| /** |
| * compress.c - NTFS kernel compressed attributes handling. |
| * Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2004 Anton Altaparmakov |
| * Copyright (c) 2002 Richard Russon |
| * |
| * This program/include file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as published |
| * by the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program/include file is distributed in the hope that it will be |
| * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program (in the main directory of the Linux-NTFS |
| * distribution in the file COPYING); if not, write to the Free Software |
| * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| |
| #include "attrib.h" |
| #include "inode.h" |
| #include "debug.h" |
| #include "ntfs.h" |
| |
| /** |
| * ntfs_compression_constants - enum of constants used in the compression code |
| */ |
| typedef enum { |
| /* Token types and access mask. */ |
| NTFS_SYMBOL_TOKEN = 0, |
| NTFS_PHRASE_TOKEN = 1, |
| NTFS_TOKEN_MASK = 1, |
| |
| /* Compression sub-block constants. */ |
| NTFS_SB_SIZE_MASK = 0x0fff, |
| NTFS_SB_SIZE = 0x1000, |
| NTFS_SB_IS_COMPRESSED = 0x8000, |
| |
| /* |
| * The maximum compression block size is by definition 16 * the cluster |
| * size, with the maximum supported cluster size being 4kiB. Thus the |
| * maximum compression buffer size is 64kiB, so we use this when |
| * initializing the compression buffer. |
| */ |
| NTFS_MAX_CB_SIZE = 64 * 1024, |
| } ntfs_compression_constants; |
| |
| /** |
| * ntfs_compression_buffer - one buffer for the decompression engine |
| */ |
| static u8 *ntfs_compression_buffer = NULL; |
| |
| /** |
| * ntfs_cb_lock - spinlock which protects ntfs_compression_buffer |
| */ |
| static DEFINE_SPINLOCK(ntfs_cb_lock); |
| |
| /** |
| * allocate_compression_buffers - allocate the decompression buffers |
| * |
| * Caller has to hold the ntfs_lock mutex. |
| * |
| * Return 0 on success or -ENOMEM if the allocations failed. |
| */ |
| int allocate_compression_buffers(void) |
| { |
| BUG_ON(ntfs_compression_buffer); |
| |
| ntfs_compression_buffer = vmalloc(NTFS_MAX_CB_SIZE); |
| if (!ntfs_compression_buffer) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * free_compression_buffers - free the decompression buffers |
| * |
| * Caller has to hold the ntfs_lock mutex. |
| */ |
| void free_compression_buffers(void) |
| { |
| BUG_ON(!ntfs_compression_buffer); |
| vfree(ntfs_compression_buffer); |
| ntfs_compression_buffer = NULL; |
| } |
| |
| /** |
| * zero_partial_compressed_page - zero out of bounds compressed page region |
| */ |
| static void zero_partial_compressed_page(struct page *page, |
| const s64 initialized_size) |
| { |
| u8 *kp = page_address(page); |
| unsigned int kp_ofs; |
| |
| ntfs_debug("Zeroing page region outside initialized size."); |
| if (((s64)page->index << PAGE_CACHE_SHIFT) >= initialized_size) { |
| /* |
| * FIXME: Using clear_page() will become wrong when we get |
| * PAGE_CACHE_SIZE != PAGE_SIZE but for now there is no problem. |
| */ |
| clear_page(kp); |
| return; |
| } |
| kp_ofs = initialized_size & ~PAGE_CACHE_MASK; |
| memset(kp + kp_ofs, 0, PAGE_CACHE_SIZE - kp_ofs); |
| return; |
| } |
| |
| /** |
| * handle_bounds_compressed_page - test for&handle out of bounds compressed page |
| */ |
| static inline void handle_bounds_compressed_page(struct page *page, |
| const loff_t i_size, const s64 initialized_size) |
| { |
| if ((page->index >= (initialized_size >> PAGE_CACHE_SHIFT)) && |
| (initialized_size < i_size)) |
| zero_partial_compressed_page(page, initialized_size); |
| return; |
| } |
| |
| /** |
| * ntfs_decompress - decompress a compression block into an array of pages |
| * @dest_pages: destination array of pages |
| * @dest_index: current index into @dest_pages (IN/OUT) |
| * @dest_ofs: current offset within @dest_pages[@dest_index] (IN/OUT) |
| * @dest_max_index: maximum index into @dest_pages (IN) |
| * @dest_max_ofs: maximum offset within @dest_pages[@dest_max_index] (IN) |
| * @xpage: the target page (-1 if none) (IN) |
| * @xpage_done: set to 1 if xpage was completed successfully (IN/OUT) |
| * @cb_start: compression block to decompress (IN) |
| * @cb_size: size of compression block @cb_start in bytes (IN) |
| * @i_size: file size when we started the read (IN) |
| * @initialized_size: initialized file size when we started the read (IN) |
| * |
| * The caller must have disabled preemption. ntfs_decompress() reenables it when |
| * the critical section is finished. |
| * |
| * This decompresses the compression block @cb_start into the array of |
| * destination pages @dest_pages starting at index @dest_index into @dest_pages |
| * and at offset @dest_pos into the page @dest_pages[@dest_index]. |
| * |
| * When the page @dest_pages[@xpage] is completed, @xpage_done is set to 1. |
| * If xpage is -1 or @xpage has not been completed, @xpage_done is not modified. |
| * |
| * @cb_start is a pointer to the compression block which needs decompressing |
| * and @cb_size is the size of @cb_start in bytes (8-64kiB). |
| * |
| * Return 0 if success or -EOVERFLOW on error in the compressed stream. |
| * @xpage_done indicates whether the target page (@dest_pages[@xpage]) was |
| * completed during the decompression of the compression block (@cb_start). |
| * |
| * Warning: This function *REQUIRES* PAGE_CACHE_SIZE >= 4096 or it will blow up |
| * unpredicatbly! You have been warned! |
| * |
| * Note to hackers: This function may not sleep until it has finished accessing |
| * the compression block @cb_start as it is a per-CPU buffer. |
| */ |
| static int ntfs_decompress(struct page *dest_pages[], int *dest_index, |
| int *dest_ofs, const int dest_max_index, const int dest_max_ofs, |
| const int xpage, char *xpage_done, u8 *const cb_start, |
| const u32 cb_size, const loff_t i_size, |
| const s64 initialized_size) |
| { |
| /* |
| * Pointers into the compressed data, i.e. the compression block (cb), |
| * and the therein contained sub-blocks (sb). |
| */ |
| u8 *cb_end = cb_start + cb_size; /* End of cb. */ |
| u8 *cb = cb_start; /* Current position in cb. */ |
| u8 *cb_sb_start = cb; /* Beginning of the current sb in the cb. */ |
| u8 *cb_sb_end; /* End of current sb / beginning of next sb. */ |
| |
| /* Variables for uncompressed data / destination. */ |
| struct page *dp; /* Current destination page being worked on. */ |
| u8 *dp_addr; /* Current pointer into dp. */ |
| u8 *dp_sb_start; /* Start of current sub-block in dp. */ |
| u8 *dp_sb_end; /* End of current sb in dp (dp_sb_start + |
| NTFS_SB_SIZE). */ |
| u16 do_sb_start; /* @dest_ofs when starting this sub-block. */ |
| u16 do_sb_end; /* @dest_ofs of end of this sb (do_sb_start + |
| NTFS_SB_SIZE). */ |
| |
| /* Variables for tag and token parsing. */ |
| u8 tag; /* Current tag. */ |
| int token; /* Loop counter for the eight tokens in tag. */ |
| |
| /* Need this because we can't sleep, so need two stages. */ |
| int completed_pages[dest_max_index - *dest_index + 1]; |
| int nr_completed_pages = 0; |
| |
| /* Default error code. */ |
| int err = -EOVERFLOW; |
| |
| ntfs_debug("Entering, cb_size = 0x%x.", cb_size); |
| do_next_sb: |
| ntfs_debug("Beginning sub-block at offset = 0x%zx in the cb.", |
| cb - cb_start); |
| /* |
| * Have we reached the end of the compression block or the end of the |
| * decompressed data? The latter can happen for example if the current |
| * position in the compression block is one byte before its end so the |
| * first two checks do not detect it. |
| */ |
| if (cb == cb_end || !le16_to_cpup((le16*)cb) || |
| (*dest_index == dest_max_index && |
| *dest_ofs == dest_max_ofs)) { |
| int i; |
| |
| ntfs_debug("Completed. Returning success (0)."); |
| err = 0; |
| return_error: |
| /* We can sleep from now on, so we drop lock. */ |
| spin_unlock(&ntfs_cb_lock); |
| /* Second stage: finalize completed pages. */ |
| if (nr_completed_pages > 0) { |
| for (i = 0; i < nr_completed_pages; i++) { |
| int di = completed_pages[i]; |
| |
| dp = dest_pages[di]; |
| /* |
| * If we are outside the initialized size, zero |
| * the out of bounds page range. |
| */ |
| handle_bounds_compressed_page(dp, i_size, |
| initialized_size); |
| flush_dcache_page(dp); |
| kunmap(dp); |
| SetPageUptodate(dp); |
| unlock_page(dp); |
| if (di == xpage) |
| *xpage_done = 1; |
| else |
| page_cache_release(dp); |
| dest_pages[di] = NULL; |
| } |
| } |
| return err; |
| } |
| |
| /* Setup offsets for the current sub-block destination. */ |
| do_sb_start = *dest_ofs; |
| do_sb_end = do_sb_start + NTFS_SB_SIZE; |
| |
| /* Check that we are still within allowed boundaries. */ |
| if (*dest_index == dest_max_index && do_sb_end > dest_max_ofs) |
| goto return_overflow; |
| |
| /* Does the minimum size of a compressed sb overflow valid range? */ |
| if (cb + 6 > cb_end) |
| goto return_overflow; |
| |
| /* Setup the current sub-block source pointers and validate range. */ |
| cb_sb_start = cb; |
| cb_sb_end = cb_sb_start + (le16_to_cpup((le16*)cb) & NTFS_SB_SIZE_MASK) |
| + 3; |
| if (cb_sb_end > cb_end) |
| goto return_overflow; |
| |
| /* Get the current destination page. */ |
| dp = dest_pages[*dest_index]; |
| if (!dp) { |
| /* No page present. Skip decompression of this sub-block. */ |
| cb = cb_sb_end; |
| |
| /* Advance destination position to next sub-block. */ |
| *dest_ofs = (*dest_ofs + NTFS_SB_SIZE) & ~PAGE_CACHE_MASK; |
| if (!*dest_ofs && (++*dest_index > dest_max_index)) |
| goto return_overflow; |
| goto do_next_sb; |
| } |
| |
| /* We have a valid destination page. Setup the destination pointers. */ |
| dp_addr = (u8*)page_address(dp) + do_sb_start; |
| |
| /* Now, we are ready to process the current sub-block (sb). */ |
| if (!(le16_to_cpup((le16*)cb) & NTFS_SB_IS_COMPRESSED)) { |
| ntfs_debug("Found uncompressed sub-block."); |
| /* This sb is not compressed, just copy it into destination. */ |
| |
| /* Advance source position to first data byte. */ |
| cb += 2; |
| |
| /* An uncompressed sb must be full size. */ |
| if (cb_sb_end - cb != NTFS_SB_SIZE) |
| goto return_overflow; |
| |
| /* Copy the block and advance the source position. */ |
| memcpy(dp_addr, cb, NTFS_SB_SIZE); |
| cb += NTFS_SB_SIZE; |
| |
| /* Advance destination position to next sub-block. */ |
| *dest_ofs += NTFS_SB_SIZE; |
| if (!(*dest_ofs &= ~PAGE_CACHE_MASK)) { |
| finalize_page: |
| /* |
| * First stage: add current page index to array of |
| * completed pages. |
| */ |
| completed_pages[nr_completed_pages++] = *dest_index; |
| if (++*dest_index > dest_max_index) |
| goto return_overflow; |
| } |
| goto do_next_sb; |
| } |
| ntfs_debug("Found compressed sub-block."); |
| /* This sb is compressed, decompress it into destination. */ |
| |
| /* Setup destination pointers. */ |
| dp_sb_start = dp_addr; |
| dp_sb_end = dp_sb_start + NTFS_SB_SIZE; |
| |
| /* Forward to the first tag in the sub-block. */ |
| cb += 2; |
| do_next_tag: |
| if (cb == cb_sb_end) { |
| /* Check if the decompressed sub-block was not full-length. */ |
| if (dp_addr < dp_sb_end) { |
| int nr_bytes = do_sb_end - *dest_ofs; |
| |
| ntfs_debug("Filling incomplete sub-block with " |
| "zeroes."); |
| /* Zero remainder and update destination position. */ |
| memset(dp_addr, 0, nr_bytes); |
| *dest_ofs += nr_bytes; |
| } |
| /* We have finished the current sub-block. */ |
| if (!(*dest_ofs &= ~PAGE_CACHE_MASK)) |
| goto finalize_page; |
| goto do_next_sb; |
| } |
| |
| /* Check we are still in range. */ |
| if (cb > cb_sb_end || dp_addr > dp_sb_end) |
| goto return_overflow; |
| |
| /* Get the next tag and advance to first token. */ |
| tag = *cb++; |
| |
| /* Parse the eight tokens described by the tag. */ |
| for (token = 0; token < 8; token++, tag >>= 1) { |
| u16 lg, pt, length, max_non_overlap; |
| register u16 i; |
| u8 *dp_back_addr; |
| |
| /* Check if we are done / still in range. */ |
| if (cb >= cb_sb_end || dp_addr > dp_sb_end) |
| break; |
| |
| /* Determine token type and parse appropriately.*/ |
| if ((tag & NTFS_TOKEN_MASK) == NTFS_SYMBOL_TOKEN) { |
| /* |
| * We have a symbol token, copy the symbol across, and |
| * advance the source and destination positions. |
| */ |
| *dp_addr++ = *cb++; |
| ++*dest_ofs; |
| |
| /* Continue with the next token. */ |
| continue; |
| } |
| |
| /* |
| * We have a phrase token. Make sure it is not the first tag in |
| * the sb as this is illegal and would confuse the code below. |
| */ |
| if (dp_addr == dp_sb_start) |
| goto return_overflow; |
| |
| /* |
| * Determine the number of bytes to go back (p) and the number |
| * of bytes to copy (l). We use an optimized algorithm in which |
| * we first calculate log2(current destination position in sb), |
| * which allows determination of l and p in O(1) rather than |
| * O(n). We just need an arch-optimized log2() function now. |
| */ |
| lg = 0; |
| for (i = *dest_ofs - do_sb_start - 1; i >= 0x10; i >>= 1) |
| lg++; |
| |
| /* Get the phrase token into i. */ |
| pt = le16_to_cpup((le16*)cb); |
| |
| /* |
| * Calculate starting position of the byte sequence in |
| * the destination using the fact that p = (pt >> (12 - lg)) + 1 |
| * and make sure we don't go too far back. |
| */ |
| dp_back_addr = dp_addr - (pt >> (12 - lg)) - 1; |
| if (dp_back_addr < dp_sb_start) |
| goto return_overflow; |
| |
| /* Now calculate the length of the byte sequence. */ |
| length = (pt & (0xfff >> lg)) + 3; |
| |
| /* Advance destination position and verify it is in range. */ |
| *dest_ofs += length; |
| if (*dest_ofs > do_sb_end) |
| goto return_overflow; |
| |
| /* The number of non-overlapping bytes. */ |
| max_non_overlap = dp_addr - dp_back_addr; |
| |
| if (length <= max_non_overlap) { |
| /* The byte sequence doesn't overlap, just copy it. */ |
| memcpy(dp_addr, dp_back_addr, length); |
| |
| /* Advance destination pointer. */ |
| dp_addr += length; |
| } else { |
| /* |
| * The byte sequence does overlap, copy non-overlapping |
| * part and then do a slow byte by byte copy for the |
| * overlapping part. Also, advance the destination |
| * pointer. |
| */ |
| memcpy(dp_addr, dp_back_addr, max_non_overlap); |
| dp_addr += max_non_overlap; |
| dp_back_addr += max_non_overlap; |
| length -= max_non_overlap; |
| while (length--) |
| *dp_addr++ = *dp_back_addr++; |
| } |
| |
| /* Advance source position and continue with the next token. */ |
| cb += 2; |
| } |
| |
| /* No tokens left in the current tag. Continue with the next tag. */ |
| goto do_next_tag; |
| |
| return_overflow: |
| ntfs_error(NULL, "Failed. Returning -EOVERFLOW."); |
| goto return_error; |
| } |
| |
| /** |
| * ntfs_read_compressed_block - read a compressed block into the page cache |
| * @page: locked page in the compression block(s) we need to read |
| * |
| * When we are called the page has already been verified to be locked and the |
| * attribute is known to be non-resident, not encrypted, but compressed. |
| * |
| * 1. Determine which compression block(s) @page is in. |
| * 2. Get hold of all pages corresponding to this/these compression block(s). |
| * 3. Read the (first) compression block. |
| * 4. Decompress it into the corresponding pages. |
| * 5. Throw the compressed data away and proceed to 3. for the next compression |
| * block or return success if no more compression blocks left. |
| * |
| * Warning: We have to be careful what we do about existing pages. They might |
| * have been written to so that we would lose data if we were to just overwrite |
| * them with the out-of-date uncompressed data. |
| * |
| * FIXME: For PAGE_CACHE_SIZE > cb_size we are not doing the Right Thing(TM) at |
| * the end of the file I think. We need to detect this case and zero the out |
| * of bounds remainder of the page in question and mark it as handled. At the |
| * moment we would just return -EIO on such a page. This bug will only become |
| * apparent if pages are above 8kiB and the NTFS volume only uses 512 byte |
| * clusters so is probably not going to be seen by anyone. Still this should |
| * be fixed. (AIA) |
| * |
| * FIXME: Again for PAGE_CACHE_SIZE > cb_size we are screwing up both in |
| * handling sparse and compressed cbs. (AIA) |
| * |
| * FIXME: At the moment we don't do any zeroing out in the case that |
| * initialized_size is less than data_size. This should be safe because of the |
| * nature of the compression algorithm used. Just in case we check and output |
| * an error message in read inode if the two sizes are not equal for a |
| * compressed file. (AIA) |
| */ |
| int ntfs_read_compressed_block(struct page *page) |
| { |
| loff_t i_size; |
| s64 initialized_size; |
| struct address_space *mapping = page->mapping; |
| ntfs_inode *ni = NTFS_I(mapping->host); |
| ntfs_volume *vol = ni->vol; |
| struct super_block *sb = vol->sb; |
| runlist_element *rl; |
| unsigned long flags, block_size = sb->s_blocksize; |
| unsigned char block_size_bits = sb->s_blocksize_bits; |
| u8 *cb, *cb_pos, *cb_end; |
| struct buffer_head **bhs; |
| unsigned long offset, index = page->index; |
| u32 cb_size = ni->itype.compressed.block_size; |
| u64 cb_size_mask = cb_size - 1UL; |
| VCN vcn; |
| LCN lcn; |
| /* The first wanted vcn (minimum alignment is PAGE_CACHE_SIZE). */ |
| VCN start_vcn = (((s64)index << PAGE_CACHE_SHIFT) & ~cb_size_mask) >> |
| vol->cluster_size_bits; |
| /* |
| * The first vcn after the last wanted vcn (minumum alignment is again |
| * PAGE_CACHE_SIZE. |
| */ |
| VCN end_vcn = ((((s64)(index + 1UL) << PAGE_CACHE_SHIFT) + cb_size - 1) |
| & ~cb_size_mask) >> vol->cluster_size_bits; |
| /* Number of compression blocks (cbs) in the wanted vcn range. */ |
| unsigned int nr_cbs = (end_vcn - start_vcn) << vol->cluster_size_bits |
| >> ni->itype.compressed.block_size_bits; |
| /* |
| * Number of pages required to store the uncompressed data from all |
| * compression blocks (cbs) overlapping @page. Due to alignment |
| * guarantees of start_vcn and end_vcn, no need to round up here. |
| */ |
| unsigned int nr_pages = (end_vcn - start_vcn) << |
| vol->cluster_size_bits >> PAGE_CACHE_SHIFT; |
| unsigned int xpage, max_page, cur_page, cur_ofs, i; |
| unsigned int cb_clusters, cb_max_ofs; |
| int block, max_block, cb_max_page, bhs_size, nr_bhs, err = 0; |
| struct page **pages; |
| unsigned char xpage_done = 0; |
| |
| ntfs_debug("Entering, page->index = 0x%lx, cb_size = 0x%x, nr_pages = " |
| "%i.", index, cb_size, nr_pages); |
| /* |
| * Bad things happen if we get here for anything that is not an |
| * unnamed $DATA attribute. |
| */ |
| BUG_ON(ni->type != AT_DATA); |
| BUG_ON(ni->name_len); |
| |
| pages = kmalloc(nr_pages * sizeof(struct page *), GFP_NOFS); |
| |
| /* Allocate memory to store the buffer heads we need. */ |
| bhs_size = cb_size / block_size * sizeof(struct buffer_head *); |
| bhs = kmalloc(bhs_size, GFP_NOFS); |
| |
| if (unlikely(!pages || !bhs)) { |
| kfree(bhs); |
| kfree(pages); |
| unlock_page(page); |
| ntfs_error(vol->sb, "Failed to allocate internal buffers."); |
| return -ENOMEM; |
| } |
| |
| /* |
| * We have already been given one page, this is the one we must do. |
| * Once again, the alignment guarantees keep it simple. |
| */ |
| offset = start_vcn << vol->cluster_size_bits >> PAGE_CACHE_SHIFT; |
| xpage = index - offset; |
| pages[xpage] = page; |
| /* |
| * The remaining pages need to be allocated and inserted into the page |
| * cache, alignment guarantees keep all the below much simpler. (-8 |
| */ |
| read_lock_irqsave(&ni->size_lock, flags); |
| i_size = i_size_read(VFS_I(ni)); |
| initialized_size = ni->initialized_size; |
| read_unlock_irqrestore(&ni->size_lock, flags); |
| max_page = ((i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - |
| offset; |
| /* Is the page fully outside i_size? (truncate in progress) */ |
| if (xpage >= max_page) { |
| kfree(bhs); |
| kfree(pages); |
| zero_user(page, 0, PAGE_CACHE_SIZE); |
| ntfs_debug("Compressed read outside i_size - truncated?"); |
| SetPageUptodate(page); |
| unlock_page(page); |
| return 0; |
| } |
| if (nr_pages < max_page) |
| max_page = nr_pages; |
| for (i = 0; i < max_page; i++, offset++) { |
| if (i != xpage) |
| pages[i] = grab_cache_page_nowait(mapping, offset); |
| page = pages[i]; |
| if (page) { |
| /* |
| * We only (re)read the page if it isn't already read |
| * in and/or dirty or we would be losing data or at |
| * least wasting our time. |
| */ |
| if (!PageDirty(page) && (!PageUptodate(page) || |
| PageError(page))) { |
| ClearPageError(page); |
| kmap(page); |
| continue; |
| } |
| unlock_page(page); |
| page_cache_release(page); |
| pages[i] = NULL; |
| } |
| } |
| |
| /* |
| * We have the runlist, and all the destination pages we need to fill. |
| * Now read the first compression block. |
| */ |
| cur_page = 0; |
| cur_ofs = 0; |
| cb_clusters = ni->itype.compressed.block_clusters; |
| do_next_cb: |
| nr_cbs--; |
| nr_bhs = 0; |
| |
| /* Read all cb buffer heads one cluster at a time. */ |
| rl = NULL; |
| for (vcn = start_vcn, start_vcn += cb_clusters; vcn < start_vcn; |
| vcn++) { |
| bool is_retry = false; |
| |
| if (!rl) { |
| lock_retry_remap: |
| down_read(&ni->runlist.lock); |
| rl = ni->runlist.rl; |
| } |
| if (likely(rl != NULL)) { |
| /* Seek to element containing target vcn. */ |
| while (rl->length && rl[1].vcn <= vcn) |
| rl++; |
| lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| } else |
| lcn = LCN_RL_NOT_MAPPED; |
| ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", |
| (unsigned long long)vcn, |
| (unsigned long long)lcn); |
| if (lcn < 0) { |
| /* |
| * When we reach the first sparse cluster we have |
| * finished with the cb. |
| */ |
| if (lcn == LCN_HOLE) |
| break; |
| if (is_retry || lcn != LCN_RL_NOT_MAPPED) |
| goto rl_err; |
| is_retry = true; |
| /* |
| * Attempt to map runlist, dropping lock for the |
| * duration. |
| */ |
| up_read(&ni->runlist.lock); |
| if (!ntfs_map_runlist(ni, vcn)) |
| goto lock_retry_remap; |
| goto map_rl_err; |
| } |
| block = lcn << vol->cluster_size_bits >> block_size_bits; |
| /* Read the lcn from device in chunks of block_size bytes. */ |
| max_block = block + (vol->cluster_size >> block_size_bits); |
| do { |
| ntfs_debug("block = 0x%x.", block); |
| if (unlikely(!(bhs[nr_bhs] = sb_getblk(sb, block)))) |
| goto getblk_err; |
| nr_bhs++; |
| } while (++block < max_block); |
| } |
| |
| /* Release the lock if we took it. */ |
| if (rl) |
| up_read(&ni->runlist.lock); |
| |
| /* Setup and initiate io on all buffer heads. */ |
| for (i = 0; i < nr_bhs; i++) { |
| struct buffer_head *tbh = bhs[i]; |
| |
| if (!trylock_buffer(tbh)) |
| continue; |
| if (unlikely(buffer_uptodate(tbh))) { |
| unlock_buffer(tbh); |
| continue; |
| } |
| get_bh(tbh); |
| tbh->b_end_io = end_buffer_read_sync; |
| submit_bh(READ, tbh); |
| } |
| |
| /* Wait for io completion on all buffer heads. */ |
| for (i = 0; i < nr_bhs; i++) { |
| struct buffer_head *tbh = bhs[i]; |
| |
| if (buffer_uptodate(tbh)) |
| continue; |
| wait_on_buffer(tbh); |
| /* |
| * We need an optimization barrier here, otherwise we start |
| * hitting the below fixup code when accessing a loopback |
| * mounted ntfs partition. This indicates either there is a |
| * race condition in the loop driver or, more likely, gcc |
| * overoptimises the code without the barrier and it doesn't |
| * do the Right Thing(TM). |
| */ |
| barrier(); |
| if (unlikely(!buffer_uptodate(tbh))) { |
| ntfs_warning(vol->sb, "Buffer is unlocked but not " |
| "uptodate! Unplugging the disk queue " |
| "and rescheduling."); |
| get_bh(tbh); |
| io_schedule(); |
| put_bh(tbh); |
| if (unlikely(!buffer_uptodate(tbh))) |
| goto read_err; |
| ntfs_warning(vol->sb, "Buffer is now uptodate. Good."); |
| } |
| } |
| |
| /* |
| * Get the compression buffer. We must not sleep any more |
| * until we are finished with it. |
| */ |
| spin_lock(&ntfs_cb_lock); |
| cb = ntfs_compression_buffer; |
| |
| BUG_ON(!cb); |
| |
| cb_pos = cb; |
| cb_end = cb + cb_size; |
| |
| /* Copy the buffer heads into the contiguous buffer. */ |
| for (i = 0; i < nr_bhs; i++) { |
| memcpy(cb_pos, bhs[i]->b_data, block_size); |
| cb_pos += block_size; |
| } |
| |
| /* Just a precaution. */ |
| if (cb_pos + 2 <= cb + cb_size) |
| *(u16*)cb_pos = 0; |
| |
| /* Reset cb_pos back to the beginning. */ |
| cb_pos = cb; |
| |
| /* We now have both source (if present) and destination. */ |
| ntfs_debug("Successfully read the compression block."); |
| |
| /* The last page and maximum offset within it for the current cb. */ |
| cb_max_page = (cur_page << PAGE_CACHE_SHIFT) + cur_ofs + cb_size; |
| cb_max_ofs = cb_max_page & ~PAGE_CACHE_MASK; |
| cb_max_page >>= PAGE_CACHE_SHIFT; |
| |
| /* Catch end of file inside a compression block. */ |
| if (cb_max_page > max_page) |
| cb_max_page = max_page; |
| |
| if (vcn == start_vcn - cb_clusters) { |
| /* Sparse cb, zero out page range overlapping the cb. */ |
| ntfs_debug("Found sparse compression block."); |
| /* We can sleep from now on, so we drop lock. */ |
| spin_unlock(&ntfs_cb_lock); |
| if (cb_max_ofs) |
| cb_max_page--; |
| for (; cur_page < cb_max_page; cur_page++) { |
| page = pages[cur_page]; |
| if (page) { |
| /* |
| * FIXME: Using clear_page() will become wrong |
| * when we get PAGE_CACHE_SIZE != PAGE_SIZE but |
| * for now there is no problem. |
| */ |
| if (likely(!cur_ofs)) |
| clear_page(page_address(page)); |
| else |
| memset(page_address(page) + cur_ofs, 0, |
| PAGE_CACHE_SIZE - |
| cur_ofs); |
| flush_dcache_page(page); |
| kunmap(page); |
| SetPageUptodate(page); |
| unlock_page(page); |
| if (cur_page == xpage) |
| xpage_done = 1; |
| else |
| page_cache_release(page); |
| pages[cur_page] = NULL; |
| } |
| cb_pos += PAGE_CACHE_SIZE - cur_ofs; |
| cur_ofs = 0; |
| if (cb_pos >= cb_end) |
| break; |
| } |
| /* If we have a partial final page, deal with it now. */ |
| if (cb_max_ofs && cb_pos < cb_end) { |
| page = pages[cur_page]; |
| if (page) |
| memset(page_address(page) + cur_ofs, 0, |
| cb_max_ofs - cur_ofs); |
| /* |
| * No need to update cb_pos at this stage: |
| * cb_pos += cb_max_ofs - cur_ofs; |
| */ |
| cur_ofs = cb_max_ofs; |
| } |
| } else if (vcn == start_vcn) { |
| /* We can't sleep so we need two stages. */ |
| unsigned int cur2_page = cur_page; |
| unsigned int cur_ofs2 = cur_ofs; |
| u8 *cb_pos2 = cb_pos; |
| |
| ntfs_debug("Found uncompressed compression block."); |
| /* Uncompressed cb, copy it to the destination pages. */ |
| /* |
| * TODO: As a big optimization, we could detect this case |
| * before we read all the pages and use block_read_full_page() |
| * on all full pages instead (we still have to treat partial |
| * pages especially but at least we are getting rid of the |
| * synchronous io for the majority of pages. |
| * Or if we choose not to do the read-ahead/-behind stuff, we |
| * could just return block_read_full_page(pages[xpage]) as long |
| * as PAGE_CACHE_SIZE <= cb_size. |
| */ |
| if (cb_max_ofs) |
| cb_max_page--; |
| /* First stage: copy data into destination pages. */ |
| for (; cur_page < cb_max_page; cur_page++) { |
| page = pages[cur_page]; |
| if (page) |
| memcpy(page_address(page) + cur_ofs, cb_pos, |
| PAGE_CACHE_SIZE - cur_ofs); |
| cb_pos += PAGE_CACHE_SIZE - cur_ofs; |
| cur_ofs = 0; |
| if (cb_pos >= cb_end) |
| break; |
| } |
| /* If we have a partial final page, deal with it now. */ |
| if (cb_max_ofs && cb_pos < cb_end) { |
| page = pages[cur_page]; |
| if (page) |
| memcpy(page_address(page) + cur_ofs, cb_pos, |
| cb_max_ofs - cur_ofs); |
| cb_pos += cb_max_ofs - cur_ofs; |
| cur_ofs = cb_max_ofs; |
| } |
| /* We can sleep from now on, so drop lock. */ |
| spin_unlock(&ntfs_cb_lock); |
| /* Second stage: finalize pages. */ |
| for (; cur2_page < cb_max_page; cur2_page++) { |
| page = pages[cur2_page]; |
| if (page) { |
| /* |
| * If we are outside the initialized size, zero |
| * the out of bounds page range. |
| */ |
| handle_bounds_compressed_page(page, i_size, |
| initialized_size); |
| flush_dcache_page(page); |
| kunmap(page); |
| SetPageUptodate(page); |
| unlock_page(page); |
| if (cur2_page == xpage) |
| xpage_done = 1; |
| else |
| page_cache_release(page); |
| pages[cur2_page] = NULL; |
| } |
| cb_pos2 += PAGE_CACHE_SIZE - cur_ofs2; |
| cur_ofs2 = 0; |
| if (cb_pos2 >= cb_end) |
| break; |
| } |
| } else { |
| /* Compressed cb, decompress it into the destination page(s). */ |
| unsigned int prev_cur_page = cur_page; |
| |
| ntfs_debug("Found compressed compression block."); |
| err = ntfs_decompress(pages, &cur_page, &cur_ofs, |
| cb_max_page, cb_max_ofs, xpage, &xpage_done, |
| cb_pos, cb_size - (cb_pos - cb), i_size, |
| initialized_size); |
| /* |
| * We can sleep from now on, lock already dropped by |
| * ntfs_decompress(). |
| */ |
| if (err) { |
| ntfs_error(vol->sb, "ntfs_decompress() failed in inode " |
| "0x%lx with error code %i. Skipping " |
| "this compression block.", |
| ni->mft_no, -err); |
| /* Release the unfinished pages. */ |
| for (; prev_cur_page < cur_page; prev_cur_page++) { |
| page = pages[prev_cur_page]; |
| if (page) { |
| flush_dcache_page(page); |
| kunmap(page); |
| unlock_page(page); |
| if (prev_cur_page != xpage) |
| page_cache_release(page); |
| pages[prev_cur_page] = NULL; |
| } |
| } |
| } |
| } |
| |
| /* Release the buffer heads. */ |
| for (i = 0; i < nr_bhs; i++) |
| brelse(bhs[i]); |
| |
| /* Do we have more work to do? */ |
| if (nr_cbs) |
| goto do_next_cb; |
| |
| /* We no longer need the list of buffer heads. */ |
| kfree(bhs); |
| |
| /* Clean up if we have any pages left. Should never happen. */ |
| for (cur_page = 0; cur_page < max_page; cur_page++) { |
| page = pages[cur_page]; |
| if (page) { |
| ntfs_error(vol->sb, "Still have pages left! " |
| "Terminating them with extreme " |
| "prejudice. Inode 0x%lx, page index " |
| "0x%lx.", ni->mft_no, page->index); |
| flush_dcache_page(page); |
| kunmap(page); |
| unlock_page(page); |
| if (cur_page != xpage) |
| page_cache_release(page); |
| pages[cur_page] = NULL; |
| } |
| } |
| |
| /* We no longer need the list of pages. */ |
| kfree(pages); |
| |
| /* If we have completed the requested page, we return success. */ |
| if (likely(xpage_done)) |
| return 0; |
| |
| ntfs_debug("Failed. Returning error code %s.", err == -EOVERFLOW ? |
| "EOVERFLOW" : (!err ? "EIO" : "unknown error")); |
| return err < 0 ? err : -EIO; |
| |
| read_err: |
| ntfs_error(vol->sb, "IO error while reading compressed data."); |
| /* Release the buffer heads. */ |
| for (i = 0; i < nr_bhs; i++) |
| brelse(bhs[i]); |
| goto err_out; |
| |
| map_rl_err: |
| ntfs_error(vol->sb, "ntfs_map_runlist() failed. Cannot read " |
| "compression block."); |
| goto err_out; |
| |
| rl_err: |
| up_read(&ni->runlist.lock); |
| ntfs_error(vol->sb, "ntfs_rl_vcn_to_lcn() failed. Cannot read " |
| "compression block."); |
| goto err_out; |
| |
| getblk_err: |
| up_read(&ni->runlist.lock); |
| ntfs_error(vol->sb, "getblk() failed. Cannot read compression block."); |
| |
| err_out: |
| kfree(bhs); |
| for (i = cur_page; i < max_page; i++) { |
| page = pages[i]; |
| if (page) { |
| flush_dcache_page(page); |
| kunmap(page); |
| unlock_page(page); |
| if (i != xpage) |
| page_cache_release(page); |
| } |
| } |
| kfree(pages); |
| return -EIO; |
| } |