blob: b8776a362a91737693358999415ea41a68faf5ff [file] [log] [blame]
/*
* Copyright(c) 2015 - 2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <rdma/ib_mad.h>
#include <rdma/ib_user_verbs.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/utsname.h>
#include <linux/rculist.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <rdma/opa_addr.h>
#include "hfi.h"
#include "common.h"
#include "device.h"
#include "trace.h"
#include "qp.h"
#include "verbs_txreq.h"
#include "debugfs.h"
#include "vnic.h"
static unsigned int hfi1_lkey_table_size = 16;
module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
S_IRUGO);
MODULE_PARM_DESC(lkey_table_size,
"LKEY table size in bits (2^n, 1 <= n <= 23)");
static unsigned int hfi1_max_pds = 0xFFFF;
module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
MODULE_PARM_DESC(max_pds,
"Maximum number of protection domains to support");
static unsigned int hfi1_max_ahs = 0xFFFF;
module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
unsigned int hfi1_max_cqes = 0x2FFFFF;
module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
MODULE_PARM_DESC(max_cqes,
"Maximum number of completion queue entries to support");
unsigned int hfi1_max_cqs = 0x1FFFF;
module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
unsigned int hfi1_max_qp_wrs = 0x3FFF;
module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
unsigned int hfi1_max_qps = 32768;
module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
unsigned int hfi1_max_sges = 0x60;
module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
unsigned int hfi1_max_mcast_grps = 16384;
module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
MODULE_PARM_DESC(max_mcast_grps,
"Maximum number of multicast groups to support");
unsigned int hfi1_max_mcast_qp_attached = 16;
module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
uint, S_IRUGO);
MODULE_PARM_DESC(max_mcast_qp_attached,
"Maximum number of attached QPs to support");
unsigned int hfi1_max_srqs = 1024;
module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
unsigned int hfi1_max_srq_sges = 128;
module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
unsigned int hfi1_max_srq_wrs = 0x1FFFF;
module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
unsigned short piothreshold = 256;
module_param(piothreshold, ushort, S_IRUGO);
MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
#define COPY_CACHELESS 1
#define COPY_ADAPTIVE 2
static unsigned int sge_copy_mode;
module_param(sge_copy_mode, uint, S_IRUGO);
MODULE_PARM_DESC(sge_copy_mode,
"Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
static void verbs_sdma_complete(
struct sdma_txreq *cookie,
int status);
static int pio_wait(struct rvt_qp *qp,
struct send_context *sc,
struct hfi1_pkt_state *ps,
u32 flag);
/* Length of buffer to create verbs txreq cache name */
#define TXREQ_NAME_LEN 24
/* 16B trailing buffer */
static const u8 trail_buf[MAX_16B_PADDING];
static uint wss_threshold;
module_param(wss_threshold, uint, S_IRUGO);
MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
static uint wss_clean_period = 256;
module_param(wss_clean_period, uint, S_IRUGO);
MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
/* memory working set size */
struct hfi1_wss {
unsigned long *entries;
atomic_t total_count;
atomic_t clean_counter;
atomic_t clean_entry;
int threshold;
int num_entries;
long pages_mask;
};
static struct hfi1_wss wss;
int hfi1_wss_init(void)
{
long llc_size;
long llc_bits;
long table_size;
long table_bits;
/* check for a valid percent range - default to 80 if none or invalid */
if (wss_threshold < 1 || wss_threshold > 100)
wss_threshold = 80;
/* reject a wildly large period */
if (wss_clean_period > 1000000)
wss_clean_period = 256;
/* reject a zero period */
if (wss_clean_period == 0)
wss_clean_period = 1;
/*
* Calculate the table size - the next power of 2 larger than the
* LLC size. LLC size is in KiB.
*/
llc_size = wss_llc_size() * 1024;
table_size = roundup_pow_of_two(llc_size);
/* one bit per page in rounded up table */
llc_bits = llc_size / PAGE_SIZE;
table_bits = table_size / PAGE_SIZE;
wss.pages_mask = table_bits - 1;
wss.num_entries = table_bits / BITS_PER_LONG;
wss.threshold = (llc_bits * wss_threshold) / 100;
if (wss.threshold == 0)
wss.threshold = 1;
atomic_set(&wss.clean_counter, wss_clean_period);
wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
GFP_KERNEL);
if (!wss.entries) {
hfi1_wss_exit();
return -ENOMEM;
}
return 0;
}
void hfi1_wss_exit(void)
{
/* coded to handle partially initialized and repeat callers */
kfree(wss.entries);
wss.entries = NULL;
}
/*
* Advance the clean counter. When the clean period has expired,
* clean an entry.
*
* This is implemented in atomics to avoid locking. Because multiple
* variables are involved, it can be racy which can lead to slightly
* inaccurate information. Since this is only a heuristic, this is
* OK. Any innaccuracies will clean themselves out as the counter
* advances. That said, it is unlikely the entry clean operation will
* race - the next possible racer will not start until the next clean
* period.
*
* The clean counter is implemented as a decrement to zero. When zero
* is reached an entry is cleaned.
*/
static void wss_advance_clean_counter(void)
{
int entry;
int weight;
unsigned long bits;
/* become the cleaner if we decrement the counter to zero */
if (atomic_dec_and_test(&wss.clean_counter)) {
/*
* Set, not add, the clean period. This avoids an issue
* where the counter could decrement below the clean period.
* Doing a set can result in lost decrements, slowing the
* clean advance. Since this a heuristic, this possible
* slowdown is OK.
*
* An alternative is to loop, advancing the counter by a
* clean period until the result is > 0. However, this could
* lead to several threads keeping another in the clean loop.
* This could be mitigated by limiting the number of times
* we stay in the loop.
*/
atomic_set(&wss.clean_counter, wss_clean_period);
/*
* Uniquely grab the entry to clean and move to next.
* The current entry is always the lower bits of
* wss.clean_entry. The table size, wss.num_entries,
* is always a power-of-2.
*/
entry = (atomic_inc_return(&wss.clean_entry) - 1)
& (wss.num_entries - 1);
/* clear the entry and count the bits */
bits = xchg(&wss.entries[entry], 0);
weight = hweight64((u64)bits);
/* only adjust the contended total count if needed */
if (weight)
atomic_sub(weight, &wss.total_count);
}
}
/*
* Insert the given address into the working set array.
*/
static void wss_insert(void *address)
{
u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
u32 nr = page & (BITS_PER_LONG - 1);
if (!test_and_set_bit(nr, &wss.entries[entry]))
atomic_inc(&wss.total_count);
wss_advance_clean_counter();
}
/*
* Is the working set larger than the threshold?
*/
static inline bool wss_exceeds_threshold(void)
{
return atomic_read(&wss.total_count) >= wss.threshold;
}
/*
* Translate ib_wr_opcode into ib_wc_opcode.
*/
const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
[IB_WR_SEND] = IB_WC_SEND,
[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
[IB_WR_REG_MR] = IB_WC_REG_MR
};
/*
* Length of header by opcode, 0 --> not supported
*/
const u8 hdr_len_by_opcode[256] = {
/* RC */
[IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
[IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_SEND_LAST] = 12 + 8,
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
[IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
[IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
[IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
[IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
/* UC */
[IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
[IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
[IB_OPCODE_UC_SEND_LAST] = 12 + 8,
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
[IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
/* UD */
[IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
};
static const opcode_handler opcode_handler_tbl[256] = {
/* RC */
[IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
[IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
[IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
/* UC */
[IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
/* UD */
[IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
/* CNP */
[IB_OPCODE_CNP] = &hfi1_cnp_rcv
};
#define OPMASK 0x1f
static const u32 pio_opmask[BIT(3)] = {
/* RC */
[IB_OPCODE_RC >> 5] =
BIT(RC_OP(SEND_ONLY) & OPMASK) |
BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
BIT(RC_OP(FETCH_ADD) & OPMASK),
/* UC */
[IB_OPCODE_UC >> 5] =
BIT(UC_OP(SEND_ONLY) & OPMASK) |
BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
};
/*
* System image GUID.
*/
__be64 ib_hfi1_sys_image_guid;
/**
* hfi1_copy_sge - copy data to SGE memory
* @ss: the SGE state
* @data: the data to copy
* @length: the length of the data
* @release: boolean to release MR
* @copy_last: do a separate copy of the last 8 bytes
*/
void hfi1_copy_sge(
struct rvt_sge_state *ss,
void *data, u32 length,
bool release,
bool copy_last)
{
struct rvt_sge *sge = &ss->sge;
int i;
bool in_last = false;
bool cacheless_copy = false;
if (sge_copy_mode == COPY_CACHELESS) {
cacheless_copy = length >= PAGE_SIZE;
} else if (sge_copy_mode == COPY_ADAPTIVE) {
if (length >= PAGE_SIZE) {
/*
* NOTE: this *assumes*:
* o The first vaddr is the dest.
* o If multiple pages, then vaddr is sequential.
*/
wss_insert(sge->vaddr);
if (length >= (2 * PAGE_SIZE))
wss_insert(sge->vaddr + PAGE_SIZE);
cacheless_copy = wss_exceeds_threshold();
} else {
wss_advance_clean_counter();
}
}
if (copy_last) {
if (length > 8) {
length -= 8;
} else {
copy_last = false;
in_last = true;
}
}
again:
while (length) {
u32 len = rvt_get_sge_length(sge, length);
WARN_ON_ONCE(len == 0);
if (unlikely(in_last)) {
/* enforce byte transfer ordering */
for (i = 0; i < len; i++)
((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
} else if (cacheless_copy) {
cacheless_memcpy(sge->vaddr, data, len);
} else {
memcpy(sge->vaddr, data, len);
}
rvt_update_sge(ss, len, release);
data += len;
length -= len;
}
if (copy_last) {
copy_last = false;
in_last = true;
length = 8;
goto again;
}
}
/*
* Make sure the QP is ready and able to accept the given opcode.
*/
static inline opcode_handler qp_ok(struct hfi1_packet *packet)
{
if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
return NULL;
if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
packet->qp->allowed_ops) ||
(packet->opcode == IB_OPCODE_CNP))
return opcode_handler_tbl[packet->opcode];
return NULL;
}
static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
{
#ifdef CONFIG_FAULT_INJECTION
if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
/*
* In order to drop non-IB traffic we
* set PbcInsertHrc to NONE (0x2).
* The packet will still be delivered
* to the receiving node but a
* KHdrHCRCErr (KDETH packet with a bad
* HCRC) will be triggered and the
* packet will not be delivered to the
* correct context.
*/
pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
else
/*
* In order to drop regular verbs
* traffic we set the PbcTestEbp
* flag. The packet will still be
* delivered to the receiving node but
* a 'late ebp error' will be
* triggered and will be dropped.
*/
pbc |= PBC_TEST_EBP;
#endif
return pbc;
}
static int hfi1_do_pkey_check(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
struct hfi1_pportdata *ppd = rcd->ppd;
struct hfi1_16b_header *hdr = packet->hdr;
u16 pkey;
/* Pkey check needed only for bypass packets */
if (packet->etype != RHF_RCV_TYPE_BYPASS)
return 0;
/* Perform pkey check */
pkey = hfi1_16B_get_pkey(hdr);
return ingress_pkey_check(ppd, pkey, packet->sc,
packet->qp->s_pkey_index,
packet->slid, true);
}
static inline void hfi1_handle_packet(struct hfi1_packet *packet,
bool is_mcast)
{
u32 qp_num;
struct hfi1_ctxtdata *rcd = packet->rcd;
struct hfi1_pportdata *ppd = rcd->ppd;
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
opcode_handler packet_handler;
unsigned long flags;
inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
if (unlikely(is_mcast)) {
struct rvt_mcast *mcast;
struct rvt_mcast_qp *p;
if (!packet->grh)
goto drop;
mcast = rvt_mcast_find(&ibp->rvp,
&packet->grh->dgid,
opa_get_lid(packet->dlid, 9B));
if (!mcast)
goto drop;
list_for_each_entry_rcu(p, &mcast->qp_list, list) {
packet->qp = p->qp;
if (hfi1_do_pkey_check(packet))
goto drop;
spin_lock_irqsave(&packet->qp->r_lock, flags);
packet_handler = qp_ok(packet);
if (likely(packet_handler))
packet_handler(packet);
else
ibp->rvp.n_pkt_drops++;
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
}
/*
* Notify rvt_multicast_detach() if it is waiting for us
* to finish.
*/
if (atomic_dec_return(&mcast->refcount) <= 1)
wake_up(&mcast->wait);
} else {
/* Get the destination QP number. */
qp_num = ib_bth_get_qpn(packet->ohdr);
rcu_read_lock();
packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
if (!packet->qp)
goto unlock_drop;
if (hfi1_do_pkey_check(packet))
goto unlock_drop;
if (unlikely(hfi1_dbg_fault_opcode(packet->qp, packet->opcode,
true)))
goto unlock_drop;
spin_lock_irqsave(&packet->qp->r_lock, flags);
packet_handler = qp_ok(packet);
if (likely(packet_handler))
packet_handler(packet);
else
ibp->rvp.n_pkt_drops++;
spin_unlock_irqrestore(&packet->qp->r_lock, flags);
rcu_read_unlock();
}
return;
unlock_drop:
rcu_read_unlock();
drop:
ibp->rvp.n_pkt_drops++;
}
/**
* hfi1_ib_rcv - process an incoming packet
* @packet: data packet information
*
* This is called to process an incoming packet at interrupt level.
*/
void hfi1_ib_rcv(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
}
void hfi1_16B_rcv(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
trace_input_ibhdr(rcd->dd, packet, false);
hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
}
/*
* This is called from a timer to check for QPs
* which need kernel memory in order to send a packet.
*/
static void mem_timer(struct timer_list *t)
{
struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
struct list_head *list = &dev->memwait;
struct rvt_qp *qp = NULL;
struct iowait *wait;
unsigned long flags;
struct hfi1_qp_priv *priv;
write_seqlock_irqsave(&dev->iowait_lock, flags);
if (!list_empty(list)) {
wait = list_first_entry(list, struct iowait, list);
qp = iowait_to_qp(wait);
priv = qp->priv;
list_del_init(&priv->s_iowait.list);
priv->s_iowait.lock = NULL;
/* refcount held until actual wake up */
if (!list_empty(list))
mod_timer(&dev->mem_timer, jiffies + 1);
}
write_sequnlock_irqrestore(&dev->iowait_lock, flags);
if (qp)
hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
}
/*
* This is called with progress side lock held.
*/
/* New API */
static void verbs_sdma_complete(
struct sdma_txreq *cookie,
int status)
{
struct verbs_txreq *tx =
container_of(cookie, struct verbs_txreq, txreq);
struct rvt_qp *qp = tx->qp;
spin_lock(&qp->s_lock);
if (tx->wqe) {
hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
} else if (qp->ibqp.qp_type == IB_QPT_RC) {
struct hfi1_opa_header *hdr;
hdr = &tx->phdr.hdr;
hfi1_rc_send_complete(qp, hdr);
}
spin_unlock(&qp->s_lock);
hfi1_put_txreq(tx);
}
static int wait_kmem(struct hfi1_ibdev *dev,
struct rvt_qp *qp,
struct hfi1_pkt_state *ps)
{
struct hfi1_qp_priv *priv = qp->priv;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
write_seqlock(&dev->iowait_lock);
list_add_tail(&ps->s_txreq->txreq.list,
&priv->s_iowait.tx_head);
if (list_empty(&priv->s_iowait.list)) {
if (list_empty(&dev->memwait))
mod_timer(&dev->mem_timer, jiffies + 1);
qp->s_flags |= RVT_S_WAIT_KMEM;
list_add_tail(&priv->s_iowait.list, &dev->memwait);
priv->s_iowait.lock = &dev->iowait_lock;
trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
rvt_get_qp(qp);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~RVT_S_BUSY;
ret = -EBUSY;
}
spin_unlock_irqrestore(&qp->s_lock, flags);
return ret;
}
/*
* This routine calls txadds for each sg entry.
*
* Add failures will revert the sge cursor
*/
static noinline int build_verbs_ulp_payload(
struct sdma_engine *sde,
u32 length,
struct verbs_txreq *tx)
{
struct rvt_sge_state *ss = tx->ss;
struct rvt_sge *sg_list = ss->sg_list;
struct rvt_sge sge = ss->sge;
u8 num_sge = ss->num_sge;
u32 len;
int ret = 0;
while (length) {
len = ss->sge.length;
if (len > length)
len = length;
if (len > ss->sge.sge_length)
len = ss->sge.sge_length;
WARN_ON_ONCE(len == 0);
ret = sdma_txadd_kvaddr(
sde->dd,
&tx->txreq,
ss->sge.vaddr,
len);
if (ret)
goto bail_txadd;
rvt_update_sge(ss, len, false);
length -= len;
}
return ret;
bail_txadd:
/* unwind cursor */
ss->sge = sge;
ss->num_sge = num_sge;
ss->sg_list = sg_list;
return ret;
}
/**
* update_tx_opstats - record stats by opcode
* @qp; the qp
* @ps: transmit packet state
* @plen: the plen in dwords
*
* This is a routine to record the tx opstats after a
* packet has been presented to the egress mechanism.
*/
static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u32 plen)
{
#ifdef CONFIG_DEBUG_FS
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
inc_opstats(plen * 4, &s->stats[ps->opcode]);
put_cpu_ptr(s);
#endif
}
/*
* Build the number of DMA descriptors needed to send length bytes of data.
*
* NOTE: DMA mapping is held in the tx until completed in the ring or
* the tx desc is freed without having been submitted to the ring
*
* This routine ensures all the helper routine calls succeed.
*/
/* New API */
static int build_verbs_tx_desc(
struct sdma_engine *sde,
u32 length,
struct verbs_txreq *tx,
struct hfi1_ahg_info *ahg_info,
u64 pbc)
{
int ret = 0;
struct hfi1_sdma_header *phdr = &tx->phdr;
u16 hdrbytes = tx->hdr_dwords << 2;
u8 extra_bytes = 0;
if (tx->phdr.hdr.hdr_type) {
/*
* hdrbytes accounts for PBC. Need to subtract 8 bytes
* before calculating padding.
*/
extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
(SIZE_OF_CRC << 2) + SIZE_OF_LT;
}
if (!ahg_info->ahgcount) {
ret = sdma_txinit_ahg(
&tx->txreq,
ahg_info->tx_flags,
hdrbytes + length +
extra_bytes,
ahg_info->ahgidx,
0,
NULL,
0,
verbs_sdma_complete);
if (ret)
goto bail_txadd;
phdr->pbc = cpu_to_le64(pbc);
ret = sdma_txadd_kvaddr(
sde->dd,
&tx->txreq,
phdr,
hdrbytes);
if (ret)
goto bail_txadd;
} else {
ret = sdma_txinit_ahg(
&tx->txreq,
ahg_info->tx_flags,
length,
ahg_info->ahgidx,
ahg_info->ahgcount,
ahg_info->ahgdesc,
hdrbytes,
verbs_sdma_complete);
if (ret)
goto bail_txadd;
}
/* add the ulp payload - if any. tx->ss can be NULL for acks */
if (tx->ss) {
ret = build_verbs_ulp_payload(sde, length, tx);
if (ret)
goto bail_txadd;
}
/* add icrc, lt byte, and padding to flit */
if (extra_bytes)
ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
(void *)trail_buf, extra_bytes);
bail_txadd:
return ret;
}
int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ahg_info *ahg_info = priv->s_ahg;
u32 hdrwords = qp->s_hdrwords;
u32 len = ps->s_txreq->s_cur_size;
u32 plen;
struct hfi1_ibdev *dev = ps->dev;
struct hfi1_pportdata *ppd = ps->ppd;
struct verbs_txreq *tx;
u8 sc5 = priv->s_sc;
int ret;
u32 dwords;
if (ps->s_txreq->phdr.hdr.hdr_type) {
u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
SIZE_OF_LT) >> 2;
} else {
dwords = (len + 3) >> 2;
}
plen = hdrwords + dwords + 2;
tx = ps->s_txreq;
if (!sdma_txreq_built(&tx->txreq)) {
if (likely(pbc == 0)) {
u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
/* No vl15 here */
/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
if (ps->s_txreq->phdr.hdr.hdr_type)
pbc |= PBC_PACKET_BYPASS |
PBC_INSERT_BYPASS_ICRC;
else
pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode,
false)))
pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
pbc = create_pbc(ppd,
pbc,
qp->srate_mbps,
vl,
plen);
}
tx->wqe = qp->s_wqe;
ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
if (unlikely(ret))
goto bail_build;
}
ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq,
ps->pkts_sent);
if (unlikely(ret < 0)) {
if (ret == -ECOMM)
goto bail_ecomm;
return ret;
}
update_tx_opstats(qp, ps, plen);
trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
return ret;
bail_ecomm:
/* The current one got "sent" */
return 0;
bail_build:
ret = wait_kmem(dev, qp, ps);
if (!ret) {
/* free txreq - bad state */
hfi1_put_txreq(ps->s_txreq);
ps->s_txreq = NULL;
}
return ret;
}
/*
* If we are now in the error state, return zero to flush the
* send work request.
*/
static int pio_wait(struct rvt_qp *qp,
struct send_context *sc,
struct hfi1_pkt_state *ps,
u32 flag)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_devdata *dd = sc->dd;
struct hfi1_ibdev *dev = &dd->verbs_dev;
unsigned long flags;
int ret = 0;
/*
* Note that as soon as want_buffer() is called and
* possibly before it returns, sc_piobufavail()
* could be called. Therefore, put QP on the I/O wait list before
* enabling the PIO avail interrupt.
*/
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
write_seqlock(&dev->iowait_lock);
list_add_tail(&ps->s_txreq->txreq.list,
&priv->s_iowait.tx_head);
if (list_empty(&priv->s_iowait.list)) {
struct hfi1_ibdev *dev = &dd->verbs_dev;
int was_empty;
dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
qp->s_flags |= flag;
was_empty = list_empty(&sc->piowait);
iowait_queue(ps->pkts_sent, &priv->s_iowait,
&sc->piowait);
priv->s_iowait.lock = &dev->iowait_lock;
trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
rvt_get_qp(qp);
/* counting: only call wantpiobuf_intr if first user */
if (was_empty)
hfi1_sc_wantpiobuf_intr(sc, 1);
}
write_sequnlock(&dev->iowait_lock);
qp->s_flags &= ~RVT_S_BUSY;
ret = -EBUSY;
}
spin_unlock_irqrestore(&qp->s_lock, flags);
return ret;
}
static void verbs_pio_complete(void *arg, int code)
{
struct rvt_qp *qp = (struct rvt_qp *)arg;
struct hfi1_qp_priv *priv = qp->priv;
if (iowait_pio_dec(&priv->s_iowait))
iowait_drain_wakeup(&priv->s_iowait);
}
int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
u64 pbc)
{
struct hfi1_qp_priv *priv = qp->priv;
u32 hdrwords = qp->s_hdrwords;
struct rvt_sge_state *ss = ps->s_txreq->ss;
u32 len = ps->s_txreq->s_cur_size;
u32 dwords;
u32 plen;
struct hfi1_pportdata *ppd = ps->ppd;
u32 *hdr;
u8 sc5;
unsigned long flags = 0;
struct send_context *sc;
struct pio_buf *pbuf;
int wc_status = IB_WC_SUCCESS;
int ret = 0;
pio_release_cb cb = NULL;
u8 extra_bytes = 0;
if (ps->s_txreq->phdr.hdr.hdr_type) {
u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
dwords = (len + extra_bytes) >> 2;
hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
} else {
dwords = (len + 3) >> 2;
hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
}
plen = hdrwords + dwords + 2;
/* only RC/UC use complete */
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
case IB_QPT_UC:
cb = verbs_pio_complete;
break;
default:
break;
}
/* vl15 special case taken care of in ud.c */
sc5 = priv->s_sc;
sc = ps->s_txreq->psc;
if (likely(pbc == 0)) {
u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
if (ps->s_txreq->phdr.hdr.hdr_type)
pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
else
pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, false)))
pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
}
if (cb)
iowait_pio_inc(&priv->s_iowait);
pbuf = sc_buffer_alloc(sc, plen, cb, qp);
if (unlikely(!pbuf)) {
if (cb)
verbs_pio_complete(qp, 0);
if (ppd->host_link_state != HLS_UP_ACTIVE) {
/*
* If we have filled the PIO buffers to capacity and are
* not in an active state this request is not going to
* go out to so just complete it with an error or else a
* ULP or the core may be stuck waiting.
*/
hfi1_cdbg(
PIO,
"alloc failed. state not active, completing");
wc_status = IB_WC_GENERAL_ERR;
goto pio_bail;
} else {
/*
* This is a normal occurrence. The PIO buffs are full
* up but we are still happily sending, well we could be
* so lets continue to queue the request.
*/
hfi1_cdbg(PIO, "alloc failed. state active, queuing");
ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
if (!ret)
/* txreq not queued - free */
goto bail;
/* tx consumed in wait */
return ret;
}
}
if (dwords == 0) {
pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
} else {
seg_pio_copy_start(pbuf, pbc,
hdr, hdrwords * 4);
if (ss) {
while (len) {
void *addr = ss->sge.vaddr;
u32 slen = ss->sge.length;
if (slen > len)
slen = len;
rvt_update_sge(ss, slen, false);
seg_pio_copy_mid(pbuf, addr, slen);
len -= slen;
}
}
/* add icrc, lt byte, and padding to flit */
if (extra_bytes)
seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
seg_pio_copy_end(pbuf);
}
update_tx_opstats(qp, ps, plen);
trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
pio_bail:
if (qp->s_wqe) {
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_send_complete(qp, qp->s_wqe, wc_status);
spin_unlock_irqrestore(&qp->s_lock, flags);
} else if (qp->ibqp.qp_type == IB_QPT_RC) {
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
ret = 0;
bail:
hfi1_put_txreq(ps->s_txreq);
return ret;
}
/*
* egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
* being an entry from the partition key table), return 0
* otherwise. Use the matching criteria for egress partition keys
* specified in the OPAv1 spec., section 9.1l.7.
*/
static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
{
u16 mkey = pkey & PKEY_LOW_15_MASK;
u16 mentry = ent & PKEY_LOW_15_MASK;
if (mkey == mentry) {
/*
* If pkey[15] is set (full partition member),
* is bit 15 in the corresponding table element
* clear (limited member)?
*/
if (pkey & PKEY_MEMBER_MASK)
return !!(ent & PKEY_MEMBER_MASK);
return 1;
}
return 0;
}
/**
* egress_pkey_check - check P_KEY of a packet
* @ppd: Physical IB port data
* @slid: SLID for packet
* @bkey: PKEY for header
* @sc5: SC for packet
* @s_pkey_index: It will be used for look up optimization for kernel contexts
* only. If it is negative value, then it means user contexts is calling this
* function.
*
* It checks if hdr's pkey is valid.
*
* Return: 0 on success, otherwise, 1
*/
int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
u8 sc5, int8_t s_pkey_index)
{
struct hfi1_devdata *dd;
int i;
int is_user_ctxt_mechanism = (s_pkey_index < 0);
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
/* Is the pkey = 0x0, or 0x8000? */
if ((pkey & PKEY_LOW_15_MASK) == 0)
goto bad;
/*
* For the kernel contexts only, if a qp is passed into the function,
* the most likely matching pkey has index qp->s_pkey_index
*/
if (!is_user_ctxt_mechanism &&
egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
return 0;
}
for (i = 0; i < MAX_PKEY_VALUES; i++) {
if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
return 0;
}
bad:
/*
* For the user-context mechanism, the P_KEY check would only happen
* once per SDMA request, not once per packet. Therefore, there's no
* need to increment the counter for the user-context mechanism.
*/
if (!is_user_ctxt_mechanism) {
incr_cntr64(&ppd->port_xmit_constraint_errors);
dd = ppd->dd;
if (!(dd->err_info_xmit_constraint.status &
OPA_EI_STATUS_SMASK)) {
dd->err_info_xmit_constraint.status |=
OPA_EI_STATUS_SMASK;
dd->err_info_xmit_constraint.slid = slid;
dd->err_info_xmit_constraint.pkey = pkey;
}
}
return 1;
}
/**
* get_send_routine - choose an egress routine
*
* Choose an egress routine based on QP type
* and size
*/
static inline send_routine get_send_routine(struct rvt_qp *qp,
struct hfi1_pkt_state *ps)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct hfi1_qp_priv *priv = qp->priv;
struct verbs_txreq *tx = ps->s_txreq;
if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
return dd->process_pio_send;
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
return dd->process_pio_send;
case IB_QPT_GSI:
case IB_QPT_UD:
break;
case IB_QPT_UC:
case IB_QPT_RC: {
if (piothreshold &&
tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
(BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
iowait_sdma_pending(&priv->s_iowait) == 0 &&
!sdma_txreq_built(&tx->txreq))
return dd->process_pio_send;
break;
}
default:
break;
}
return dd->process_dma_send;
}
/**
* hfi1_verbs_send - send a packet
* @qp: the QP to send on
* @ps: the state of the packet to send
*
* Return zero if packet is sent or queued OK.
* Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
*/
int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct hfi1_qp_priv *priv = qp->priv;
struct ib_other_headers *ohdr;
send_routine sr;
int ret;
u16 pkey;
u32 slid;
/* locate the pkey within the headers */
if (ps->s_txreq->phdr.hdr.hdr_type) {
struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
u8 l4 = hfi1_16B_get_l4(hdr);
if (l4 == OPA_16B_L4_IB_GLOBAL)
ohdr = &hdr->u.l.oth;
else
ohdr = &hdr->u.oth;
slid = hfi1_16B_get_slid(hdr);
pkey = hfi1_16B_get_pkey(hdr);
} else {
struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
u8 lnh = ib_get_lnh(hdr);
if (lnh == HFI1_LRH_GRH)
ohdr = &hdr->u.l.oth;
else
ohdr = &hdr->u.oth;
slid = ib_get_slid(hdr);
pkey = ib_bth_get_pkey(ohdr);
}
ps->opcode = ib_bth_get_opcode(ohdr);
sr = get_send_routine(qp, ps);
ret = egress_pkey_check(dd->pport, slid, pkey,
priv->s_sc, qp->s_pkey_index);
if (unlikely(ret)) {
/*
* The value we are returning here does not get propagated to
* the verbs caller. Thus we need to complete the request with
* error otherwise the caller could be sitting waiting on the
* completion event. Only do this for PIO. SDMA has its own
* mechanism for handling the errors. So for SDMA we can just
* return.
*/
if (sr == dd->process_pio_send) {
unsigned long flags;
hfi1_cdbg(PIO, "%s() Failed. Completing with err",
__func__);
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
return -EINVAL;
}
if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
return pio_wait(qp,
ps->s_txreq->psc,
ps,
RVT_S_WAIT_PIO_DRAIN);
return sr(qp, ps, 0);
}
/**
* hfi1_fill_device_attr - Fill in rvt dev info device attributes.
* @dd: the device data structure
*/
static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
{
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
u32 ver = dd->dc8051_ver;
memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
((u64)(dc8051_ver_min(ver)) << 16) |
(u64)dc8051_ver_patch(ver);
rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
IB_DEVICE_MEM_MGT_EXTENSIONS |
IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
rdi->dparms.props.page_size_cap = PAGE_SIZE;
rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
rdi->dparms.props.vendor_part_id = dd->pcidev->device;
rdi->dparms.props.hw_ver = dd->minrev;
rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
rdi->dparms.props.max_mr_size = U64_MAX;
rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
rdi->dparms.props.max_qp = hfi1_max_qps;
rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
rdi->dparms.props.max_sge = hfi1_max_sges;
rdi->dparms.props.max_sge_rd = hfi1_max_sges;
rdi->dparms.props.max_cq = hfi1_max_cqs;
rdi->dparms.props.max_ah = hfi1_max_ahs;
rdi->dparms.props.max_cqe = hfi1_max_cqes;
rdi->dparms.props.max_mr = rdi->lkey_table.max;
rdi->dparms.props.max_fmr = rdi->lkey_table.max;
rdi->dparms.props.max_map_per_fmr = 32767;
rdi->dparms.props.max_pd = hfi1_max_pds;
rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
rdi->dparms.props.max_qp_init_rd_atom = 255;
rdi->dparms.props.max_srq = hfi1_max_srqs;
rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
rdi->dparms.props.max_total_mcast_qp_attach =
rdi->dparms.props.max_mcast_qp_attach *
rdi->dparms.props.max_mcast_grp;
}
static inline u16 opa_speed_to_ib(u16 in)
{
u16 out = 0;
if (in & OPA_LINK_SPEED_25G)
out |= IB_SPEED_EDR;
if (in & OPA_LINK_SPEED_12_5G)
out |= IB_SPEED_FDR;
return out;
}
/*
* Convert a single OPA link width (no multiple flags) to an IB value.
* A zero OPA link width means link down, which means the IB width value
* is a don't care.
*/
static inline u16 opa_width_to_ib(u16 in)
{
switch (in) {
case OPA_LINK_WIDTH_1X:
/* map 2x and 3x to 1x as they don't exist in IB */
case OPA_LINK_WIDTH_2X:
case OPA_LINK_WIDTH_3X:
return IB_WIDTH_1X;
default: /* link down or unknown, return our largest width */
case OPA_LINK_WIDTH_4X:
return IB_WIDTH_4X;
}
}
static int query_port(struct rvt_dev_info *rdi, u8 port_num,
struct ib_port_attr *props)
{
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
u32 lid = ppd->lid;
/* props being zeroed by the caller, avoid zeroing it here */
props->lid = lid ? lid : 0;
props->lmc = ppd->lmc;
/* OPA logical states match IB logical states */
props->state = driver_lstate(ppd);
props->phys_state = driver_pstate(ppd);
props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
/* see rate_show() in ib core/sysfs.c */
props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
props->max_vl_num = ppd->vls_supported;
/* Once we are a "first class" citizen and have added the OPA MTUs to
* the core we can advertise the larger MTU enum to the ULPs, for now
* advertise only 4K.
*
* Those applications which are either OPA aware or pass the MTU enum
* from the Path Records to us will get the new 8k MTU. Those that
* attempt to process the MTU enum may fail in various ways.
*/
props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
4096 : hfi1_max_mtu), IB_MTU_4096);
props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
/*
* sm_lid of 0xFFFF needs special handling so that it can
* be differentiated from a permissve LID of 0xFFFF.
* We set the grh_required flag here so the SA can program
* the DGID in the address handle appropriately
*/
if (props->sm_lid == be16_to_cpu(IB_LID_PERMISSIVE))
props->grh_required = true;
return 0;
}
static int modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify)
{
struct hfi1_devdata *dd = dd_from_ibdev(device);
unsigned i;
int ret;
if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
IB_DEVICE_MODIFY_NODE_DESC)) {
ret = -EOPNOTSUPP;
goto bail;
}
if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
memcpy(device->node_desc, device_modify->node_desc,
IB_DEVICE_NODE_DESC_MAX);
for (i = 0; i < dd->num_pports; i++) {
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
hfi1_node_desc_chg(ibp);
}
}
if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
ib_hfi1_sys_image_guid =
cpu_to_be64(device_modify->sys_image_guid);
for (i = 0; i < dd->num_pports; i++) {
struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
hfi1_sys_guid_chg(ibp);
}
}
ret = 0;
bail:
return ret;
}
static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
{
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
int ret;
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
OPA_LINKDOWN_REASON_UNKNOWN);
ret = set_link_state(ppd, HLS_DN_DOWNDEF);
return ret;
}
static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
int guid_index, __be64 *guid)
{
struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
if (guid_index >= HFI1_GUIDS_PER_PORT)
return -EINVAL;
*guid = get_sguid(ibp, guid_index);
return 0;
}
/*
* convert ah port,sl to sc
*/
u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
{
struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
}
static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
{
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
u8 sc5;
if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
!(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
return -EINVAL;
/* test the mapping for validity */
ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
ppd = ppd_from_ibp(ibp);
sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)];
dd = dd_from_ppd(ppd);
if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
return -EINVAL;
return 0;
}
static void hfi1_notify_new_ah(struct ib_device *ibdev,
struct rdma_ah_attr *ah_attr,
struct rvt_ah *ah)
{
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
u8 sc5;
struct rdma_ah_attr *attr = &ah->attr;
/*
* Do not trust reading anything from rvt_ah at this point as it is not
* done being setup. We can however modify things which we need to set.
*/
ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
ppd = ppd_from_ibp(ibp);
sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
hfi1_update_ah_attr(ibdev, attr);
hfi1_make_opa_lid(attr);
dd = dd_from_ppd(ppd);
ah->vl = sc_to_vlt(dd, sc5);
if (ah->vl < num_vls || ah->vl == 15)
ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
}
/**
* hfi1_get_npkeys - return the size of the PKEY table for context 0
* @dd: the hfi1_ib device
*/
unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
{
return ARRAY_SIZE(dd->pport[0].pkeys);
}
static void init_ibport(struct hfi1_pportdata *ppd)
{
struct hfi1_ibport *ibp = &ppd->ibport_data;
size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
int i;
for (i = 0; i < sz; i++) {
ibp->sl_to_sc[i] = i;
ibp->sc_to_sl[i] = i;
}
for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
spin_lock_init(&ibp->rvp.lock);
/* Set the prefix to the default value (see ch. 4.1.1) */
ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
ibp->rvp.sm_lid = 0;
/*
* Below should only set bits defined in OPA PortInfo.CapabilityMask
* and PortInfo.CapabilityMask3
*/
ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
IB_PORT_CAP_MASK_NOTICE_SUP;
ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
}
static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
{
struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
struct hfi1_ibdev *dev = dev_from_rdi(rdi);
u32 ver = dd_from_dev(dev)->dc8051_ver;
snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
dc8051_ver_min(ver), dc8051_ver_patch(ver));
}
static const char * const driver_cntr_names[] = {
/* must be element 0*/
"DRIVER_KernIntr",
"DRIVER_ErrorIntr",
"DRIVER_Tx_Errs",
"DRIVER_Rcv_Errs",
"DRIVER_HW_Errs",
"DRIVER_NoPIOBufs",
"DRIVER_CtxtsOpen",
"DRIVER_RcvLen_Errs",
"DRIVER_EgrBufFull",
"DRIVER_EgrHdrFull"
};
static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
static const char **dev_cntr_names;
static const char **port_cntr_names;
static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
static int num_dev_cntrs;
static int num_port_cntrs;
static int cntr_names_initialized;
/*
* Convert a list of names separated by '\n' into an array of NULL terminated
* strings. Optionally some entries can be reserved in the array to hold extra
* external strings.
*/
static int init_cntr_names(const char *names_in,
const size_t names_len,
int num_extra_names,
int *num_cntrs,
const char ***cntr_names)
{
char *names_out, *p, **q;
int i, n;
n = 0;
for (i = 0; i < names_len; i++)
if (names_in[i] == '\n')
n++;
names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
GFP_KERNEL);
if (!names_out) {
*num_cntrs = 0;
*cntr_names = NULL;
return -ENOMEM;
}
p = names_out + (n + num_extra_names) * sizeof(char *);
memcpy(p, names_in, names_len);
q = (char **)names_out;
for (i = 0; i < n; i++) {
q[i] = p;
p = strchr(p, '\n');
*p++ = '\0';
}
*num_cntrs = n;
*cntr_names = (const char **)names_out;
return 0;
}
static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
u8 port_num)
{
int i, err;
mutex_lock(&cntr_names_lock);
if (!cntr_names_initialized) {
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
err = init_cntr_names(dd->cntrnames,
dd->cntrnameslen,
num_driver_cntrs,
&num_dev_cntrs,
&dev_cntr_names);
if (err) {
mutex_unlock(&cntr_names_lock);
return NULL;
}
for (i = 0; i < num_driver_cntrs; i++)
dev_cntr_names[num_dev_cntrs + i] =
driver_cntr_names[i];
err = init_cntr_names(dd->portcntrnames,
dd->portcntrnameslen,
0,
&num_port_cntrs,
&port_cntr_names);
if (err) {
kfree(dev_cntr_names);
dev_cntr_names = NULL;
mutex_unlock(&cntr_names_lock);
return NULL;
}
cntr_names_initialized = 1;
}
mutex_unlock(&cntr_names_lock);
if (!port_num)
return rdma_alloc_hw_stats_struct(
dev_cntr_names,
num_dev_cntrs + num_driver_cntrs,
RDMA_HW_STATS_DEFAULT_LIFESPAN);
else
return rdma_alloc_hw_stats_struct(
port_cntr_names,
num_port_cntrs,
RDMA_HW_STATS_DEFAULT_LIFESPAN);
}
static u64 hfi1_sps_ints(void)
{
unsigned long flags;
struct hfi1_devdata *dd;
u64 sps_ints = 0;
spin_lock_irqsave(&hfi1_devs_lock, flags);
list_for_each_entry(dd, &hfi1_dev_list, list) {
sps_ints += get_all_cpu_total(dd->int_counter);
}
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
return sps_ints;
}
static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
u8 port, int index)
{
u64 *values;
int count;
if (!port) {
u64 *stats = (u64 *)&hfi1_stats;
int i;
hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
values[num_dev_cntrs] = hfi1_sps_ints();
for (i = 1; i < num_driver_cntrs; i++)
values[num_dev_cntrs + i] = stats[i];
count = num_dev_cntrs + num_driver_cntrs;
} else {
struct hfi1_ibport *ibp = to_iport(ibdev, port);
hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
count = num_port_cntrs;
}
memcpy(stats->value, values, count * sizeof(u64));
return count;
}
/**
* hfi1_register_ib_device - register our device with the infiniband core
* @dd: the device data structure
* Return 0 if successful, errno if unsuccessful.
*/
int hfi1_register_ib_device(struct hfi1_devdata *dd)
{
struct hfi1_ibdev *dev = &dd->verbs_dev;
struct ib_device *ibdev = &dev->rdi.ibdev;
struct hfi1_pportdata *ppd = dd->pport;
struct hfi1_ibport *ibp = &ppd->ibport_data;
unsigned i;
int ret;
for (i = 0; i < dd->num_pports; i++)
init_ibport(ppd + i);
/* Only need to initialize non-zero fields. */
timer_setup(&dev->mem_timer, mem_timer, 0);
seqlock_init(&dev->iowait_lock);
seqlock_init(&dev->txwait_lock);
INIT_LIST_HEAD(&dev->txwait);
INIT_LIST_HEAD(&dev->memwait);
ret = verbs_txreq_init(dev);
if (ret)
goto err_verbs_txreq;
/* Use first-port GUID as node guid */
ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
/*
* The system image GUID is supposed to be the same for all
* HFIs in a single system but since there can be other
* device types in the system, we can't be sure this is unique.
*/
if (!ib_hfi1_sys_image_guid)
ib_hfi1_sys_image_guid = ibdev->node_guid;
ibdev->owner = THIS_MODULE;
ibdev->phys_port_cnt = dd->num_pports;
ibdev->dev.parent = &dd->pcidev->dev;
ibdev->modify_device = modify_device;
ibdev->alloc_hw_stats = alloc_hw_stats;
ibdev->get_hw_stats = get_hw_stats;
ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
/* keep process mad in the driver */
ibdev->process_mad = hfi1_process_mad;
ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
strncpy(ibdev->node_desc, init_utsname()->nodename,
sizeof(ibdev->node_desc));
/*
* Fill in rvt info object.
*/
dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
/*
* Fill in rvt info device attributes.
*/
hfi1_fill_device_attr(dd);
/* queue pair */
dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
dd->verbs_dev.rdi.dparms.qpn_start = 0;
dd->verbs_dev.rdi.dparms.qpn_inc = 1;
dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
dd->verbs_dev.rdi.dparms.qpn_res_end =
dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
RDMA_CORE_CAP_OPA_AH;
dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
/* completeion queue */
snprintf(dd->verbs_dev.rdi.dparms.cq_name,
sizeof(dd->verbs_dev.rdi.dparms.cq_name),
"hfi1_cq%d", dd->unit);
dd->verbs_dev.rdi.dparms.node = dd->node;
/* misc settings */
dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
/* post send table */
dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
ppd = dd->pport;
for (i = 0; i < dd->num_pports; i++, ppd++)
rvt_init_port(&dd->verbs_dev.rdi,
&ppd->ibport_data.rvp,
i,
ppd->pkeys);
ret = rvt_register_device(&dd->verbs_dev.rdi);
if (ret)
goto err_verbs_txreq;
ret = hfi1_verbs_register_sysfs(dd);
if (ret)
goto err_class;
return ret;
err_class:
rvt_unregister_device(&dd->verbs_dev.rdi);
err_verbs_txreq:
verbs_txreq_exit(dev);
dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
return ret;
}
void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
{
struct hfi1_ibdev *dev = &dd->verbs_dev;
hfi1_verbs_unregister_sysfs(dd);
rvt_unregister_device(&dd->verbs_dev.rdi);
if (!list_empty(&dev->txwait))
dd_dev_err(dd, "txwait list not empty!\n");
if (!list_empty(&dev->memwait))
dd_dev_err(dd, "memwait list not empty!\n");
del_timer_sync(&dev->mem_timer);
verbs_txreq_exit(dev);
mutex_lock(&cntr_names_lock);
kfree(dev_cntr_names);
kfree(port_cntr_names);
dev_cntr_names = NULL;
port_cntr_names = NULL;
cntr_names_initialized = 0;
mutex_unlock(&cntr_names_lock);
}
void hfi1_cnp_rcv(struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct ib_header *hdr = packet->hdr;
struct rvt_qp *qp = packet->qp;
u32 lqpn, rqpn = 0;
u16 rlid = 0;
u8 sl, sc5, svc_type;
switch (packet->qp->ibqp.qp_type) {
case IB_QPT_UC:
rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_UC;
break;
case IB_QPT_RC:
rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_RC;
break;
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
svc_type = IB_CC_SVCTYPE_UD;
break;
default:
ibp->rvp.n_pkt_drops++;
return;
}
sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
sl = ibp->sc_to_sl[sc5];
lqpn = qp->ibqp.qp_num;
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
}