blob: cf6eacd4169abb8ab6cd9c32f13ae15138ca784d [file] [log] [blame]
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_log.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_vnodeops.h"
#include "xfs_da_btree.h"
#include "xfs_dir2_format.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include <linux/dcache.h>
#include <linux/falloc.h>
#include <linux/pagevec.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* Locking primitives for read and write IO paths to ensure we consistently use
* and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
*/
static inline void
xfs_rw_ilock(
struct xfs_inode *ip,
int type)
{
if (type & XFS_IOLOCK_EXCL)
mutex_lock(&VFS_I(ip)->i_mutex);
xfs_ilock(ip, type);
}
static inline void
xfs_rw_iunlock(
struct xfs_inode *ip,
int type)
{
xfs_iunlock(ip, type);
if (type & XFS_IOLOCK_EXCL)
mutex_unlock(&VFS_I(ip)->i_mutex);
}
static inline void
xfs_rw_ilock_demote(
struct xfs_inode *ip,
int type)
{
xfs_ilock_demote(ip, type);
if (type & XFS_IOLOCK_EXCL)
mutex_unlock(&VFS_I(ip)->i_mutex);
}
/*
* xfs_iozero
*
* xfs_iozero clears the specified range of buffer supplied,
* and marks all the affected blocks as valid and modified. If
* an affected block is not allocated, it will be allocated. If
* an affected block is not completely overwritten, and is not
* valid before the operation, it will be read from disk before
* being partially zeroed.
*/
int
xfs_iozero(
struct xfs_inode *ip, /* inode */
loff_t pos, /* offset in file */
size_t count) /* size of data to zero */
{
struct page *page;
struct address_space *mapping;
int status;
mapping = VFS_I(ip)->i_mapping;
do {
unsigned offset, bytes;
void *fsdata;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = pagecache_write_begin(NULL, mapping, pos, bytes,
AOP_FLAG_UNINTERRUPTIBLE,
&page, &fsdata);
if (status)
break;
zero_user(page, offset, bytes);
status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
page, fsdata);
WARN_ON(status <= 0); /* can't return less than zero! */
pos += bytes;
count -= bytes;
status = 0;
} while (count);
return (-status);
}
/*
* Fsync operations on directories are much simpler than on regular files,
* as there is no file data to flush, and thus also no need for explicit
* cache flush operations, and there are no non-transaction metadata updates
* on directories either.
*/
STATIC int
xfs_dir_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct xfs_inode *ip = XFS_I(file->f_mapping->host);
struct xfs_mount *mp = ip->i_mount;
xfs_lsn_t lsn = 0;
trace_xfs_dir_fsync(ip);
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip))
lsn = ip->i_itemp->ili_last_lsn;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!lsn)
return 0;
return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}
STATIC int
xfs_file_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
int log_flushed = 0;
xfs_lsn_t lsn = 0;
trace_xfs_file_fsync(ip);
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (error)
return error;
if (XFS_FORCED_SHUTDOWN(mp))
return -XFS_ERROR(EIO);
xfs_iflags_clear(ip, XFS_ITRUNCATED);
if (mp->m_flags & XFS_MOUNT_BARRIER) {
/*
* If we have an RT and/or log subvolume we need to make sure
* to flush the write cache the device used for file data
* first. This is to ensure newly written file data make
* it to disk before logging the new inode size in case of
* an extending write.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(mp->m_rtdev_targp);
else if (mp->m_logdev_targp != mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
}
/*
* All metadata updates are logged, which means that we just have
* to flush the log up to the latest LSN that touched the inode.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip)) {
if (!datasync ||
(ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
lsn = ip->i_itemp->ili_last_lsn;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (lsn)
error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
/*
* If we only have a single device, and the log force about was
* a no-op we might have to flush the data device cache here.
* This can only happen for fdatasync/O_DSYNC if we were overwriting
* an already allocated file and thus do not have any metadata to
* commit.
*/
if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
mp->m_logdev_targp == mp->m_ddev_targp &&
!XFS_IS_REALTIME_INODE(ip) &&
!log_flushed)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
return -error;
}
STATIC ssize_t
xfs_file_aio_read(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
size_t size = 0;
ssize_t ret = 0;
int ioflags = 0;
xfs_fsize_t n;
XFS_STATS_INC(xs_read_calls);
BUG_ON(iocb->ki_pos != pos);
if (unlikely(file->f_flags & O_DIRECT))
ioflags |= IO_ISDIRECT;
if (file->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
if (ret < 0)
return ret;
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((pos & target->bt_smask) || (size & target->bt_smask)) {
if (pos == i_size_read(inode))
return 0;
return -XFS_ERROR(EINVAL);
}
}
n = mp->m_super->s_maxbytes - pos;
if (n <= 0 || size == 0)
return 0;
if (n < size)
size = n;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
/*
* Locking is a bit tricky here. If we take an exclusive lock
* for direct IO, we effectively serialise all new concurrent
* read IO to this file and block it behind IO that is currently in
* progress because IO in progress holds the IO lock shared. We only
* need to hold the lock exclusive to blow away the page cache, so
* only take lock exclusively if the page cache needs invalidation.
* This allows the normal direct IO case of no page cache pages to
* proceeed concurrently without serialisation.
*/
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
if (inode->i_mapping->nrpages) {
ret = -filemap_write_and_wait_range(
VFS_I(ip)->i_mapping,
pos, -1);
if (ret) {
xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
truncate_pagecache_range(VFS_I(ip), pos, -1);
}
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
}
trace_xfs_file_read(ip, size, pos, ioflags);
ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC ssize_t
xfs_file_splice_read(
struct file *infilp,
loff_t *ppos,
struct pipe_inode_info *pipe,
size_t count,
unsigned int flags)
{
struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
int ioflags = 0;
ssize_t ret;
XFS_STATS_INC(xs_read_calls);
if (infilp->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
/*
* xfs_file_splice_write() does not use xfs_rw_ilock() because
* generic_file_splice_write() takes the i_mutex itself. This, in theory,
* couuld cause lock inversions between the aio_write path and the splice path
* if someone is doing concurrent splice(2) based writes and write(2) based
* writes to the same inode. The only real way to fix this is to re-implement
* the generic code here with correct locking orders.
*/
STATIC ssize_t
xfs_file_splice_write(
struct pipe_inode_info *pipe,
struct file *outfilp,
loff_t *ppos,
size_t count,
unsigned int flags)
{
struct inode *inode = outfilp->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
int ioflags = 0;
ssize_t ret;
XFS_STATS_INC(xs_write_calls);
if (outfilp->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_ilock(ip, XFS_IOLOCK_EXCL);
trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
if (ret > 0)
XFS_STATS_ADD(xs_write_bytes, ret);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
/*
* This routine is called to handle zeroing any space in the last block of the
* file that is beyond the EOF. We do this since the size is being increased
* without writing anything to that block and we don't want to read the
* garbage on the disk.
*/
STATIC int /* error (positive) */
xfs_zero_last_block(
struct xfs_inode *ip,
xfs_fsize_t offset,
xfs_fsize_t isize)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
int zero_len;
int nimaps = 1;
int error = 0;
struct xfs_bmbt_irec imap;
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
ASSERT(nimaps > 0);
/*
* If the block underlying isize is just a hole, then there
* is nothing to zero.
*/
if (imap.br_startblock == HOLESTARTBLOCK)
return 0;
zero_len = mp->m_sb.sb_blocksize - zero_offset;
if (isize + zero_len > offset)
zero_len = offset - isize;
return xfs_iozero(ip, isize, zero_len);
}
/*
* Zero any on disk space between the current EOF and the new, larger EOF.
*
* This handles the normal case of zeroing the remainder of the last block in
* the file and the unusual case of zeroing blocks out beyond the size of the
* file. This second case only happens with fixed size extents and when the
* system crashes before the inode size was updated but after blocks were
* allocated.
*
* Expects the iolock to be held exclusive, and will take the ilock internally.
*/
int /* error (positive) */
xfs_zero_eof(
struct xfs_inode *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize) /* current inode size */
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t start_zero_fsb;
xfs_fileoff_t end_zero_fsb;
xfs_fileoff_t zero_count_fsb;
xfs_fileoff_t last_fsb;
xfs_fileoff_t zero_off;
xfs_fsize_t zero_len;
int nimaps;
int error = 0;
struct xfs_bmbt_irec imap;
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(offset > isize);
/*
* First handle zeroing the block on which isize resides.
*
* We only zero a part of that block so it is handled specially.
*/
if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
error = xfs_zero_last_block(ip, offset, isize);
if (error)
return error;
}
/*
* Calculate the range between the new size and the old where blocks
* needing to be zeroed may exist.
*
* To get the block where the last byte in the file currently resides,
* we need to subtract one from the size and truncate back to a block
* boundary. We subtract 1 in case the size is exactly on a block
* boundary.
*/
last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
if (last_fsb == end_zero_fsb) {
/*
* The size was only incremented on its last block.
* We took care of that above, so just return.
*/
return 0;
}
ASSERT(start_zero_fsb <= end_zero_fsb);
while (start_zero_fsb <= end_zero_fsb) {
nimaps = 1;
zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
&imap, &nimaps, 0);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
ASSERT(nimaps > 0);
if (imap.br_state == XFS_EXT_UNWRITTEN ||
imap.br_startblock == HOLESTARTBLOCK) {
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
continue;
}
/*
* There are blocks we need to zero.
*/
zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
if ((zero_off + zero_len) > offset)
zero_len = offset - zero_off;
error = xfs_iozero(ip, zero_off, zero_len);
if (error)
return error;
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
}
return 0;
}
/*
* Common pre-write limit and setup checks.
*
* Called with the iolocked held either shared and exclusive according to
* @iolock, and returns with it held. Might upgrade the iolock to exclusive
* if called for a direct write beyond i_size.
*/
STATIC ssize_t
xfs_file_aio_write_checks(
struct file *file,
loff_t *pos,
size_t *count,
int *iolock)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
int error = 0;
restart:
error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
if (error)
return error;
/*
* If the offset is beyond the size of the file, we need to zero any
* blocks that fall between the existing EOF and the start of this
* write. If zeroing is needed and we are currently holding the
* iolock shared, we need to update it to exclusive which implies
* having to redo all checks before.
*/
if (*pos > i_size_read(inode)) {
if (*iolock == XFS_IOLOCK_SHARED) {
xfs_rw_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, *iolock);
goto restart;
}
error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
if (error)
return error;
}
/*
* Updating the timestamps will grab the ilock again from
* xfs_fs_dirty_inode, so we have to call it after dropping the
* lock above. Eventually we should look into a way to avoid
* the pointless lock roundtrip.
*/
if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
error = file_update_time(file);
if (error)
return error;
}
/*
* If we're writing the file then make sure to clear the setuid and
* setgid bits if the process is not being run by root. This keeps
* people from modifying setuid and setgid binaries.
*/
return file_remove_suid(file);
}
/*
* xfs_file_dio_aio_write - handle direct IO writes
*
* Lock the inode appropriately to prepare for and issue a direct IO write.
* By separating it from the buffered write path we remove all the tricky to
* follow locking changes and looping.
*
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
* pages are flushed out.
*
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
* allowing them to be done in parallel with reads and other direct IO writes.
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
* needs to do sub-block zeroing and that requires serialisation against other
* direct IOs to the same block. In this case we need to serialise the
* submission of the unaligned IOs so that we don't get racing block zeroing in
* the dio layer. To avoid the problem with aio, we also need to wait for
* outstanding IOs to complete so that unwritten extent conversion is completed
* before we try to map the overlapping block. This is currently implemented by
* hitting it with a big hammer (i.e. inode_dio_wait()).
*
* Returns with locks held indicated by @iolock and errors indicated by
* negative return values.
*/
STATIC ssize_t
xfs_file_dio_aio_write(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos,
size_t ocount)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
size_t count = ocount;
int unaligned_io = 0;
int iolock;
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((pos & target->bt_smask) || (count & target->bt_smask))
return -XFS_ERROR(EINVAL);
if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
unaligned_io = 1;
/*
* We don't need to take an exclusive lock unless there page cache needs
* to be invalidated or unaligned IO is being executed. We don't need to
* consider the EOF extension case here because
* xfs_file_aio_write_checks() will relock the inode as necessary for
* EOF zeroing cases and fill out the new inode size as appropriate.
*/
if (unaligned_io || mapping->nrpages)
iolock = XFS_IOLOCK_EXCL;
else
iolock = XFS_IOLOCK_SHARED;
xfs_rw_ilock(ip, iolock);
/*
* Recheck if there are cached pages that need invalidate after we got
* the iolock to protect against other threads adding new pages while
* we were waiting for the iolock.
*/
if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
xfs_rw_iunlock(ip, iolock);
iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
if (ret)
goto out;
if (mapping->nrpages) {
ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
pos, -1);
if (ret)
goto out;
truncate_pagecache_range(VFS_I(ip), pos, -1);
}
/*
* If we are doing unaligned IO, wait for all other IO to drain,
* otherwise demote the lock if we had to flush cached pages
*/
if (unaligned_io)
inode_dio_wait(inode);
else if (iolock == XFS_IOLOCK_EXCL) {
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
ret = generic_file_direct_write(iocb, iovp,
&nr_segs, pos, &iocb->ki_pos, count, ocount);
out:
xfs_rw_iunlock(ip, iolock);
/* No fallback to buffered IO on errors for XFS. */
ASSERT(ret < 0 || ret == count);
return ret;
}
STATIC ssize_t
xfs_file_buffered_aio_write(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos,
size_t ocount)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
int enospc = 0;
int iolock = XFS_IOLOCK_EXCL;
size_t count = ocount;
xfs_rw_ilock(ip, iolock);
ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
if (ret)
goto out;
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
write_retry:
trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
ret = generic_file_buffered_write(iocb, iovp, nr_segs,
pos, &iocb->ki_pos, count, 0);
/*
* If we just got an ENOSPC, try to write back all dirty inodes to
* convert delalloc space to free up some of the excess reserved
* metadata space.
*/
if (ret == -ENOSPC && !enospc) {
enospc = 1;
xfs_flush_inodes(ip->i_mount);
goto write_retry;
}
current->backing_dev_info = NULL;
out:
xfs_rw_iunlock(ip, iolock);
return ret;
}
STATIC ssize_t
xfs_file_aio_write(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
size_t ocount = 0;
XFS_STATS_INC(xs_write_calls);
BUG_ON(iocb->ki_pos != pos);
ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
if (ret)
return ret;
if (ocount == 0)
return 0;
sb_start_write(inode->i_sb);
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ret = -EIO;
goto out;
}
if (unlikely(file->f_flags & O_DIRECT))
ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
else
ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
ocount);
if (ret > 0) {
ssize_t err;
XFS_STATS_ADD(xs_write_bytes, ret);
/* Handle various SYNC-type writes */
err = generic_write_sync(file, pos, ret);
if (err < 0)
ret = err;
}
out:
sb_end_write(inode->i_sb);
return ret;
}
STATIC long
xfs_file_fallocate(
struct file *file,
int mode,
loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
long error;
loff_t new_size = 0;
xfs_flock64_t bf;
xfs_inode_t *ip = XFS_I(inode);
int cmd = XFS_IOC_RESVSP;
int attr_flags = XFS_ATTR_NOLOCK;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
bf.l_whence = 0;
bf.l_start = offset;
bf.l_len = len;
xfs_ilock(ip, XFS_IOLOCK_EXCL);
if (mode & FALLOC_FL_PUNCH_HOLE)
cmd = XFS_IOC_UNRESVSP;
/* check the new inode size is valid before allocating */
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
offset + len > i_size_read(inode)) {
new_size = offset + len;
error = inode_newsize_ok(inode, new_size);
if (error)
goto out_unlock;
}
if (file->f_flags & O_DSYNC)
attr_flags |= XFS_ATTR_SYNC;
error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
if (error)
goto out_unlock;
/* Change file size if needed */
if (new_size) {
struct iattr iattr;
iattr.ia_valid = ATTR_SIZE;
iattr.ia_size = new_size;
error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
}
out_unlock:
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return error;
}
STATIC int
xfs_file_open(
struct inode *inode,
struct file *file)
{
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
return -EFBIG;
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
return -EIO;
return 0;
}
STATIC int
xfs_dir_open(
struct inode *inode,
struct file *file)
{
struct xfs_inode *ip = XFS_I(inode);
int mode;
int error;
error = xfs_file_open(inode, file);
if (error)
return error;
/*
* If there are any blocks, read-ahead block 0 as we're almost
* certain to have the next operation be a read there.
*/
mode = xfs_ilock_map_shared(ip);
if (ip->i_d.di_nextents > 0)
xfs_dir3_data_readahead(NULL, ip, 0, -1);
xfs_iunlock(ip, mode);
return 0;
}
STATIC int
xfs_file_release(
struct inode *inode,
struct file *filp)
{
return -xfs_release(XFS_I(inode));
}
STATIC int
xfs_file_readdir(
struct file *filp,
void *dirent,
filldir_t filldir)
{
struct inode *inode = file_inode(filp);
xfs_inode_t *ip = XFS_I(inode);
int error;
size_t bufsize;
/*
* The Linux API doesn't pass down the total size of the buffer
* we read into down to the filesystem. With the filldir concept
* it's not needed for correct information, but the XFS dir2 leaf
* code wants an estimate of the buffer size to calculate it's
* readahead window and size the buffers used for mapping to
* physical blocks.
*
* Try to give it an estimate that's good enough, maybe at some
* point we can change the ->readdir prototype to include the
* buffer size. For now we use the current glibc buffer size.
*/
bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
error = xfs_readdir(ip, dirent, bufsize,
(xfs_off_t *)&filp->f_pos, filldir);
if (error)
return -error;
return 0;
}
STATIC int
xfs_file_mmap(
struct file *filp,
struct vm_area_struct *vma)
{
vma->vm_ops = &xfs_file_vm_ops;
file_accessed(filp);
return 0;
}
/*
* mmap()d file has taken write protection fault and is being made
* writable. We can set the page state up correctly for a writable
* page, which means we can do correct delalloc accounting (ENOSPC
* checking!) and unwritten extent mapping.
*/
STATIC int
xfs_vm_page_mkwrite(
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
return block_page_mkwrite(vma, vmf, xfs_get_blocks);
}
/*
* This type is designed to indicate the type of offset we would like
* to search from page cache for either xfs_seek_data() or xfs_seek_hole().
*/
enum {
HOLE_OFF = 0,
DATA_OFF,
};
/*
* Lookup the desired type of offset from the given page.
*
* On success, return true and the offset argument will point to the
* start of the region that was found. Otherwise this function will
* return false and keep the offset argument unchanged.
*/
STATIC bool
xfs_lookup_buffer_offset(
struct page *page,
loff_t *offset,
unsigned int type)
{
loff_t lastoff = page_offset(page);
bool found = false;
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
do {
/*
* Unwritten extents that have data in the page
* cache covering them can be identified by the
* BH_Unwritten state flag. Pages with multiple
* buffers might have a mix of holes, data and
* unwritten extents - any buffer with valid
* data in it should have BH_Uptodate flag set
* on it.
*/
if (buffer_unwritten(bh) ||
buffer_uptodate(bh)) {
if (type == DATA_OFF)
found = true;
} else {
if (type == HOLE_OFF)
found = true;
}
if (found) {
*offset = lastoff;
break;
}
lastoff += bh->b_size;
} while ((bh = bh->b_this_page) != head);
return found;
}
/*
* This routine is called to find out and return a data or hole offset
* from the page cache for unwritten extents according to the desired
* type for xfs_seek_data() or xfs_seek_hole().
*
* The argument offset is used to tell where we start to search from the
* page cache. Map is used to figure out the end points of the range to
* lookup pages.
*
* Return true if the desired type of offset was found, and the argument
* offset is filled with that address. Otherwise, return false and keep
* offset unchanged.
*/
STATIC bool
xfs_find_get_desired_pgoff(
struct inode *inode,
struct xfs_bmbt_irec *map,
unsigned int type,
loff_t *offset)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct pagevec pvec;
pgoff_t index;
pgoff_t end;
loff_t endoff;
loff_t startoff = *offset;
loff_t lastoff = startoff;
bool found = false;
pagevec_init(&pvec, 0);
index = startoff >> PAGE_CACHE_SHIFT;
endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
end = endoff >> PAGE_CACHE_SHIFT;
do {
int want;
unsigned nr_pages;
unsigned int i;
want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
want);
/*
* No page mapped into given range. If we are searching holes
* and if this is the first time we got into the loop, it means
* that the given offset is landed in a hole, return it.
*
* If we have already stepped through some block buffers to find
* holes but they all contains data. In this case, the last
* offset is already updated and pointed to the end of the last
* mapped page, if it does not reach the endpoint to search,
* that means there should be a hole between them.
*/
if (nr_pages == 0) {
/* Data search found nothing */
if (type == DATA_OFF)
break;
ASSERT(type == HOLE_OFF);
if (lastoff == startoff || lastoff < endoff) {
found = true;
*offset = lastoff;
}
break;
}
/*
* At lease we found one page. If this is the first time we
* step into the loop, and if the first page index offset is
* greater than the given search offset, a hole was found.
*/
if (type == HOLE_OFF && lastoff == startoff &&
lastoff < page_offset(pvec.pages[0])) {
found = true;
break;
}
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
loff_t b_offset;
/*
* At this point, the page may be truncated or
* invalidated (changing page->mapping to NULL),
* or even swizzled back from swapper_space to tmpfs
* file mapping. However, page->index will not change
* because we have a reference on the page.
*
* Searching done if the page index is out of range.
* If the current offset is not reaches the end of
* the specified search range, there should be a hole
* between them.
*/
if (page->index > end) {
if (type == HOLE_OFF && lastoff < endoff) {
*offset = lastoff;
found = true;
}
goto out;
}
lock_page(page);
/*
* Page truncated or invalidated(page->mapping == NULL).
* We can freely skip it and proceed to check the next
* page.
*/
if (unlikely(page->mapping != inode->i_mapping)) {
unlock_page(page);
continue;
}
if (!page_has_buffers(page)) {
unlock_page(page);
continue;
}
found = xfs_lookup_buffer_offset(page, &b_offset, type);
if (found) {
/*
* The found offset may be less than the start
* point to search if this is the first time to
* come here.
*/
*offset = max_t(loff_t, startoff, b_offset);
unlock_page(page);
goto out;
}
/*
* We either searching data but nothing was found, or
* searching hole but found a data buffer. In either
* case, probably the next page contains the desired
* things, update the last offset to it so.
*/
lastoff = page_offset(page) + PAGE_SIZE;
unlock_page(page);
}
/*
* The number of returned pages less than our desired, search
* done. In this case, nothing was found for searching data,
* but we found a hole behind the last offset.
*/
if (nr_pages < want) {
if (type == HOLE_OFF) {
*offset = lastoff;
found = true;
}
break;
}
index = pvec.pages[i - 1]->index + 1;
pagevec_release(&pvec);
} while (index <= end);
out:
pagevec_release(&pvec);
return found;
}
STATIC loff_t
xfs_seek_data(
struct file *file,
loff_t start)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
loff_t uninitialized_var(offset);
xfs_fsize_t isize;
xfs_fileoff_t fsbno;
xfs_filblks_t end;
uint lock;
int error;
lock = xfs_ilock_map_shared(ip);
isize = i_size_read(inode);
if (start >= isize) {
error = ENXIO;
goto out_unlock;
}
/*
* Try to read extents from the first block indicated
* by fsbno to the end block of the file.
*/
fsbno = XFS_B_TO_FSBT(mp, start);
end = XFS_B_TO_FSB(mp, isize);
for (;;) {
struct xfs_bmbt_irec map[2];
int nmap = 2;
unsigned int i;
error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
XFS_BMAPI_ENTIRE);
if (error)
goto out_unlock;
/* No extents at given offset, must be beyond EOF */
if (nmap == 0) {
error = ENXIO;
goto out_unlock;
}
for (i = 0; i < nmap; i++) {
offset = max_t(loff_t, start,
XFS_FSB_TO_B(mp, map[i].br_startoff));
/* Landed in a data extent */
if (map[i].br_startblock == DELAYSTARTBLOCK ||
(map[i].br_state == XFS_EXT_NORM &&
!isnullstartblock(map[i].br_startblock)))
goto out;
/*
* Landed in an unwritten extent, try to search data
* from page cache.
*/
if (map[i].br_state == XFS_EXT_UNWRITTEN) {
if (xfs_find_get_desired_pgoff(inode, &map[i],
DATA_OFF, &offset))
goto out;
}
}
/*
* map[0] is hole or its an unwritten extent but
* without data in page cache. Probably means that
* we are reading after EOF if nothing in map[1].
*/
if (nmap == 1) {
error = ENXIO;
goto out_unlock;
}
ASSERT(i > 1);
/*
* Nothing was found, proceed to the next round of search
* if reading offset not beyond or hit EOF.
*/
fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
start = XFS_FSB_TO_B(mp, fsbno);
if (start >= isize) {
error = ENXIO;
goto out_unlock;
}
}
out:
if (offset != file->f_pos)
file->f_pos = offset;
out_unlock:
xfs_iunlock_map_shared(ip, lock);
if (error)
return -error;
return offset;
}
STATIC loff_t
xfs_seek_hole(
struct file *file,
loff_t start)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
loff_t uninitialized_var(offset);
xfs_fsize_t isize;
xfs_fileoff_t fsbno;
xfs_filblks_t end;
uint lock;
int error;
if (XFS_FORCED_SHUTDOWN(mp))
return -XFS_ERROR(EIO);
lock = xfs_ilock_map_shared(ip);
isize = i_size_read(inode);
if (start >= isize) {
error = ENXIO;
goto out_unlock;
}
fsbno = XFS_B_TO_FSBT(mp, start);
end = XFS_B_TO_FSB(mp, isize);
for (;;) {
struct xfs_bmbt_irec map[2];
int nmap = 2;
unsigned int i;
error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
XFS_BMAPI_ENTIRE);
if (error)
goto out_unlock;
/* No extents at given offset, must be beyond EOF */
if (nmap == 0) {
error = ENXIO;
goto out_unlock;
}
for (i = 0; i < nmap; i++) {
offset = max_t(loff_t, start,
XFS_FSB_TO_B(mp, map[i].br_startoff));
/* Landed in a hole */
if (map[i].br_startblock == HOLESTARTBLOCK)
goto out;
/*
* Landed in an unwritten extent, try to search hole
* from page cache.
*/
if (map[i].br_state == XFS_EXT_UNWRITTEN) {
if (xfs_find_get_desired_pgoff(inode, &map[i],
HOLE_OFF, &offset))
goto out;
}
}
/*
* map[0] contains data or its unwritten but contains
* data in page cache, probably means that we are
* reading after EOF. We should fix offset to point
* to the end of the file(i.e., there is an implicit
* hole at the end of any file).
*/
if (nmap == 1) {
offset = isize;
break;
}
ASSERT(i > 1);
/*
* Both mappings contains data, proceed to the next round of
* search if the current reading offset not beyond or hit EOF.
*/
fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
start = XFS_FSB_TO_B(mp, fsbno);
if (start >= isize) {
offset = isize;
break;
}
}
out:
/*
* At this point, we must have found a hole. However, the returned
* offset may be bigger than the file size as it may be aligned to
* page boundary for unwritten extents, we need to deal with this
* situation in particular.
*/
offset = min_t(loff_t, offset, isize);
if (offset != file->f_pos)
file->f_pos = offset;
out_unlock:
xfs_iunlock_map_shared(ip, lock);
if (error)
return -error;
return offset;
}
STATIC loff_t
xfs_file_llseek(
struct file *file,
loff_t offset,
int origin)
{
switch (origin) {
case SEEK_END:
case SEEK_CUR:
case SEEK_SET:
return generic_file_llseek(file, offset, origin);
case SEEK_DATA:
return xfs_seek_data(file, offset);
case SEEK_HOLE:
return xfs_seek_hole(file, offset);
default:
return -EINVAL;
}
}
const struct file_operations xfs_file_operations = {
.llseek = xfs_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.aio_read = xfs_file_aio_read,
.aio_write = xfs_file_aio_write,
.splice_read = xfs_file_splice_read,
.splice_write = xfs_file_splice_write,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.mmap = xfs_file_mmap,
.open = xfs_file_open,
.release = xfs_file_release,
.fsync = xfs_file_fsync,
.fallocate = xfs_file_fallocate,
};
const struct file_operations xfs_dir_file_operations = {
.open = xfs_dir_open,
.read = generic_read_dir,
.readdir = xfs_file_readdir,
.llseek = generic_file_llseek,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.fsync = xfs_dir_fsync,
};
static const struct vm_operations_struct xfs_file_vm_ops = {
.fault = filemap_fault,
.page_mkwrite = xfs_vm_page_mkwrite,
.remap_pages = generic_file_remap_pages,
};