ifdef CONFIG_RT2800PCI_WISOC |
| platform_driver_unregister(&rt2800soc_driver); |
| #endif |
| return ret; |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| static void __exit rt2800pci_exit(void) |
| { |
| #ifdef CONFIG_RT2800PCI_PCI |
| pci_unregister_driver(&rt2800pci_driver); |
| #endif |
| #ifdef CONFIG_RT2800PCI_WISOC |
| platform_driver_unregister(&rt2800soc_driver); |
| #endif |
| } |
| |
| module_init(rt2800pci_init); |
| module_exit(rt2800pci_exit); |