| /* |
| * acpi_numa.c - ACPI NUMA support |
| * |
| * Copyright (C) 2002 Takayoshi Kochi <t-kochi@bq.jp.nec.com> |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| */ |
| |
| #define pr_fmt(fmt) "ACPI: " fmt |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/acpi.h> |
| #include <linux/bootmem.h> |
| #include <linux/memblock.h> |
| #include <linux/numa.h> |
| #include <linux/nodemask.h> |
| #include <linux/topology.h> |
| |
| static nodemask_t nodes_found_map = NODE_MASK_NONE; |
| |
| /* maps to convert between proximity domain and logical node ID */ |
| static int pxm_to_node_map[MAX_PXM_DOMAINS] |
| = { [0 ... MAX_PXM_DOMAINS - 1] = NUMA_NO_NODE }; |
| static int node_to_pxm_map[MAX_NUMNODES] |
| = { [0 ... MAX_NUMNODES - 1] = PXM_INVAL }; |
| |
| unsigned char acpi_srat_revision __initdata; |
| int acpi_numa __initdata; |
| |
| int pxm_to_node(int pxm) |
| { |
| if (pxm < 0) |
| return NUMA_NO_NODE; |
| return pxm_to_node_map[pxm]; |
| } |
| |
| int node_to_pxm(int node) |
| { |
| if (node < 0) |
| return PXM_INVAL; |
| return node_to_pxm_map[node]; |
| } |
| |
| static void __acpi_map_pxm_to_node(int pxm, int node) |
| { |
| if (pxm_to_node_map[pxm] == NUMA_NO_NODE || node < pxm_to_node_map[pxm]) |
| pxm_to_node_map[pxm] = node; |
| if (node_to_pxm_map[node] == PXM_INVAL || pxm < node_to_pxm_map[node]) |
| node_to_pxm_map[node] = pxm; |
| } |
| |
| int acpi_map_pxm_to_node(int pxm) |
| { |
| int node; |
| |
| if (pxm < 0 || pxm >= MAX_PXM_DOMAINS || numa_off) |
| return NUMA_NO_NODE; |
| |
| node = pxm_to_node_map[pxm]; |
| |
| if (node == NUMA_NO_NODE) { |
| if (nodes_weight(nodes_found_map) >= MAX_NUMNODES) |
| return NUMA_NO_NODE; |
| node = first_unset_node(nodes_found_map); |
| __acpi_map_pxm_to_node(pxm, node); |
| node_set(node, nodes_found_map); |
| } |
| |
| return node; |
| } |
| |
| /** |
| * acpi_map_pxm_to_online_node - Map proximity ID to online node |
| * @pxm: ACPI proximity ID |
| * |
| * This is similar to acpi_map_pxm_to_node(), but always returns an online |
| * node. When the mapped node from a given proximity ID is offline, it |
| * looks up the node distance table and returns the nearest online node. |
| * |
| * ACPI device drivers, which are called after the NUMA initialization has |
| * completed in the kernel, can call this interface to obtain their device |
| * NUMA topology from ACPI tables. Such drivers do not have to deal with |
| * offline nodes. A node may be offline when a device proximity ID is |
| * unique, SRAT memory entry does not exist, or NUMA is disabled, ex. |
| * "numa=off" on x86. |
| */ |
| int acpi_map_pxm_to_online_node(int pxm) |
| { |
| int node, n, dist, min_dist; |
| |
| node = acpi_map_pxm_to_node(pxm); |
| |
| if (node == NUMA_NO_NODE) |
| node = 0; |
| |
| if (!node_online(node)) { |
| min_dist = INT_MAX; |
| for_each_online_node(n) { |
| dist = node_distance(node, n); |
| if (dist < min_dist) { |
| min_dist = dist; |
| node = n; |
| } |
| } |
| } |
| |
| return node; |
| } |
| EXPORT_SYMBOL(acpi_map_pxm_to_online_node); |
| |
| static void __init |
| acpi_table_print_srat_entry(struct acpi_subtable_header *header) |
| { |
| switch (header->type) { |
| case ACPI_SRAT_TYPE_CPU_AFFINITY: |
| { |
| struct acpi_srat_cpu_affinity *p = |
| (struct acpi_srat_cpu_affinity *)header; |
| pr_debug("SRAT Processor (id[0x%02x] eid[0x%02x]) in proximity domain %d %s\n", |
| p->apic_id, p->local_sapic_eid, |
| p->proximity_domain_lo, |
| (p->flags & ACPI_SRAT_CPU_ENABLED) ? |
| "enabled" : "disabled"); |
| } |
| break; |
| |
| case ACPI_SRAT_TYPE_MEMORY_AFFINITY: |
| { |
| struct acpi_srat_mem_affinity *p = |
| (struct acpi_srat_mem_affinity *)header; |
| pr_debug("SRAT Memory (0x%lx length 0x%lx) in proximity domain %d %s%s%s\n", |
| (unsigned long)p->base_address, |
| (unsigned long)p->length, |
| p->proximity_domain, |
| (p->flags & ACPI_SRAT_MEM_ENABLED) ? |
| "enabled" : "disabled", |
| (p->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ? |
| " hot-pluggable" : "", |
| (p->flags & ACPI_SRAT_MEM_NON_VOLATILE) ? |
| " non-volatile" : ""); |
| } |
| break; |
| |
| case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: |
| { |
| struct acpi_srat_x2apic_cpu_affinity *p = |
| (struct acpi_srat_x2apic_cpu_affinity *)header; |
| pr_debug("SRAT Processor (x2apicid[0x%08x]) in proximity domain %d %s\n", |
| p->apic_id, |
| p->proximity_domain, |
| (p->flags & ACPI_SRAT_CPU_ENABLED) ? |
| "enabled" : "disabled"); |
| } |
| break; |
| |
| case ACPI_SRAT_TYPE_GICC_AFFINITY: |
| { |
| struct acpi_srat_gicc_affinity *p = |
| (struct acpi_srat_gicc_affinity *)header; |
| pr_debug("SRAT Processor (acpi id[0x%04x]) in proximity domain %d %s\n", |
| p->acpi_processor_uid, |
| p->proximity_domain, |
| (p->flags & ACPI_SRAT_GICC_ENABLED) ? |
| "enabled" : "disabled"); |
| } |
| break; |
| |
| default: |
| pr_warn("Found unsupported SRAT entry (type = 0x%x)\n", |
| header->type); |
| break; |
| } |
| } |
| |
| /* |
| * A lot of BIOS fill in 10 (= no distance) everywhere. This messes |
| * up the NUMA heuristics which wants the local node to have a smaller |
| * distance than the others. |
| * Do some quick checks here and only use the SLIT if it passes. |
| */ |
| static int __init slit_valid(struct acpi_table_slit *slit) |
| { |
| int i, j; |
| int d = slit->locality_count; |
| for (i = 0; i < d; i++) { |
| for (j = 0; j < d; j++) { |
| u8 val = slit->entry[d*i + j]; |
| if (i == j) { |
| if (val != LOCAL_DISTANCE) |
| return 0; |
| } else if (val <= LOCAL_DISTANCE) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| void __init bad_srat(void) |
| { |
| pr_err("SRAT: SRAT not used.\n"); |
| acpi_numa = -1; |
| } |
| |
| int __init srat_disabled(void) |
| { |
| return acpi_numa < 0; |
| } |
| |
| #if defined(CONFIG_X86) || defined(CONFIG_ARM64) |
| /* |
| * Callback for SLIT parsing. pxm_to_node() returns NUMA_NO_NODE for |
| * I/O localities since SRAT does not list them. I/O localities are |
| * not supported at this point. |
| */ |
| void __init acpi_numa_slit_init(struct acpi_table_slit *slit) |
| { |
| int i, j; |
| |
| for (i = 0; i < slit->locality_count; i++) { |
| const int from_node = pxm_to_node(i); |
| |
| if (from_node == NUMA_NO_NODE) |
| continue; |
| |
| for (j = 0; j < slit->locality_count; j++) { |
| const int to_node = pxm_to_node(j); |
| |
| if (to_node == NUMA_NO_NODE) |
| continue; |
| |
| numa_set_distance(from_node, to_node, |
| slit->entry[slit->locality_count * i + j]); |
| } |
| } |
| } |
| |
| /* |
| * Default callback for parsing of the Proximity Domain <-> Memory |
| * Area mappings |
| */ |
| int __init |
| acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) |
| { |
| u64 start, end; |
| u32 hotpluggable; |
| int node, pxm; |
| |
| if (srat_disabled()) |
| goto out_err; |
| if (ma->header.length < sizeof(struct acpi_srat_mem_affinity)) { |
| pr_err("SRAT: Unexpected header length: %d\n", |
| ma->header.length); |
| goto out_err_bad_srat; |
| } |
| if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0) |
| goto out_err; |
| hotpluggable = ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE; |
| if (hotpluggable && !IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) |
| goto out_err; |
| |
| start = ma->base_address; |
| end = start + ma->length; |
| pxm = ma->proximity_domain; |
| if (acpi_srat_revision <= 1) |
| pxm &= 0xff; |
| |
| node = acpi_map_pxm_to_node(pxm); |
| if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { |
| pr_err("SRAT: Too many proximity domains.\n"); |
| goto out_err_bad_srat; |
| } |
| |
| if (numa_add_memblk(node, start, end) < 0) { |
| pr_err("SRAT: Failed to add memblk to node %u [mem %#010Lx-%#010Lx]\n", |
| node, (unsigned long long) start, |
| (unsigned long long) end - 1); |
| goto out_err_bad_srat; |
| } |
| |
| node_set(node, numa_nodes_parsed); |
| |
| pr_info("SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx]%s%s\n", |
| node, pxm, |
| (unsigned long long) start, (unsigned long long) end - 1, |
| hotpluggable ? " hotplug" : "", |
| ma->flags & ACPI_SRAT_MEM_NON_VOLATILE ? " non-volatile" : ""); |
| |
| /* Mark hotplug range in memblock. */ |
| if (hotpluggable && memblock_mark_hotplug(start, ma->length)) |
| pr_warn("SRAT: Failed to mark hotplug range [mem %#010Lx-%#010Lx] in memblock\n", |
| (unsigned long long)start, (unsigned long long)end - 1); |
| |
| max_possible_pfn = max(max_possible_pfn, PFN_UP(end - 1)); |
| |
| return 0; |
| out_err_bad_srat: |
| bad_srat(); |
| out_err: |
| return -EINVAL; |
| } |
| #endif /* defined(CONFIG_X86) || defined (CONFIG_ARM64) */ |
| |
| static int __init acpi_parse_slit(struct acpi_table_header *table) |
| { |
| struct acpi_table_slit *slit = (struct acpi_table_slit *)table; |
| |
| if (!slit_valid(slit)) { |
| pr_info("SLIT table looks invalid. Not used.\n"); |
| return -EINVAL; |
| } |
| acpi_numa_slit_init(slit); |
| |
| return 0; |
| } |
| |
| void __init __weak |
| acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) |
| { |
| pr_warn("Found unsupported x2apic [0x%08x] SRAT entry\n", pa->apic_id); |
| } |
| |
| static int __init |
| acpi_parse_x2apic_affinity(struct acpi_subtable_header *header, |
| const unsigned long end) |
| { |
| struct acpi_srat_x2apic_cpu_affinity *processor_affinity; |
| |
| processor_affinity = (struct acpi_srat_x2apic_cpu_affinity *)header; |
| if (!processor_affinity) |
| return -EINVAL; |
| |
| acpi_table_print_srat_entry(header); |
| |
| /* let architecture-dependent part to do it */ |
| acpi_numa_x2apic_affinity_init(processor_affinity); |
| |
| return 0; |
| } |
| |
| static int __init |
| acpi_parse_processor_affinity(struct acpi_subtable_header *header, |
| const unsigned long end) |
| { |
| struct acpi_srat_cpu_affinity *processor_affinity; |
| |
| processor_affinity = (struct acpi_srat_cpu_affinity *)header; |
| if (!processor_affinity) |
| return -EINVAL; |
| |
| acpi_table_print_srat_entry(header); |
| |
| /* let architecture-dependent part to do it */ |
| acpi_numa_processor_affinity_init(processor_affinity); |
| |
| return 0; |
| } |
| |
| static int __init |
| acpi_parse_gicc_affinity(struct acpi_subtable_header *header, |
| const unsigned long end) |
| { |
| struct acpi_srat_gicc_affinity *processor_affinity; |
| |
| processor_affinity = (struct acpi_srat_gicc_affinity *)header; |
| if (!processor_affinity) |
| return -EINVAL; |
| |
| acpi_table_print_srat_entry(header); |
| |
| /* let architecture-dependent part to do it */ |
| acpi_numa_gicc_affinity_init(processor_affinity); |
| |
| return 0; |
| } |
| |
| static int __initdata parsed_numa_memblks; |
| |
| static int __init |
| acpi_parse_memory_affinity(struct acpi_subtable_header * header, |
| const unsigned long end) |
| { |
| struct acpi_srat_mem_affinity *memory_affinity; |
| |
| memory_affinity = (struct acpi_srat_mem_affinity *)header; |
| if (!memory_affinity) |
| return -EINVAL; |
| |
| acpi_table_print_srat_entry(header); |
| |
| /* let architecture-dependent part to do it */ |
| if (!acpi_numa_memory_affinity_init(memory_affinity)) |
| parsed_numa_memblks++; |
| return 0; |
| } |
| |
| static int __init acpi_parse_srat(struct acpi_table_header *table) |
| { |
| struct acpi_table_srat *srat = (struct acpi_table_srat *)table; |
| |
| acpi_srat_revision = srat->header.revision; |
| |
| /* Real work done in acpi_table_parse_srat below. */ |
| |
| return 0; |
| } |
| |
| static int __init |
| acpi_table_parse_srat(enum acpi_srat_type id, |
| acpi_tbl_entry_handler handler, unsigned int max_entries) |
| { |
| return acpi_table_parse_entries(ACPI_SIG_SRAT, |
| sizeof(struct acpi_table_srat), id, |
| handler, max_entries); |
| } |
| |
| int __init acpi_numa_init(void) |
| { |
| int cnt = 0; |
| |
| if (acpi_disabled) |
| return -EINVAL; |
| |
| /* |
| * Should not limit number with cpu num that is from NR_CPUS or nr_cpus= |
| * SRAT cpu entries could have different order with that in MADT. |
| * So go over all cpu entries in SRAT to get apicid to node mapping. |
| */ |
| |
| /* SRAT: Static Resource Affinity Table */ |
| if (!acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) { |
| struct acpi_subtable_proc srat_proc[3]; |
| |
| memset(srat_proc, 0, sizeof(srat_proc)); |
| srat_proc[0].id = ACPI_SRAT_TYPE_CPU_AFFINITY; |
| srat_proc[0].handler = acpi_parse_processor_affinity; |
| srat_proc[1].id = ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY; |
| srat_proc[1].handler = acpi_parse_x2apic_affinity; |
| srat_proc[2].id = ACPI_SRAT_TYPE_GICC_AFFINITY; |
| srat_proc[2].handler = acpi_parse_gicc_affinity; |
| |
| acpi_table_parse_entries_array(ACPI_SIG_SRAT, |
| sizeof(struct acpi_table_srat), |
| srat_proc, ARRAY_SIZE(srat_proc), 0); |
| |
| cnt = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY, |
| acpi_parse_memory_affinity, |
| NR_NODE_MEMBLKS); |
| } |
| |
| /* SLIT: System Locality Information Table */ |
| acpi_table_parse(ACPI_SIG_SLIT, acpi_parse_slit); |
| |
| if (cnt < 0) |
| return cnt; |
| else if (!parsed_numa_memblks) |
| return -ENOENT; |
| return 0; |
| } |
| |
| static int acpi_get_pxm(acpi_handle h) |
| { |
| unsigned long long pxm; |
| acpi_status status; |
| acpi_handle handle; |
| acpi_handle phandle = h; |
| |
| do { |
| handle = phandle; |
| status = acpi_evaluate_integer(handle, "_PXM", NULL, &pxm); |
| if (ACPI_SUCCESS(status)) |
| return pxm; |
| status = acpi_get_parent(handle, &phandle); |
| } while (ACPI_SUCCESS(status)); |
| return -1; |
| } |
| |
| int acpi_get_node(acpi_handle handle) |
| { |
| int pxm; |
| |
| pxm = acpi_get_pxm(handle); |
| |
| return acpi_map_pxm_to_node(pxm); |
| } |
| EXPORT_SYMBOL(acpi_get_node); |