| /* |
| * (C) Copyright 2009 Intel Corporation |
| * Author: Jacob Pan (jacob.jun.pan@intel.com) |
| * |
| * Shared with ARM platforms, Jamie Iles, Picochip 2011 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Support for the Synopsys DesignWare APB Timers. |
| */ |
| #include <linux/dw_apb_timer.h> |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| |
| #define APBT_MIN_PERIOD 4 |
| #define APBT_MIN_DELTA_USEC 200 |
| |
| #define APBTMR_N_LOAD_COUNT 0x00 |
| #define APBTMR_N_CURRENT_VALUE 0x04 |
| #define APBTMR_N_CONTROL 0x08 |
| #define APBTMR_N_EOI 0x0c |
| #define APBTMR_N_INT_STATUS 0x10 |
| |
| #define APBTMRS_INT_STATUS 0xa0 |
| #define APBTMRS_EOI 0xa4 |
| #define APBTMRS_RAW_INT_STATUS 0xa8 |
| #define APBTMRS_COMP_VERSION 0xac |
| |
| #define APBTMR_CONTROL_ENABLE (1 << 0) |
| /* 1: periodic, 0:free running. */ |
| #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1) |
| #define APBTMR_CONTROL_INT (1 << 2) |
| |
| static inline struct dw_apb_clock_event_device * |
| ced_to_dw_apb_ced(struct clock_event_device *evt) |
| { |
| return container_of(evt, struct dw_apb_clock_event_device, ced); |
| } |
| |
| static inline struct dw_apb_clocksource * |
| clocksource_to_dw_apb_clocksource(struct clocksource *cs) |
| { |
| return container_of(cs, struct dw_apb_clocksource, cs); |
| } |
| |
| static u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs) |
| { |
| return readl(timer->base + offs); |
| } |
| |
| static void apbt_writel(struct dw_apb_timer *timer, u32 val, |
| unsigned long offs) |
| { |
| writel(val, timer->base + offs); |
| } |
| |
| static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs) |
| { |
| return readl_relaxed(timer->base + offs); |
| } |
| |
| static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val, |
| unsigned long offs) |
| { |
| writel_relaxed(val, timer->base + offs); |
| } |
| |
| static void apbt_disable_int(struct dw_apb_timer *timer) |
| { |
| u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); |
| |
| ctrl |= APBTMR_CONTROL_INT; |
| apbt_writel(timer, ctrl, APBTMR_N_CONTROL); |
| } |
| |
| /** |
| * dw_apb_clockevent_pause() - stop the clock_event_device from running |
| * |
| * @dw_ced: The APB clock to stop generating events. |
| */ |
| void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced) |
| { |
| disable_irq(dw_ced->timer.irq); |
| apbt_disable_int(&dw_ced->timer); |
| } |
| |
| static void apbt_eoi(struct dw_apb_timer *timer) |
| { |
| apbt_readl_relaxed(timer, APBTMR_N_EOI); |
| } |
| |
| static irqreturn_t dw_apb_clockevent_irq(int irq, void *data) |
| { |
| struct clock_event_device *evt = data; |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| |
| if (!evt->event_handler) { |
| pr_info("Spurious APBT timer interrupt %d", irq); |
| return IRQ_NONE; |
| } |
| |
| if (dw_ced->eoi) |
| dw_ced->eoi(&dw_ced->timer); |
| |
| evt->event_handler(evt); |
| return IRQ_HANDLED; |
| } |
| |
| static void apbt_enable_int(struct dw_apb_timer *timer) |
| { |
| u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); |
| /* clear pending intr */ |
| apbt_readl(timer, APBTMR_N_EOI); |
| ctrl &= ~APBTMR_CONTROL_INT; |
| apbt_writel(timer, ctrl, APBTMR_N_CONTROL); |
| } |
| |
| static int apbt_shutdown(struct clock_event_device *evt) |
| { |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| u32 ctrl; |
| |
| pr_debug("%s CPU %d state=shutdown\n", __func__, |
| cpumask_first(evt->cpumask)); |
| |
| ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| return 0; |
| } |
| |
| static int apbt_set_oneshot(struct clock_event_device *evt) |
| { |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| u32 ctrl; |
| |
| pr_debug("%s CPU %d state=oneshot\n", __func__, |
| cpumask_first(evt->cpumask)); |
| |
| ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); |
| /* |
| * set free running mode, this mode will let timer reload max |
| * timeout which will give time (3min on 25MHz clock) to rearm |
| * the next event, therefore emulate the one-shot mode. |
| */ |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| /* write again to set free running mode */ |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| |
| /* |
| * DW APB p. 46, load counter with all 1s before starting free |
| * running mode. |
| */ |
| apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT); |
| ctrl &= ~APBTMR_CONTROL_INT; |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| return 0; |
| } |
| |
| static int apbt_set_periodic(struct clock_event_device *evt) |
| { |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ); |
| u32 ctrl; |
| |
| pr_debug("%s CPU %d state=periodic\n", __func__, |
| cpumask_first(evt->cpumask)); |
| |
| ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); |
| ctrl |= APBTMR_CONTROL_MODE_PERIODIC; |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| /* |
| * DW APB p. 46, have to disable timer before load counter, |
| * may cause sync problem. |
| */ |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| udelay(1); |
| pr_debug("Setting clock period %lu for HZ %d\n", period, HZ); |
| apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT); |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| return 0; |
| } |
| |
| static int apbt_resume(struct clock_event_device *evt) |
| { |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| |
| pr_debug("%s CPU %d state=resume\n", __func__, |
| cpumask_first(evt->cpumask)); |
| |
| apbt_enable_int(&dw_ced->timer); |
| return 0; |
| } |
| |
| static int apbt_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| u32 ctrl; |
| struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); |
| |
| /* Disable timer */ |
| ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL); |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| /* write new count */ |
| apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT); |
| ctrl |= APBTMR_CONTROL_ENABLE; |
| apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); |
| |
| return 0; |
| } |
| |
| /** |
| * dw_apb_clockevent_init() - use an APB timer as a clock_event_device |
| * |
| * @cpu: The CPU the events will be targeted at. |
| * @name: The name used for the timer and the IRQ for it. |
| * @rating: The rating to give the timer. |
| * @base: I/O base for the timer registers. |
| * @irq: The interrupt number to use for the timer. |
| * @freq: The frequency that the timer counts at. |
| * |
| * This creates a clock_event_device for using with the generic clock layer |
| * but does not start and register it. This should be done with |
| * dw_apb_clockevent_register() as the next step. If this is the first time |
| * it has been called for a timer then the IRQ will be requested, if not it |
| * just be enabled to allow CPU hotplug to avoid repeatedly requesting and |
| * releasing the IRQ. |
| */ |
| struct dw_apb_clock_event_device * |
| dw_apb_clockevent_init(int cpu, const char *name, unsigned rating, |
| void __iomem *base, int irq, unsigned long freq) |
| { |
| struct dw_apb_clock_event_device *dw_ced = |
| kzalloc(sizeof(*dw_ced), GFP_KERNEL); |
| int err; |
| |
| if (!dw_ced) |
| return NULL; |
| |
| dw_ced->timer.base = base; |
| dw_ced->timer.irq = irq; |
| dw_ced->timer.freq = freq; |
| |
| clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD); |
| dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff, |
| &dw_ced->ced); |
| dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced); |
| dw_ced->ced.cpumask = cpumask_of(cpu); |
| dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; |
| dw_ced->ced.set_state_shutdown = apbt_shutdown; |
| dw_ced->ced.set_state_periodic = apbt_set_periodic; |
| dw_ced->ced.set_state_oneshot = apbt_set_oneshot; |
| dw_ced->ced.tick_resume = apbt_resume; |
| dw_ced->ced.set_next_event = apbt_next_event; |
| dw_ced->ced.irq = dw_ced->timer.irq; |
| dw_ced->ced.rating = rating; |
| dw_ced->ced.name = name; |
| |
| dw_ced->irqaction.name = dw_ced->ced.name; |
| dw_ced->irqaction.handler = dw_apb_clockevent_irq; |
| dw_ced->irqaction.dev_id = &dw_ced->ced; |
| dw_ced->irqaction.irq = irq; |
| dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | |
| IRQF_NOBALANCING; |
| |
| dw_ced->eoi = apbt_eoi; |
| err = setup_irq(irq, &dw_ced->irqaction); |
| if (err) { |
| pr_err("failed to request timer irq\n"); |
| kfree(dw_ced); |
| dw_ced = NULL; |
| } |
| |
| return dw_ced; |
| } |
| |
| /** |
| * dw_apb_clockevent_resume() - resume a clock that has been paused. |
| * |
| * @dw_ced: The APB clock to resume. |
| */ |
| void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced) |
| { |
| enable_irq(dw_ced->timer.irq); |
| } |
| |
| /** |
| * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ. |
| * |
| * @dw_ced: The APB clock to stop generating the events. |
| */ |
| void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced) |
| { |
| free_irq(dw_ced->timer.irq, &dw_ced->ced); |
| } |
| |
| /** |
| * dw_apb_clockevent_register() - register the clock with the generic layer |
| * |
| * @dw_ced: The APB clock to register as a clock_event_device. |
| */ |
| void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced) |
| { |
| apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL); |
| clockevents_register_device(&dw_ced->ced); |
| apbt_enable_int(&dw_ced->timer); |
| } |
| |
| /** |
| * dw_apb_clocksource_start() - start the clocksource counting. |
| * |
| * @dw_cs: The clocksource to start. |
| * |
| * This is used to start the clocksource before registration and can be used |
| * to enable calibration of timers. |
| */ |
| void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs) |
| { |
| /* |
| * start count down from 0xffff_ffff. this is done by toggling the |
| * enable bit then load initial load count to ~0. |
| */ |
| u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL); |
| |
| ctrl &= ~APBTMR_CONTROL_ENABLE; |
| apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); |
| apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT); |
| /* enable, mask interrupt */ |
| ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); |
| apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); |
| /* read it once to get cached counter value initialized */ |
| dw_apb_clocksource_read(dw_cs); |
| } |
| |
| static cycle_t __apbt_read_clocksource(struct clocksource *cs) |
| { |
| u32 current_count; |
| struct dw_apb_clocksource *dw_cs = |
| clocksource_to_dw_apb_clocksource(cs); |
| |
| current_count = apbt_readl_relaxed(&dw_cs->timer, |
| APBTMR_N_CURRENT_VALUE); |
| |
| return (cycle_t)~current_count; |
| } |
| |
| static void apbt_restart_clocksource(struct clocksource *cs) |
| { |
| struct dw_apb_clocksource *dw_cs = |
| clocksource_to_dw_apb_clocksource(cs); |
| |
| dw_apb_clocksource_start(dw_cs); |
| } |
| |
| /** |
| * dw_apb_clocksource_init() - use an APB timer as a clocksource. |
| * |
| * @rating: The rating to give the clocksource. |
| * @name: The name for the clocksource. |
| * @base: The I/O base for the timer registers. |
| * @freq: The frequency that the timer counts at. |
| * |
| * This creates a clocksource using an APB timer but does not yet register it |
| * with the clocksource system. This should be done with |
| * dw_apb_clocksource_register() as the next step. |
| */ |
| struct dw_apb_clocksource * |
| dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base, |
| unsigned long freq) |
| { |
| struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL); |
| |
| if (!dw_cs) |
| return NULL; |
| |
| dw_cs->timer.base = base; |
| dw_cs->timer.freq = freq; |
| dw_cs->cs.name = name; |
| dw_cs->cs.rating = rating; |
| dw_cs->cs.read = __apbt_read_clocksource; |
| dw_cs->cs.mask = CLOCKSOURCE_MASK(32); |
| dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; |
| dw_cs->cs.resume = apbt_restart_clocksource; |
| |
| return dw_cs; |
| } |
| |
| /** |
| * dw_apb_clocksource_register() - register the APB clocksource. |
| * |
| * @dw_cs: The clocksource to register. |
| */ |
| void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs) |
| { |
| clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq); |
| } |
| |
| /** |
| * dw_apb_clocksource_read() - read the current value of a clocksource. |
| * |
| * @dw_cs: The clocksource to read. |
| */ |
| cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs) |
| { |
| return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); |
| } |