| /* |
| * xHCI host controller driver |
| * |
| * Copyright (C) 2008 Intel Corp. |
| * |
| * Author: Sarah Sharp |
| * Some code borrowed from the Linux EHCI driver. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/usb.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/dmapool.h> |
| |
| #include "xhci.h" |
| |
| /* |
| * Allocates a generic ring segment from the ring pool, sets the dma address, |
| * initializes the segment to zero, and sets the private next pointer to NULL. |
| * |
| * Section 4.11.1.1: |
| * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| */ |
| static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, |
| unsigned int cycle_state, gfp_t flags) |
| { |
| struct xhci_segment *seg; |
| dma_addr_t dma; |
| int i; |
| |
| seg = kzalloc(sizeof *seg, flags); |
| if (!seg) |
| return NULL; |
| |
| seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); |
| if (!seg->trbs) { |
| kfree(seg); |
| return NULL; |
| } |
| |
| memset(seg->trbs, 0, TRB_SEGMENT_SIZE); |
| /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ |
| if (cycle_state == 0) { |
| for (i = 0; i < TRBS_PER_SEGMENT; i++) |
| seg->trbs[i].link.control |= TRB_CYCLE; |
| } |
| seg->dma = dma; |
| seg->next = NULL; |
| |
| return seg; |
| } |
| |
| static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) |
| { |
| if (seg->trbs) { |
| dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); |
| seg->trbs = NULL; |
| } |
| kfree(seg); |
| } |
| |
| static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, |
| struct xhci_segment *first) |
| { |
| struct xhci_segment *seg; |
| |
| seg = first->next; |
| while (seg != first) { |
| struct xhci_segment *next = seg->next; |
| xhci_segment_free(xhci, seg); |
| seg = next; |
| } |
| xhci_segment_free(xhci, first); |
| } |
| |
| /* |
| * Make the prev segment point to the next segment. |
| * |
| * Change the last TRB in the prev segment to be a Link TRB which points to the |
| * DMA address of the next segment. The caller needs to set any Link TRB |
| * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| */ |
| static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, |
| struct xhci_segment *next, enum xhci_ring_type type) |
| { |
| u32 val; |
| |
| if (!prev || !next) |
| return; |
| prev->next = next; |
| if (type != TYPE_EVENT) { |
| prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = |
| cpu_to_le64(next->dma); |
| |
| /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ |
| val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); |
| val &= ~TRB_TYPE_BITMASK; |
| val |= TRB_TYPE(TRB_LINK); |
| /* Always set the chain bit with 0.95 hardware */ |
| /* Set chain bit for isoc rings on AMD 0.96 host */ |
| if (xhci_link_trb_quirk(xhci) || |
| (type == TYPE_ISOC && |
| (xhci->quirks & XHCI_AMD_0x96_HOST))) |
| val |= TRB_CHAIN; |
| prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); |
| } |
| } |
| |
| /* |
| * Link the ring to the new segments. |
| * Set Toggle Cycle for the new ring if needed. |
| */ |
| static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| struct xhci_segment *first, struct xhci_segment *last, |
| unsigned int num_segs) |
| { |
| struct xhci_segment *next; |
| |
| if (!ring || !first || !last) |
| return; |
| |
| next = ring->enq_seg->next; |
| xhci_link_segments(xhci, ring->enq_seg, first, ring->type); |
| xhci_link_segments(xhci, last, next, ring->type); |
| ring->num_segs += num_segs; |
| ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; |
| |
| if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { |
| ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control |
| &= ~cpu_to_le32(LINK_TOGGLE); |
| last->trbs[TRBS_PER_SEGMENT-1].link.control |
| |= cpu_to_le32(LINK_TOGGLE); |
| ring->last_seg = last; |
| } |
| } |
| |
| /* XXX: Do we need the hcd structure in all these functions? */ |
| void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| { |
| if (!ring) |
| return; |
| |
| if (ring->first_seg) |
| xhci_free_segments_for_ring(xhci, ring->first_seg); |
| |
| kfree(ring); |
| } |
| |
| static void xhci_initialize_ring_info(struct xhci_ring *ring, |
| unsigned int cycle_state) |
| { |
| /* The ring is empty, so the enqueue pointer == dequeue pointer */ |
| ring->enqueue = ring->first_seg->trbs; |
| ring->enq_seg = ring->first_seg; |
| ring->dequeue = ring->enqueue; |
| ring->deq_seg = ring->first_seg; |
| /* The ring is initialized to 0. The producer must write 1 to the cycle |
| * bit to handover ownership of the TRB, so PCS = 1. The consumer must |
| * compare CCS to the cycle bit to check ownership, so CCS = 1. |
| * |
| * New rings are initialized with cycle state equal to 1; if we are |
| * handling ring expansion, set the cycle state equal to the old ring. |
| */ |
| ring->cycle_state = cycle_state; |
| /* Not necessary for new rings, but needed for re-initialized rings */ |
| ring->enq_updates = 0; |
| ring->deq_updates = 0; |
| |
| /* |
| * Each segment has a link TRB, and leave an extra TRB for SW |
| * accounting purpose |
| */ |
| ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; |
| } |
| |
| /* Allocate segments and link them for a ring */ |
| static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, |
| struct xhci_segment **first, struct xhci_segment **last, |
| unsigned int num_segs, unsigned int cycle_state, |
| enum xhci_ring_type type, gfp_t flags) |
| { |
| struct xhci_segment *prev; |
| |
| prev = xhci_segment_alloc(xhci, cycle_state, flags); |
| if (!prev) |
| return -ENOMEM; |
| num_segs--; |
| |
| *first = prev; |
| while (num_segs > 0) { |
| struct xhci_segment *next; |
| |
| next = xhci_segment_alloc(xhci, cycle_state, flags); |
| if (!next) { |
| prev = *first; |
| while (prev) { |
| next = prev->next; |
| xhci_segment_free(xhci, prev); |
| prev = next; |
| } |
| return -ENOMEM; |
| } |
| xhci_link_segments(xhci, prev, next, type); |
| |
| prev = next; |
| num_segs--; |
| } |
| xhci_link_segments(xhci, prev, *first, type); |
| *last = prev; |
| |
| return 0; |
| } |
| |
| /** |
| * Create a new ring with zero or more segments. |
| * |
| * Link each segment together into a ring. |
| * Set the end flag and the cycle toggle bit on the last segment. |
| * See section 4.9.1 and figures 15 and 16. |
| */ |
| static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, |
| unsigned int num_segs, unsigned int cycle_state, |
| enum xhci_ring_type type, gfp_t flags) |
| { |
| struct xhci_ring *ring; |
| int ret; |
| |
| ring = kzalloc(sizeof *(ring), flags); |
| if (!ring) |
| return NULL; |
| |
| ring->num_segs = num_segs; |
| INIT_LIST_HEAD(&ring->td_list); |
| ring->type = type; |
| if (num_segs == 0) |
| return ring; |
| |
| ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, |
| &ring->last_seg, num_segs, cycle_state, type, flags); |
| if (ret) |
| goto fail; |
| |
| /* Only event ring does not use link TRB */ |
| if (type != TYPE_EVENT) { |
| /* See section 4.9.2.1 and 6.4.4.1 */ |
| ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= |
| cpu_to_le32(LINK_TOGGLE); |
| } |
| xhci_initialize_ring_info(ring, cycle_state); |
| return ring; |
| |
| fail: |
| kfree(ring); |
| return NULL; |
| } |
| |
| void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| unsigned int ep_index) |
| { |
| int rings_cached; |
| |
| rings_cached = virt_dev->num_rings_cached; |
| if (rings_cached < XHCI_MAX_RINGS_CACHED) { |
| virt_dev->ring_cache[rings_cached] = |
| virt_dev->eps[ep_index].ring; |
| virt_dev->num_rings_cached++; |
| xhci_dbg(xhci, "Cached old ring, " |
| "%d ring%s cached\n", |
| virt_dev->num_rings_cached, |
| (virt_dev->num_rings_cached > 1) ? "s" : ""); |
| } else { |
| xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); |
| xhci_dbg(xhci, "Ring cache full (%d rings), " |
| "freeing ring\n", |
| virt_dev->num_rings_cached); |
| } |
| virt_dev->eps[ep_index].ring = NULL; |
| } |
| |
| /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue |
| * pointers to the beginning of the ring. |
| */ |
| static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, |
| struct xhci_ring *ring, unsigned int cycle_state, |
| enum xhci_ring_type type) |
| { |
| struct xhci_segment *seg = ring->first_seg; |
| int i; |
| |
| do { |
| memset(seg->trbs, 0, |
| sizeof(union xhci_trb)*TRBS_PER_SEGMENT); |
| if (cycle_state == 0) { |
| for (i = 0; i < TRBS_PER_SEGMENT; i++) |
| seg->trbs[i].link.control |= TRB_CYCLE; |
| } |
| /* All endpoint rings have link TRBs */ |
| xhci_link_segments(xhci, seg, seg->next, type); |
| seg = seg->next; |
| } while (seg != ring->first_seg); |
| ring->type = type; |
| xhci_initialize_ring_info(ring, cycle_state); |
| /* td list should be empty since all URBs have been cancelled, |
| * but just in case... |
| */ |
| INIT_LIST_HEAD(&ring->td_list); |
| } |
| |
| /* |
| * Expand an existing ring. |
| * Look for a cached ring or allocate a new ring which has same segment numbers |
| * and link the two rings. |
| */ |
| int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| unsigned int num_trbs, gfp_t flags) |
| { |
| struct xhci_segment *first; |
| struct xhci_segment *last; |
| unsigned int num_segs; |
| unsigned int num_segs_needed; |
| int ret; |
| |
| num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / |
| (TRBS_PER_SEGMENT - 1); |
| |
| /* Allocate number of segments we needed, or double the ring size */ |
| num_segs = ring->num_segs > num_segs_needed ? |
| ring->num_segs : num_segs_needed; |
| |
| ret = xhci_alloc_segments_for_ring(xhci, &first, &last, |
| num_segs, ring->cycle_state, ring->type, flags); |
| if (ret) |
| return -ENOMEM; |
| |
| xhci_link_rings(xhci, ring, first, last, num_segs); |
| xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n", |
| ring->num_segs); |
| |
| return 0; |
| } |
| |
| #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) |
| |
| static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, |
| int type, gfp_t flags) |
| { |
| struct xhci_container_ctx *ctx; |
| |
| if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) |
| return NULL; |
| |
| ctx = kzalloc(sizeof(*ctx), flags); |
| if (!ctx) |
| return NULL; |
| |
| ctx->type = type; |
| ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; |
| if (type == XHCI_CTX_TYPE_INPUT) |
| ctx->size += CTX_SIZE(xhci->hcc_params); |
| |
| ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); |
| if (!ctx->bytes) { |
| kfree(ctx); |
| return NULL; |
| } |
| memset(ctx->bytes, 0, ctx->size); |
| return ctx; |
| } |
| |
| static void xhci_free_container_ctx(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *ctx) |
| { |
| if (!ctx) |
| return; |
| dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); |
| kfree(ctx); |
| } |
| |
| struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *ctx) |
| { |
| if (ctx->type != XHCI_CTX_TYPE_INPUT) |
| return NULL; |
| |
| return (struct xhci_input_control_ctx *)ctx->bytes; |
| } |
| |
| struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *ctx) |
| { |
| if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
| return (struct xhci_slot_ctx *)ctx->bytes; |
| |
| return (struct xhci_slot_ctx *) |
| (ctx->bytes + CTX_SIZE(xhci->hcc_params)); |
| } |
| |
| struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *ctx, |
| unsigned int ep_index) |
| { |
| /* increment ep index by offset of start of ep ctx array */ |
| ep_index++; |
| if (ctx->type == XHCI_CTX_TYPE_INPUT) |
| ep_index++; |
| |
| return (struct xhci_ep_ctx *) |
| (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); |
| } |
| |
| |
| /***************** Streams structures manipulation *************************/ |
| |
| static void xhci_free_stream_ctx(struct xhci_hcd *xhci, |
| unsigned int num_stream_ctxs, |
| struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) |
| { |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| |
| if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) |
| dma_free_coherent(&pdev->dev, |
| sizeof(struct xhci_stream_ctx)*num_stream_ctxs, |
| stream_ctx, dma); |
| else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) |
| return dma_pool_free(xhci->small_streams_pool, |
| stream_ctx, dma); |
| else |
| return dma_pool_free(xhci->medium_streams_pool, |
| stream_ctx, dma); |
| } |
| |
| /* |
| * The stream context array for each endpoint with bulk streams enabled can |
| * vary in size, based on: |
| * - how many streams the endpoint supports, |
| * - the maximum primary stream array size the host controller supports, |
| * - and how many streams the device driver asks for. |
| * |
| * The stream context array must be a power of 2, and can be as small as |
| * 64 bytes or as large as 1MB. |
| */ |
| static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, |
| unsigned int num_stream_ctxs, dma_addr_t *dma, |
| gfp_t mem_flags) |
| { |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| |
| if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) |
| return dma_alloc_coherent(&pdev->dev, |
| sizeof(struct xhci_stream_ctx)*num_stream_ctxs, |
| dma, mem_flags); |
| else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) |
| return dma_pool_alloc(xhci->small_streams_pool, |
| mem_flags, dma); |
| else |
| return dma_pool_alloc(xhci->medium_streams_pool, |
| mem_flags, dma); |
| } |
| |
| struct xhci_ring *xhci_dma_to_transfer_ring( |
| struct xhci_virt_ep *ep, |
| u64 address) |
| { |
| if (ep->ep_state & EP_HAS_STREAMS) |
| return radix_tree_lookup(&ep->stream_info->trb_address_map, |
| address >> TRB_SEGMENT_SHIFT); |
| return ep->ring; |
| } |
| |
| /* Only use this when you know stream_info is valid */ |
| #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING |
| static struct xhci_ring *dma_to_stream_ring( |
| struct xhci_stream_info *stream_info, |
| u64 address) |
| { |
| return radix_tree_lookup(&stream_info->trb_address_map, |
| address >> TRB_SEGMENT_SHIFT); |
| } |
| #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ |
| |
| struct xhci_ring *xhci_stream_id_to_ring( |
| struct xhci_virt_device *dev, |
| unsigned int ep_index, |
| unsigned int stream_id) |
| { |
| struct xhci_virt_ep *ep = &dev->eps[ep_index]; |
| |
| if (stream_id == 0) |
| return ep->ring; |
| if (!ep->stream_info) |
| return NULL; |
| |
| if (stream_id > ep->stream_info->num_streams) |
| return NULL; |
| return ep->stream_info->stream_rings[stream_id]; |
| } |
| |
| #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING |
| static int xhci_test_radix_tree(struct xhci_hcd *xhci, |
| unsigned int num_streams, |
| struct xhci_stream_info *stream_info) |
| { |
| u32 cur_stream; |
| struct xhci_ring *cur_ring; |
| u64 addr; |
| |
| for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| struct xhci_ring *mapped_ring; |
| int trb_size = sizeof(union xhci_trb); |
| |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| for (addr = cur_ring->first_seg->dma; |
| addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE; |
| addr += trb_size) { |
| mapped_ring = dma_to_stream_ring(stream_info, addr); |
| if (cur_ring != mapped_ring) { |
| xhci_warn(xhci, "WARN: DMA address 0x%08llx " |
| "didn't map to stream ID %u; " |
| "mapped to ring %p\n", |
| (unsigned long long) addr, |
| cur_stream, |
| mapped_ring); |
| return -EINVAL; |
| } |
| } |
| /* One TRB after the end of the ring segment shouldn't return a |
| * pointer to the current ring (although it may be a part of a |
| * different ring). |
| */ |
| mapped_ring = dma_to_stream_ring(stream_info, addr); |
| if (mapped_ring != cur_ring) { |
| /* One TRB before should also fail */ |
| addr = cur_ring->first_seg->dma - trb_size; |
| mapped_ring = dma_to_stream_ring(stream_info, addr); |
| } |
| if (mapped_ring == cur_ring) { |
| xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " |
| "mapped to valid stream ID %u; " |
| "mapped ring = %p\n", |
| (unsigned long long) addr, |
| cur_stream, |
| mapped_ring); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ |
| |
| /* |
| * Change an endpoint's internal structure so it supports stream IDs. The |
| * number of requested streams includes stream 0, which cannot be used by device |
| * drivers. |
| * |
| * The number of stream contexts in the stream context array may be bigger than |
| * the number of streams the driver wants to use. This is because the number of |
| * stream context array entries must be a power of two. |
| * |
| * We need a radix tree for mapping physical addresses of TRBs to which stream |
| * ID they belong to. We need to do this because the host controller won't tell |
| * us which stream ring the TRB came from. We could store the stream ID in an |
| * event data TRB, but that doesn't help us for the cancellation case, since the |
| * endpoint may stop before it reaches that event data TRB. |
| * |
| * The radix tree maps the upper portion of the TRB DMA address to a ring |
| * segment that has the same upper portion of DMA addresses. For example, say I |
| * have segments of size 1KB, that are always 64-byte aligned. A segment may |
| * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the |
| * key to the stream ID is 0x43244. I can use the DMA address of the TRB to |
| * pass the radix tree a key to get the right stream ID: |
| * |
| * 0x10c90fff >> 10 = 0x43243 |
| * 0x10c912c0 >> 10 = 0x43244 |
| * 0x10c91400 >> 10 = 0x43245 |
| * |
| * Obviously, only those TRBs with DMA addresses that are within the segment |
| * will make the radix tree return the stream ID for that ring. |
| * |
| * Caveats for the radix tree: |
| * |
| * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an |
| * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be |
| * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the |
| * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit |
| * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit |
| * extended systems (where the DMA address can be bigger than 32-bits), |
| * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. |
| */ |
| struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, |
| unsigned int num_stream_ctxs, |
| unsigned int num_streams, gfp_t mem_flags) |
| { |
| struct xhci_stream_info *stream_info; |
| u32 cur_stream; |
| struct xhci_ring *cur_ring; |
| unsigned long key; |
| u64 addr; |
| int ret; |
| |
| xhci_dbg(xhci, "Allocating %u streams and %u " |
| "stream context array entries.\n", |
| num_streams, num_stream_ctxs); |
| if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { |
| xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); |
| return NULL; |
| } |
| xhci->cmd_ring_reserved_trbs++; |
| |
| stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); |
| if (!stream_info) |
| goto cleanup_trbs; |
| |
| stream_info->num_streams = num_streams; |
| stream_info->num_stream_ctxs = num_stream_ctxs; |
| |
| /* Initialize the array of virtual pointers to stream rings. */ |
| stream_info->stream_rings = kzalloc( |
| sizeof(struct xhci_ring *)*num_streams, |
| mem_flags); |
| if (!stream_info->stream_rings) |
| goto cleanup_info; |
| |
| /* Initialize the array of DMA addresses for stream rings for the HW. */ |
| stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, |
| num_stream_ctxs, &stream_info->ctx_array_dma, |
| mem_flags); |
| if (!stream_info->stream_ctx_array) |
| goto cleanup_ctx; |
| memset(stream_info->stream_ctx_array, 0, |
| sizeof(struct xhci_stream_ctx)*num_stream_ctxs); |
| |
| /* Allocate everything needed to free the stream rings later */ |
| stream_info->free_streams_command = |
| xhci_alloc_command(xhci, true, true, mem_flags); |
| if (!stream_info->free_streams_command) |
| goto cleanup_ctx; |
| |
| INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); |
| |
| /* Allocate rings for all the streams that the driver will use, |
| * and add their segment DMA addresses to the radix tree. |
| * Stream 0 is reserved. |
| */ |
| for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| stream_info->stream_rings[cur_stream] = |
| xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| if (!cur_ring) |
| goto cleanup_rings; |
| cur_ring->stream_id = cur_stream; |
| /* Set deq ptr, cycle bit, and stream context type */ |
| addr = cur_ring->first_seg->dma | |
| SCT_FOR_CTX(SCT_PRI_TR) | |
| cur_ring->cycle_state; |
| stream_info->stream_ctx_array[cur_stream].stream_ring = |
| cpu_to_le64(addr); |
| xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", |
| cur_stream, (unsigned long long) addr); |
| |
| key = (unsigned long) |
| (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT); |
| ret = radix_tree_insert(&stream_info->trb_address_map, |
| key, cur_ring); |
| if (ret) { |
| xhci_ring_free(xhci, cur_ring); |
| stream_info->stream_rings[cur_stream] = NULL; |
| goto cleanup_rings; |
| } |
| } |
| /* Leave the other unused stream ring pointers in the stream context |
| * array initialized to zero. This will cause the xHC to give us an |
| * error if the device asks for a stream ID we don't have setup (if it |
| * was any other way, the host controller would assume the ring is |
| * "empty" and wait forever for data to be queued to that stream ID). |
| */ |
| #if XHCI_DEBUG |
| /* Do a little test on the radix tree to make sure it returns the |
| * correct values. |
| */ |
| if (xhci_test_radix_tree(xhci, num_streams, stream_info)) |
| goto cleanup_rings; |
| #endif |
| |
| return stream_info; |
| |
| cleanup_rings: |
| for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| if (cur_ring) { |
| addr = cur_ring->first_seg->dma; |
| radix_tree_delete(&stream_info->trb_address_map, |
| addr >> TRB_SEGMENT_SHIFT); |
| xhci_ring_free(xhci, cur_ring); |
| stream_info->stream_rings[cur_stream] = NULL; |
| } |
| } |
| xhci_free_command(xhci, stream_info->free_streams_command); |
| cleanup_ctx: |
| kfree(stream_info->stream_rings); |
| cleanup_info: |
| kfree(stream_info); |
| cleanup_trbs: |
| xhci->cmd_ring_reserved_trbs--; |
| return NULL; |
| } |
| /* |
| * Sets the MaxPStreams field and the Linear Stream Array field. |
| * Sets the dequeue pointer to the stream context array. |
| */ |
| void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, |
| struct xhci_ep_ctx *ep_ctx, |
| struct xhci_stream_info *stream_info) |
| { |
| u32 max_primary_streams; |
| /* MaxPStreams is the number of stream context array entries, not the |
| * number we're actually using. Must be in 2^(MaxPstreams + 1) format. |
| * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. |
| */ |
| max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; |
| xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", |
| 1 << (max_primary_streams + 1)); |
| ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); |
| ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) |
| | EP_HAS_LSA); |
| ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); |
| } |
| |
| /* |
| * Sets the MaxPStreams field and the Linear Stream Array field to 0. |
| * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, |
| * not at the beginning of the ring). |
| */ |
| void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, |
| struct xhci_ep_ctx *ep_ctx, |
| struct xhci_virt_ep *ep) |
| { |
| dma_addr_t addr; |
| ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); |
| addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); |
| ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); |
| } |
| |
| /* Frees all stream contexts associated with the endpoint, |
| * |
| * Caller should fix the endpoint context streams fields. |
| */ |
| void xhci_free_stream_info(struct xhci_hcd *xhci, |
| struct xhci_stream_info *stream_info) |
| { |
| int cur_stream; |
| struct xhci_ring *cur_ring; |
| dma_addr_t addr; |
| |
| if (!stream_info) |
| return; |
| |
| for (cur_stream = 1; cur_stream < stream_info->num_streams; |
| cur_stream++) { |
| cur_ring = stream_info->stream_rings[cur_stream]; |
| if (cur_ring) { |
| addr = cur_ring->first_seg->dma; |
| radix_tree_delete(&stream_info->trb_address_map, |
| addr >> TRB_SEGMENT_SHIFT); |
| xhci_ring_free(xhci, cur_ring); |
| stream_info->stream_rings[cur_stream] = NULL; |
| } |
| } |
| xhci_free_command(xhci, stream_info->free_streams_command); |
| xhci->cmd_ring_reserved_trbs--; |
| if (stream_info->stream_ctx_array) |
| xhci_free_stream_ctx(xhci, |
| stream_info->num_stream_ctxs, |
| stream_info->stream_ctx_array, |
| stream_info->ctx_array_dma); |
| |
| if (stream_info) |
| kfree(stream_info->stream_rings); |
| kfree(stream_info); |
| } |
| |
| |
| /***************** Device context manipulation *************************/ |
| |
| static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, |
| struct xhci_virt_ep *ep) |
| { |
| init_timer(&ep->stop_cmd_timer); |
| ep->stop_cmd_timer.data = (unsigned long) ep; |
| ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; |
| ep->xhci = xhci; |
| } |
| |
| static void xhci_free_tt_info(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| int slot_id) |
| { |
| struct list_head *tt_list_head; |
| struct xhci_tt_bw_info *tt_info, *next; |
| bool slot_found = false; |
| |
| /* If the device never made it past the Set Address stage, |
| * it may not have the real_port set correctly. |
| */ |
| if (virt_dev->real_port == 0 || |
| virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { |
| xhci_dbg(xhci, "Bad real port.\n"); |
| return; |
| } |
| |
| tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); |
| list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { |
| /* Multi-TT hubs will have more than one entry */ |
| if (tt_info->slot_id == slot_id) { |
| slot_found = true; |
| list_del(&tt_info->tt_list); |
| kfree(tt_info); |
| } else if (slot_found) { |
| break; |
| } |
| } |
| } |
| |
| int xhci_alloc_tt_info(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct usb_device *hdev, |
| struct usb_tt *tt, gfp_t mem_flags) |
| { |
| struct xhci_tt_bw_info *tt_info; |
| unsigned int num_ports; |
| int i, j; |
| |
| if (!tt->multi) |
| num_ports = 1; |
| else |
| num_ports = hdev->maxchild; |
| |
| for (i = 0; i < num_ports; i++, tt_info++) { |
| struct xhci_interval_bw_table *bw_table; |
| |
| tt_info = kzalloc(sizeof(*tt_info), mem_flags); |
| if (!tt_info) |
| goto free_tts; |
| INIT_LIST_HEAD(&tt_info->tt_list); |
| list_add(&tt_info->tt_list, |
| &xhci->rh_bw[virt_dev->real_port - 1].tts); |
| tt_info->slot_id = virt_dev->udev->slot_id; |
| if (tt->multi) |
| tt_info->ttport = i+1; |
| bw_table = &tt_info->bw_table; |
| for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); |
| } |
| return 0; |
| |
| free_tts: |
| xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); |
| return -ENOMEM; |
| } |
| |
| |
| /* All the xhci_tds in the ring's TD list should be freed at this point. |
| * Should be called with xhci->lock held if there is any chance the TT lists |
| * will be manipulated by the configure endpoint, allocate device, or update |
| * hub functions while this function is removing the TT entries from the list. |
| */ |
| void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) |
| { |
| struct xhci_virt_device *dev; |
| int i; |
| int old_active_eps = 0; |
| |
| /* Slot ID 0 is reserved */ |
| if (slot_id == 0 || !xhci->devs[slot_id]) |
| return; |
| |
| dev = xhci->devs[slot_id]; |
| xhci->dcbaa->dev_context_ptrs[slot_id] = 0; |
| if (!dev) |
| return; |
| |
| if (dev->tt_info) |
| old_active_eps = dev->tt_info->active_eps; |
| |
| for (i = 0; i < 31; ++i) { |
| if (dev->eps[i].ring) |
| xhci_ring_free(xhci, dev->eps[i].ring); |
| if (dev->eps[i].stream_info) |
| xhci_free_stream_info(xhci, |
| dev->eps[i].stream_info); |
| /* Endpoints on the TT/root port lists should have been removed |
| * when usb_disable_device() was called for the device. |
| * We can't drop them anyway, because the udev might have gone |
| * away by this point, and we can't tell what speed it was. |
| */ |
| if (!list_empty(&dev->eps[i].bw_endpoint_list)) |
| xhci_warn(xhci, "Slot %u endpoint %u " |
| "not removed from BW list!\n", |
| slot_id, i); |
| } |
| /* If this is a hub, free the TT(s) from the TT list */ |
| xhci_free_tt_info(xhci, dev, slot_id); |
| /* If necessary, update the number of active TTs on this root port */ |
| xhci_update_tt_active_eps(xhci, dev, old_active_eps); |
| |
| if (dev->ring_cache) { |
| for (i = 0; i < dev->num_rings_cached; i++) |
| xhci_ring_free(xhci, dev->ring_cache[i]); |
| kfree(dev->ring_cache); |
| } |
| |
| if (dev->in_ctx) |
| xhci_free_container_ctx(xhci, dev->in_ctx); |
| if (dev->out_ctx) |
| xhci_free_container_ctx(xhci, dev->out_ctx); |
| |
| kfree(xhci->devs[slot_id]); |
| xhci->devs[slot_id] = NULL; |
| } |
| |
| int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, |
| struct usb_device *udev, gfp_t flags) |
| { |
| struct xhci_virt_device *dev; |
| int i; |
| |
| /* Slot ID 0 is reserved */ |
| if (slot_id == 0 || xhci->devs[slot_id]) { |
| xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); |
| return 0; |
| } |
| |
| xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); |
| if (!xhci->devs[slot_id]) |
| return 0; |
| dev = xhci->devs[slot_id]; |
| |
| /* Allocate the (output) device context that will be used in the HC. */ |
| dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); |
| if (!dev->out_ctx) |
| goto fail; |
| |
| xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, |
| (unsigned long long)dev->out_ctx->dma); |
| |
| /* Allocate the (input) device context for address device command */ |
| dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); |
| if (!dev->in_ctx) |
| goto fail; |
| |
| xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, |
| (unsigned long long)dev->in_ctx->dma); |
| |
| /* Initialize the cancellation list and watchdog timers for each ep */ |
| for (i = 0; i < 31; i++) { |
| xhci_init_endpoint_timer(xhci, &dev->eps[i]); |
| INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); |
| INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); |
| } |
| |
| /* Allocate endpoint 0 ring */ |
| dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); |
| if (!dev->eps[0].ring) |
| goto fail; |
| |
| /* Allocate pointers to the ring cache */ |
| dev->ring_cache = kzalloc( |
| sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, |
| flags); |
| if (!dev->ring_cache) |
| goto fail; |
| dev->num_rings_cached = 0; |
| |
| init_completion(&dev->cmd_completion); |
| INIT_LIST_HEAD(&dev->cmd_list); |
| dev->udev = udev; |
| |
| /* Point to output device context in dcbaa. */ |
| xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); |
| xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", |
| slot_id, |
| &xhci->dcbaa->dev_context_ptrs[slot_id], |
| le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); |
| |
| return 1; |
| fail: |
| xhci_free_virt_device(xhci, slot_id); |
| return 0; |
| } |
| |
| void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, |
| struct usb_device *udev) |
| { |
| struct xhci_virt_device *virt_dev; |
| struct xhci_ep_ctx *ep0_ctx; |
| struct xhci_ring *ep_ring; |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); |
| ep_ring = virt_dev->eps[0].ring; |
| /* |
| * FIXME we don't keep track of the dequeue pointer very well after a |
| * Set TR dequeue pointer, so we're setting the dequeue pointer of the |
| * host to our enqueue pointer. This should only be called after a |
| * configured device has reset, so all control transfers should have |
| * been completed or cancelled before the reset. |
| */ |
| ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, |
| ep_ring->enqueue) |
| | ep_ring->cycle_state); |
| } |
| |
| /* |
| * The xHCI roothub may have ports of differing speeds in any order in the port |
| * status registers. xhci->port_array provides an array of the port speed for |
| * each offset into the port status registers. |
| * |
| * The xHCI hardware wants to know the roothub port number that the USB device |
| * is attached to (or the roothub port its ancestor hub is attached to). All we |
| * know is the index of that port under either the USB 2.0 or the USB 3.0 |
| * roothub, but that doesn't give us the real index into the HW port status |
| * registers. Call xhci_find_raw_port_number() to get real index. |
| */ |
| static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, |
| struct usb_device *udev) |
| { |
| struct usb_device *top_dev; |
| struct usb_hcd *hcd; |
| |
| if (udev->speed == USB_SPEED_SUPER) |
| hcd = xhci->shared_hcd; |
| else |
| hcd = xhci->main_hcd; |
| |
| for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| top_dev = top_dev->parent) |
| /* Found device below root hub */; |
| |
| return xhci_find_raw_port_number(hcd, top_dev->portnum); |
| } |
| |
| /* Setup an xHCI virtual device for a Set Address command */ |
| int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) |
| { |
| struct xhci_virt_device *dev; |
| struct xhci_ep_ctx *ep0_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| u32 port_num; |
| u32 max_packets; |
| struct usb_device *top_dev; |
| |
| dev = xhci->devs[udev->slot_id]; |
| /* Slot ID 0 is reserved */ |
| if (udev->slot_id == 0 || !dev) { |
| xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", |
| udev->slot_id); |
| return -EINVAL; |
| } |
| ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); |
| slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); |
| |
| /* 3) Only the control endpoint is valid - one endpoint context */ |
| slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); |
| switch (udev->speed) { |
| case USB_SPEED_SUPER: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| max_packets = MAX_PACKET(512); |
| break; |
| case USB_SPEED_HIGH: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| max_packets = MAX_PACKET(64); |
| break; |
| /* USB core guesses at a 64-byte max packet first for FS devices */ |
| case USB_SPEED_FULL: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| max_packets = MAX_PACKET(64); |
| break; |
| case USB_SPEED_LOW: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
| max_packets = MAX_PACKET(8); |
| break; |
| case USB_SPEED_WIRELESS: |
| xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); |
| return -EINVAL; |
| break; |
| default: |
| /* Speed was set earlier, this shouldn't happen. */ |
| return -EINVAL; |
| } |
| /* Find the root hub port this device is under */ |
| port_num = xhci_find_real_port_number(xhci, udev); |
| if (!port_num) |
| return -EINVAL; |
| slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); |
| /* Set the port number in the virtual_device to the faked port number */ |
| for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| top_dev = top_dev->parent) |
| /* Found device below root hub */; |
| dev->fake_port = top_dev->portnum; |
| dev->real_port = port_num; |
| xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); |
| xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); |
| |
| /* Find the right bandwidth table that this device will be a part of. |
| * If this is a full speed device attached directly to a root port (or a |
| * decendent of one), it counts as a primary bandwidth domain, not a |
| * secondary bandwidth domain under a TT. An xhci_tt_info structure |
| * will never be created for the HS root hub. |
| */ |
| if (!udev->tt || !udev->tt->hub->parent) { |
| dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; |
| } else { |
| struct xhci_root_port_bw_info *rh_bw; |
| struct xhci_tt_bw_info *tt_bw; |
| |
| rh_bw = &xhci->rh_bw[port_num - 1]; |
| /* Find the right TT. */ |
| list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { |
| if (tt_bw->slot_id != udev->tt->hub->slot_id) |
| continue; |
| |
| if (!dev->udev->tt->multi || |
| (udev->tt->multi && |
| tt_bw->ttport == dev->udev->ttport)) { |
| dev->bw_table = &tt_bw->bw_table; |
| dev->tt_info = tt_bw; |
| break; |
| } |
| } |
| if (!dev->tt_info) |
| xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); |
| } |
| |
| /* Is this a LS/FS device under an external HS hub? */ |
| if (udev->tt && udev->tt->hub->parent) { |
| slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | |
| (udev->ttport << 8)); |
| if (udev->tt->multi) |
| slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); |
| } |
| xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); |
| xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); |
| |
| /* Step 4 - ring already allocated */ |
| /* Step 5 */ |
| ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); |
| |
| /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | |
| max_packets); |
| |
| ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | |
| dev->eps[0].ring->cycle_state); |
| |
| /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| |
| return 0; |
| } |
| |
| /* |
| * Convert interval expressed as 2^(bInterval - 1) == interval into |
| * straight exponent value 2^n == interval. |
| * |
| */ |
| static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| unsigned int interval; |
| |
| interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; |
| if (interval != ep->desc.bInterval - 1) |
| dev_warn(&udev->dev, |
| "ep %#x - rounding interval to %d %sframes\n", |
| ep->desc.bEndpointAddress, |
| 1 << interval, |
| udev->speed == USB_SPEED_FULL ? "" : "micro"); |
| |
| if (udev->speed == USB_SPEED_FULL) { |
| /* |
| * Full speed isoc endpoints specify interval in frames, |
| * not microframes. We are using microframes everywhere, |
| * so adjust accordingly. |
| */ |
| interval += 3; /* 1 frame = 2^3 uframes */ |
| } |
| |
| return interval; |
| } |
| |
| /* |
| * Convert bInterval expressed in microframes (in 1-255 range) to exponent of |
| * microframes, rounded down to nearest power of 2. |
| */ |
| static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, |
| struct usb_host_endpoint *ep, unsigned int desc_interval, |
| unsigned int min_exponent, unsigned int max_exponent) |
| { |
| unsigned int interval; |
| |
| interval = fls(desc_interval) - 1; |
| interval = clamp_val(interval, min_exponent, max_exponent); |
| if ((1 << interval) != desc_interval) |
| dev_warn(&udev->dev, |
| "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", |
| ep->desc.bEndpointAddress, |
| 1 << interval, |
| desc_interval); |
| |
| return interval; |
| } |
| |
| static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| if (ep->desc.bInterval == 0) |
| return 0; |
| return xhci_microframes_to_exponent(udev, ep, |
| ep->desc.bInterval, 0, 15); |
| } |
| |
| |
| static unsigned int xhci_parse_frame_interval(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| return xhci_microframes_to_exponent(udev, ep, |
| ep->desc.bInterval * 8, 3, 10); |
| } |
| |
| /* Return the polling or NAK interval. |
| * |
| * The polling interval is expressed in "microframes". If xHCI's Interval field |
| * is set to N, it will service the endpoint every 2^(Interval)*125us. |
| * |
| * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval |
| * is set to 0. |
| */ |
| static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| unsigned int interval = 0; |
| |
| switch (udev->speed) { |
| case USB_SPEED_HIGH: |
| /* Max NAK rate */ |
| if (usb_endpoint_xfer_control(&ep->desc) || |
| usb_endpoint_xfer_bulk(&ep->desc)) { |
| interval = xhci_parse_microframe_interval(udev, ep); |
| break; |
| } |
| /* Fall through - SS and HS isoc/int have same decoding */ |
| |
| case USB_SPEED_SUPER: |
| if (usb_endpoint_xfer_int(&ep->desc) || |
| usb_endpoint_xfer_isoc(&ep->desc)) { |
| interval = xhci_parse_exponent_interval(udev, ep); |
| } |
| break; |
| |
| case USB_SPEED_FULL: |
| if (usb_endpoint_xfer_isoc(&ep->desc)) { |
| interval = xhci_parse_exponent_interval(udev, ep); |
| break; |
| } |
| /* |
| * Fall through for interrupt endpoint interval decoding |
| * since it uses the same rules as low speed interrupt |
| * endpoints. |
| */ |
| |
| case USB_SPEED_LOW: |
| if (usb_endpoint_xfer_int(&ep->desc) || |
| usb_endpoint_xfer_isoc(&ep->desc)) { |
| |
| interval = xhci_parse_frame_interval(udev, ep); |
| } |
| break; |
| |
| default: |
| BUG(); |
| } |
| return EP_INTERVAL(interval); |
| } |
| |
| /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. |
| * High speed endpoint descriptors can define "the number of additional |
| * transaction opportunities per microframe", but that goes in the Max Burst |
| * endpoint context field. |
| */ |
| static u32 xhci_get_endpoint_mult(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| if (udev->speed != USB_SPEED_SUPER || |
| !usb_endpoint_xfer_isoc(&ep->desc)) |
| return 0; |
| return ep->ss_ep_comp.bmAttributes; |
| } |
| |
| static u32 xhci_get_endpoint_type(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| int in; |
| u32 type; |
| |
| in = usb_endpoint_dir_in(&ep->desc); |
| if (usb_endpoint_xfer_control(&ep->desc)) { |
| type = EP_TYPE(CTRL_EP); |
| } else if (usb_endpoint_xfer_bulk(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(BULK_IN_EP); |
| else |
| type = EP_TYPE(BULK_OUT_EP); |
| } else if (usb_endpoint_xfer_isoc(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(ISOC_IN_EP); |
| else |
| type = EP_TYPE(ISOC_OUT_EP); |
| } else if (usb_endpoint_xfer_int(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(INT_IN_EP); |
| else |
| type = EP_TYPE(INT_OUT_EP); |
| } else { |
| type = 0; |
| } |
| return type; |
| } |
| |
| /* Return the maximum endpoint service interval time (ESIT) payload. |
| * Basically, this is the maxpacket size, multiplied by the burst size |
| * and mult size. |
| */ |
| static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, |
| struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| int max_burst; |
| int max_packet; |
| |
| /* Only applies for interrupt or isochronous endpoints */ |
| if (usb_endpoint_xfer_control(&ep->desc) || |
| usb_endpoint_xfer_bulk(&ep->desc)) |
| return 0; |
| |
| if (udev->speed == USB_SPEED_SUPER) |
| return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); |
| |
| max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); |
| max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; |
| /* A 0 in max burst means 1 transfer per ESIT */ |
| return max_packet * (max_burst + 1); |
| } |
| |
| /* Set up an endpoint with one ring segment. Do not allocate stream rings. |
| * Drivers will have to call usb_alloc_streams() to do that. |
| */ |
| int xhci_endpoint_init(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct usb_device *udev, |
| struct usb_host_endpoint *ep, |
| gfp_t mem_flags) |
| { |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_ring *ep_ring; |
| unsigned int max_packet; |
| unsigned int max_burst; |
| enum xhci_ring_type type; |
| u32 max_esit_payload; |
| u32 endpoint_type; |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| |
| endpoint_type = xhci_get_endpoint_type(udev, ep); |
| if (!endpoint_type) |
| return -EINVAL; |
| ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); |
| |
| type = usb_endpoint_type(&ep->desc); |
| /* Set up the endpoint ring */ |
| virt_dev->eps[ep_index].new_ring = |
| xhci_ring_alloc(xhci, 2, 1, type, mem_flags); |
| if (!virt_dev->eps[ep_index].new_ring) { |
| /* Attempt to use the ring cache */ |
| if (virt_dev->num_rings_cached == 0) |
| return -ENOMEM; |
| virt_dev->eps[ep_index].new_ring = |
| virt_dev->ring_cache[virt_dev->num_rings_cached]; |
| virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; |
| virt_dev->num_rings_cached--; |
| xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, |
| 1, type); |
| } |
| virt_dev->eps[ep_index].skip = false; |
| ep_ring = virt_dev->eps[ep_index].new_ring; |
| ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); |
| |
| ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) |
| | EP_MULT(xhci_get_endpoint_mult(udev, ep))); |
| |
| /* FIXME dig Mult and streams info out of ep companion desc */ |
| |
| /* Allow 3 retries for everything but isoc; |
| * CErr shall be set to 0 for Isoch endpoints. |
| */ |
| if (!usb_endpoint_xfer_isoc(&ep->desc)) |
| ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); |
| else |
| ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); |
| |
| /* Set the max packet size and max burst */ |
| max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); |
| max_burst = 0; |
| switch (udev->speed) { |
| case USB_SPEED_SUPER: |
| /* dig out max burst from ep companion desc */ |
| max_burst = ep->ss_ep_comp.bMaxBurst; |
| break; |
| case USB_SPEED_HIGH: |
| /* Some devices get this wrong */ |
| if (usb_endpoint_xfer_bulk(&ep->desc)) |
| max_packet = 512; |
| /* bits 11:12 specify the number of additional transaction |
| * opportunities per microframe (USB 2.0, section 9.6.6) |
| */ |
| if (usb_endpoint_xfer_isoc(&ep->desc) || |
| usb_endpoint_xfer_int(&ep->desc)) { |
| max_burst = (usb_endpoint_maxp(&ep->desc) |
| & 0x1800) >> 11; |
| } |
| break; |
| case USB_SPEED_FULL: |
| case USB_SPEED_LOW: |
| break; |
| default: |
| BUG(); |
| } |
| ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | |
| MAX_BURST(max_burst)); |
| max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); |
| ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); |
| |
| /* |
| * XXX no idea how to calculate the average TRB buffer length for bulk |
| * endpoints, as the driver gives us no clue how big each scatter gather |
| * list entry (or buffer) is going to be. |
| * |
| * For isochronous and interrupt endpoints, we set it to the max |
| * available, until we have new API in the USB core to allow drivers to |
| * declare how much bandwidth they actually need. |
| * |
| * Normally, it would be calculated by taking the total of the buffer |
| * lengths in the TD and then dividing by the number of TRBs in a TD, |
| * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't |
| * use Event Data TRBs, and we don't chain in a link TRB on short |
| * transfers, we're basically dividing by 1. |
| * |
| * xHCI 1.0 specification indicates that the Average TRB Length should |
| * be set to 8 for control endpoints. |
| */ |
| if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) |
| ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); |
| else |
| ep_ctx->tx_info |= |
| cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); |
| |
| /* FIXME Debug endpoint context */ |
| return 0; |
| } |
| |
| void xhci_endpoint_zero(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct usb_host_endpoint *ep) |
| { |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| |
| ep_ctx->ep_info = 0; |
| ep_ctx->ep_info2 = 0; |
| ep_ctx->deq = 0; |
| ep_ctx->tx_info = 0; |
| /* Don't free the endpoint ring until the set interface or configuration |
| * request succeeds. |
| */ |
| } |
| |
| void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) |
| { |
| bw_info->ep_interval = 0; |
| bw_info->mult = 0; |
| bw_info->num_packets = 0; |
| bw_info->max_packet_size = 0; |
| bw_info->type = 0; |
| bw_info->max_esit_payload = 0; |
| } |
| |
| void xhci_update_bw_info(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *in_ctx, |
| struct xhci_input_control_ctx *ctrl_ctx, |
| struct xhci_virt_device *virt_dev) |
| { |
| struct xhci_bw_info *bw_info; |
| struct xhci_ep_ctx *ep_ctx; |
| unsigned int ep_type; |
| int i; |
| |
| for (i = 1; i < 31; ++i) { |
| bw_info = &virt_dev->eps[i].bw_info; |
| |
| /* We can't tell what endpoint type is being dropped, but |
| * unconditionally clearing the bandwidth info for non-periodic |
| * endpoints should be harmless because the info will never be |
| * set in the first place. |
| */ |
| if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { |
| /* Dropped endpoint */ |
| xhci_clear_endpoint_bw_info(bw_info); |
| continue; |
| } |
| |
| if (EP_IS_ADDED(ctrl_ctx, i)) { |
| ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); |
| ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); |
| |
| /* Ignore non-periodic endpoints */ |
| if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && |
| ep_type != ISOC_IN_EP && |
| ep_type != INT_IN_EP) |
| continue; |
| |
| /* Added or changed endpoint */ |
| bw_info->ep_interval = CTX_TO_EP_INTERVAL( |
| le32_to_cpu(ep_ctx->ep_info)); |
| /* Number of packets and mult are zero-based in the |
| * input context, but we want one-based for the |
| * interval table. |
| */ |
| bw_info->mult = CTX_TO_EP_MULT( |
| le32_to_cpu(ep_ctx->ep_info)) + 1; |
| bw_info->num_packets = CTX_TO_MAX_BURST( |
| le32_to_cpu(ep_ctx->ep_info2)) + 1; |
| bw_info->max_packet_size = MAX_PACKET_DECODED( |
| le32_to_cpu(ep_ctx->ep_info2)); |
| bw_info->type = ep_type; |
| bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( |
| le32_to_cpu(ep_ctx->tx_info)); |
| } |
| } |
| } |
| |
| /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
| * Useful when you want to change one particular aspect of the endpoint and then |
| * issue a configure endpoint command. |
| */ |
| void xhci_endpoint_copy(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *in_ctx, |
| struct xhci_container_ctx *out_ctx, |
| unsigned int ep_index) |
| { |
| struct xhci_ep_ctx *out_ep_ctx; |
| struct xhci_ep_ctx *in_ep_ctx; |
| |
| out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); |
| |
| in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
| in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
| in_ep_ctx->deq = out_ep_ctx->deq; |
| in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
| } |
| |
| /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
| * Useful when you want to change one particular aspect of the endpoint and then |
| * issue a configure endpoint command. Only the context entries field matters, |
| * but we'll copy the whole thing anyway. |
| */ |
| void xhci_slot_copy(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *in_ctx, |
| struct xhci_container_ctx *out_ctx) |
| { |
| struct xhci_slot_ctx *in_slot_ctx; |
| struct xhci_slot_ctx *out_slot_ctx; |
| |
| in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); |
| out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); |
| |
| in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
| in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
| in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
| in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
| } |
| |
| /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ |
| static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) |
| { |
| int i; |
| struct device *dev = xhci_to_hcd(xhci)->self.controller; |
| int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| |
| xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); |
| |
| if (!num_sp) |
| return 0; |
| |
| xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); |
| if (!xhci->scratchpad) |
| goto fail_sp; |
| |
| xhci->scratchpad->sp_array = dma_alloc_coherent(dev, |
| num_sp * sizeof(u64), |
| &xhci->scratchpad->sp_dma, flags); |
| if (!xhci->scratchpad->sp_array) |
| goto fail_sp2; |
| |
| xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); |
| if (!xhci->scratchpad->sp_buffers) |
| goto fail_sp3; |
| |
| xhci->scratchpad->sp_dma_buffers = |
| kzalloc(sizeof(dma_addr_t) * num_sp, flags); |
| |
| if (!xhci->scratchpad->sp_dma_buffers) |
| goto fail_sp4; |
| |
| xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); |
| for (i = 0; i < num_sp; i++) { |
| dma_addr_t dma; |
| void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, |
| flags); |
| if (!buf) |
| goto fail_sp5; |
| |
| xhci->scratchpad->sp_array[i] = dma; |
| xhci->scratchpad->sp_buffers[i] = buf; |
| xhci->scratchpad->sp_dma_buffers[i] = dma; |
| } |
| |
| return 0; |
| |
| fail_sp5: |
| for (i = i - 1; i >= 0; i--) { |
| dma_free_coherent(dev, xhci->page_size, |
| xhci->scratchpad->sp_buffers[i], |
| xhci->scratchpad->sp_dma_buffers[i]); |
| } |
| kfree(xhci->scratchpad->sp_dma_buffers); |
| |
| fail_sp4: |
| kfree(xhci->scratchpad->sp_buffers); |
| |
| fail_sp3: |
| dma_free_coherent(dev, num_sp * sizeof(u64), |
| xhci->scratchpad->sp_array, |
| xhci->scratchpad->sp_dma); |
| |
| fail_sp2: |
| kfree(xhci->scratchpad); |
| xhci->scratchpad = NULL; |
| |
| fail_sp: |
| return -ENOMEM; |
| } |
| |
| static void scratchpad_free(struct xhci_hcd *xhci) |
| { |
| int num_sp; |
| int i; |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| |
| if (!xhci->scratchpad) |
| return; |
| |
| num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| |
| for (i = 0; i < num_sp; i++) { |
| dma_free_coherent(&pdev->dev, xhci->page_size, |
| xhci->scratchpad->sp_buffers[i], |
| xhci->scratchpad->sp_dma_buffers[i]); |
| } |
| kfree(xhci->scratchpad->sp_dma_buffers); |
| kfree(xhci->scratchpad->sp_buffers); |
| dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), |
| xhci->scratchpad->sp_array, |
| xhci->scratchpad->sp_dma); |
| kfree(xhci->scratchpad); |
| xhci->scratchpad = NULL; |
| } |
| |
| struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, |
| bool allocate_in_ctx, bool allocate_completion, |
| gfp_t mem_flags) |
| { |
| struct xhci_command *command; |
| |
| command = kzalloc(sizeof(*command), mem_flags); |
| if (!command) |
| return NULL; |
| |
| if (allocate_in_ctx) { |
| command->in_ctx = |
| xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, |
| mem_flags); |
| if (!command->in_ctx) { |
| kfree(command); |
| return NULL; |
| } |
| } |
| |
| if (allocate_completion) { |
| command->completion = |
| kzalloc(sizeof(struct completion), mem_flags); |
| if (!command->completion) { |
| xhci_free_container_ctx(xhci, command->in_ctx); |
| kfree(command); |
| return NULL; |
| } |
| init_completion(command->completion); |
| } |
| |
| command->status = 0; |
| INIT_LIST_HEAD(&command->cmd_list); |
| return command; |
| } |
| |
| void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) |
| { |
| if (urb_priv) { |
| kfree(urb_priv->td[0]); |
| kfree(urb_priv); |
| } |
| } |
| |
| void xhci_free_command(struct xhci_hcd *xhci, |
| struct xhci_command *command) |
| { |
| xhci_free_container_ctx(xhci, |
| command->in_ctx); |
| kfree(command->completion); |
| kfree(command); |
| } |
| |
| void xhci_mem_cleanup(struct xhci_hcd *xhci) |
| { |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| struct dev_info *dev_info, *next; |
| struct xhci_cd *cur_cd, *next_cd; |
| unsigned long flags; |
| int size; |
| int i, j, num_ports; |
| |
| /* Free the Event Ring Segment Table and the actual Event Ring */ |
| size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); |
| if (xhci->erst.entries) |
| dma_free_coherent(&pdev->dev, size, |
| xhci->erst.entries, xhci->erst.erst_dma_addr); |
| xhci->erst.entries = NULL; |
| xhci_dbg(xhci, "Freed ERST\n"); |
| if (xhci->event_ring) |
| xhci_ring_free(xhci, xhci->event_ring); |
| xhci->event_ring = NULL; |
| xhci_dbg(xhci, "Freed event ring\n"); |
| |
| if (xhci->lpm_command) |
| xhci_free_command(xhci, xhci->lpm_command); |
| xhci->cmd_ring_reserved_trbs = 0; |
| if (xhci->cmd_ring) |
| xhci_ring_free(xhci, xhci->cmd_ring); |
| xhci->cmd_ring = NULL; |
| xhci_dbg(xhci, "Freed command ring\n"); |
| list_for_each_entry_safe(cur_cd, next_cd, |
| &xhci->cancel_cmd_list, cancel_cmd_list) { |
| list_del(&cur_cd->cancel_cmd_list); |
| kfree(cur_cd); |
| } |
| |
| for (i = 1; i < MAX_HC_SLOTS; ++i) |
| xhci_free_virt_device(xhci, i); |
| |
| if (xhci->segment_pool) |
| dma_pool_destroy(xhci->segment_pool); |
| xhci->segment_pool = NULL; |
| xhci_dbg(xhci, "Freed segment pool\n"); |
| |
| if (xhci->device_pool) |
| dma_pool_destroy(xhci->device_pool); |
| xhci->device_pool = NULL; |
| xhci_dbg(xhci, "Freed device context pool\n"); |
| |
| if (xhci->small_streams_pool) |
| dma_pool_destroy(xhci->small_streams_pool); |
| xhci->small_streams_pool = NULL; |
| xhci_dbg(xhci, "Freed small stream array pool\n"); |
| |
| if (xhci->medium_streams_pool) |
| dma_pool_destroy(xhci->medium_streams_pool); |
| xhci->medium_streams_pool = NULL; |
| xhci_dbg(xhci, "Freed medium stream array pool\n"); |
| |
| if (xhci->dcbaa) |
| dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), |
| xhci->dcbaa, xhci->dcbaa->dma); |
| xhci->dcbaa = NULL; |
| |
| scratchpad_free(xhci); |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { |
| list_del(&dev_info->list); |
| kfree(dev_info); |
| } |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| if (!xhci->rh_bw) |
| goto no_bw; |
| |
| num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| for (i = 0; i < num_ports; i++) { |
| struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; |
| for (j = 0; j < XHCI_MAX_INTERVAL; j++) { |
| struct list_head *ep = &bwt->interval_bw[j].endpoints; |
| while (!list_empty(ep)) |
| list_del_init(ep->next); |
| } |
| } |
| |
| for (i = 0; i < num_ports; i++) { |
| struct xhci_tt_bw_info *tt, *n; |
| list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { |
| list_del(&tt->tt_list); |
| kfree(tt); |
| } |
| } |
| |
| no_bw: |
| xhci->num_usb2_ports = 0; |
| xhci->num_usb3_ports = 0; |
| xhci->num_active_eps = 0; |
| kfree(xhci->usb2_ports); |
| kfree(xhci->usb3_ports); |
| kfree(xhci->port_array); |
| kfree(xhci->rh_bw); |
| kfree(xhci->ext_caps); |
| |
| xhci->page_size = 0; |
| xhci->page_shift = 0; |
| xhci->bus_state[0].bus_suspended = 0; |
| xhci->bus_state[1].bus_suspended = 0; |
| } |
| |
| static int xhci_test_trb_in_td(struct xhci_hcd *xhci, |
| struct xhci_segment *input_seg, |
| union xhci_trb *start_trb, |
| union xhci_trb *end_trb, |
| dma_addr_t input_dma, |
| struct xhci_segment *result_seg, |
| char *test_name, int test_number) |
| { |
| unsigned long long start_dma; |
| unsigned long long end_dma; |
| struct xhci_segment *seg; |
| |
| start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); |
| end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); |
| |
| seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); |
| if (seg != result_seg) { |
| xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", |
| test_name, test_number); |
| xhci_warn(xhci, "Tested TRB math w/ seg %p and " |
| "input DMA 0x%llx\n", |
| input_seg, |
| (unsigned long long) input_dma); |
| xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " |
| "ending TRB %p (0x%llx DMA)\n", |
| start_trb, start_dma, |
| end_trb, end_dma); |
| xhci_warn(xhci, "Expected seg %p, got seg %p\n", |
| result_seg, seg); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ |
| static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) |
| { |
| struct { |
| dma_addr_t input_dma; |
| struct xhci_segment *result_seg; |
| } simple_test_vector [] = { |
| /* A zeroed DMA field should fail */ |
| { 0, NULL }, |
| /* One TRB before the ring start should fail */ |
| { xhci->event_ring->first_seg->dma - 16, NULL }, |
| /* One byte before the ring start should fail */ |
| { xhci->event_ring->first_seg->dma - 1, NULL }, |
| /* Starting TRB should succeed */ |
| { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, |
| /* Ending TRB should succeed */ |
| { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, |
| xhci->event_ring->first_seg }, |
| /* One byte after the ring end should fail */ |
| { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, |
| /* One TRB after the ring end should fail */ |
| { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, |
| /* An address of all ones should fail */ |
| { (dma_addr_t) (~0), NULL }, |
| }; |
| struct { |
| struct xhci_segment *input_seg; |
| union xhci_trb *start_trb; |
| union xhci_trb *end_trb; |
| dma_addr_t input_dma; |
| struct xhci_segment *result_seg; |
| } complex_test_vector [] = { |
| /* Test feeding a valid DMA address from a different ring */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = xhci->event_ring->first_seg->trbs, |
| .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| .input_dma = xhci->cmd_ring->first_seg->dma, |
| .result_seg = NULL, |
| }, |
| /* Test feeding a valid end TRB from a different ring */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = xhci->event_ring->first_seg->trbs, |
| .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| .input_dma = xhci->cmd_ring->first_seg->dma, |
| .result_seg = NULL, |
| }, |
| /* Test feeding a valid start and end TRB from a different ring */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = xhci->cmd_ring->first_seg->trbs, |
| .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| .input_dma = xhci->cmd_ring->first_seg->dma, |
| .result_seg = NULL, |
| }, |
| /* TRB in this ring, but after this TD */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = &xhci->event_ring->first_seg->trbs[0], |
| .end_trb = &xhci->event_ring->first_seg->trbs[3], |
| .input_dma = xhci->event_ring->first_seg->dma + 4*16, |
| .result_seg = NULL, |
| }, |
| /* TRB in this ring, but before this TD */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = &xhci->event_ring->first_seg->trbs[3], |
| .end_trb = &xhci->event_ring->first_seg->trbs[6], |
| .input_dma = xhci->event_ring->first_seg->dma + 2*16, |
| .result_seg = NULL, |
| }, |
| /* TRB in this ring, but after this wrapped TD */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| .input_dma = xhci->event_ring->first_seg->dma + 2*16, |
| .result_seg = NULL, |
| }, |
| /* TRB in this ring, but before this wrapped TD */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, |
| .result_seg = NULL, |
| }, |
| /* TRB not in this ring, and we have a wrapped TD */ |
| { .input_seg = xhci->event_ring->first_seg, |
| .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, |
| .result_seg = NULL, |
| }, |
| }; |
| |
| unsigned int num_tests; |
| int i, ret; |
| |
| num_tests = ARRAY_SIZE(simple_test_vector); |
| for (i = 0; i < num_tests; i++) { |
| ret = xhci_test_trb_in_td(xhci, |
| xhci->event_ring->first_seg, |
| xhci->event_ring->first_seg->trbs, |
| &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| simple_test_vector[i].input_dma, |
| simple_test_vector[i].result_seg, |
| "Simple", i); |
| if (ret < 0) |
| return ret; |
| } |
| |
| num_tests = ARRAY_SIZE(complex_test_vector); |
| for (i = 0; i < num_tests; i++) { |
| ret = xhci_test_trb_in_td(xhci, |
| complex_test_vector[i].input_seg, |
| complex_test_vector[i].start_trb, |
| complex_test_vector[i].end_trb, |
| complex_test_vector[i].input_dma, |
| complex_test_vector[i].result_seg, |
| "Complex", i); |
| if (ret < 0) |
| return ret; |
| } |
| xhci_dbg(xhci, "TRB math tests passed.\n"); |
| return 0; |
| } |
| |
| static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) |
| { |
| u64 temp; |
| dma_addr_t deq; |
| |
| deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, |
| xhci->event_ring->dequeue); |
| if (deq == 0 && !in_interrupt()) |
| xhci_warn(xhci, "WARN something wrong with SW event ring " |
| "dequeue ptr.\n"); |
| /* Update HC event ring dequeue pointer */ |
| temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| temp &= ERST_PTR_MASK; |
| /* Don't clear the EHB bit (which is RW1C) because |
| * there might be more events to service. |
| */ |
| temp &= ~ERST_EHB; |
| xhci_dbg(xhci, "// Write event ring dequeue pointer, " |
| "preserving EHB bit\n"); |
| xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, |
| &xhci->ir_set->erst_dequeue); |
| } |
| |
| static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, |
| __le32 __iomem *addr, u8 major_revision, int max_caps) |
| { |
| u32 temp, port_offset, port_count; |
| int i; |
| |
| if (major_revision > 0x03) { |
| xhci_warn(xhci, "Ignoring unknown port speed, " |
| "Ext Cap %p, revision = 0x%x\n", |
| addr, major_revision); |
| /* Ignoring port protocol we can't understand. FIXME */ |
| return; |
| } |
| |
| /* Port offset and count in the third dword, see section 7.2 */ |
| temp = xhci_readl(xhci, addr + 2); |
| port_offset = XHCI_EXT_PORT_OFF(temp); |
| port_count = XHCI_EXT_PORT_COUNT(temp); |
| xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " |
| "count = %u, revision = 0x%x\n", |
| addr, port_offset, port_count, major_revision); |
| /* Port count includes the current port offset */ |
| if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) |
| /* WTF? "Valid values are ‘1’ to MaxPorts" */ |
| return; |
| |
| /* cache usb2 port capabilities */ |
| if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) |
| xhci->ext_caps[xhci->num_ext_caps++] = temp; |
| |
| /* Check the host's USB2 LPM capability */ |
| if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && |
| (temp & XHCI_L1C)) { |
| xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); |
| xhci->sw_lpm_support = 1; |
| } |
| |
| if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { |
| xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); |
| xhci->sw_lpm_support = 1; |
| if (temp & XHCI_HLC) { |
| xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); |
| xhci->hw_lpm_support = 1; |
| } |
| } |
| |
| port_offset--; |
| for (i = port_offset; i < (port_offset + port_count); i++) { |
| /* Duplicate entry. Ignore the port if the revisions differ. */ |
| if (xhci->port_array[i] != 0) { |
| xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," |
| " port %u\n", addr, i); |
| xhci_warn(xhci, "Port was marked as USB %u, " |
| "duplicated as USB %u\n", |
| xhci->port_array[i], major_revision); |
| /* Only adjust the roothub port counts if we haven't |
| * found a similar duplicate. |
| */ |
| if (xhci->port_array[i] != major_revision && |
| xhci->port_array[i] != DUPLICATE_ENTRY) { |
| if (xhci->port_array[i] == 0x03) |
| xhci->num_usb3_ports--; |
| else |
| xhci->num_usb2_ports--; |
| xhci->port_array[i] = DUPLICATE_ENTRY; |
| } |
| /* FIXME: Should we disable the port? */ |
| continue; |
| } |
| xhci->port_array[i] = major_revision; |
| if (major_revision == 0x03) |
| xhci->num_usb3_ports++; |
| else |
| xhci->num_usb2_ports++; |
| } |
| /* FIXME: Should we disable ports not in the Extended Capabilities? */ |
| } |
| |
| /* |
| * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that |
| * specify what speeds each port is supposed to be. We can't count on the port |
| * speed bits in the PORTSC register being correct until a device is connected, |
| * but we need to set up the two fake roothubs with the correct number of USB |
| * 3.0 and USB 2.0 ports at host controller initialization time. |
| */ |
| static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) |
| { |
| __le32 __iomem *addr, *tmp_addr; |
| u32 offset, tmp_offset; |
| unsigned int num_ports; |
| int i, j, port_index; |
| int cap_count = 0; |
| |
| addr = &xhci->cap_regs->hcc_params; |
| offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); |
| if (offset == 0) { |
| xhci_err(xhci, "No Extended Capability registers, " |
| "unable to set up roothub.\n"); |
| return -ENODEV; |
| } |
| |
| num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); |
| if (!xhci->port_array) |
| return -ENOMEM; |
| |
| xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); |
| if (!xhci->rh_bw) |
| return -ENOMEM; |
| for (i = 0; i < num_ports; i++) { |
| struct xhci_interval_bw_table *bw_table; |
| |
| INIT_LIST_HEAD(&xhci->rh_bw[i].tts); |
| bw_table = &xhci->rh_bw[i].bw_table; |
| for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); |
| } |
| |
| /* |
| * For whatever reason, the first capability offset is from the |
| * capability register base, not from the HCCPARAMS register. |
| * See section 5.3.6 for offset calculation. |
| */ |
| addr = &xhci->cap_regs->hc_capbase + offset; |
| |
| tmp_addr = addr; |
| tmp_offset = offset; |
| |
| /* count extended protocol capability entries for later caching */ |
| do { |
| u32 cap_id; |
| cap_id = xhci_readl(xhci, tmp_addr); |
| if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) |
| cap_count++; |
| tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); |
| tmp_addr += tmp_offset; |
| } while (tmp_offset); |
| |
| xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); |
| if (!xhci->ext_caps) |
| return -ENOMEM; |
| |
| while (1) { |
| u32 cap_id; |
| |
| cap_id = xhci_readl(xhci, addr); |
| if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) |
| xhci_add_in_port(xhci, num_ports, addr, |
| (u8) XHCI_EXT_PORT_MAJOR(cap_id), |
| cap_count); |
| offset = XHCI_EXT_CAPS_NEXT(cap_id); |
| if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) |
| == num_ports) |
| break; |
| /* |
| * Once you're into the Extended Capabilities, the offset is |
| * always relative to the register holding the offset. |
| */ |
| addr += offset; |
| } |
| |
| if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { |
| xhci_warn(xhci, "No ports on the roothubs?\n"); |
| return -ENODEV; |
| } |
| xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", |
| xhci->num_usb2_ports, xhci->num_usb3_ports); |
| |
| /* Place limits on the number of roothub ports so that the hub |
| * descriptors aren't longer than the USB core will allocate. |
| */ |
| if (xhci->num_usb3_ports > 15) { |
| xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); |
| xhci->num_usb3_ports = 15; |
| } |
| if (xhci->num_usb2_ports > USB_MAXCHILDREN) { |
| xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", |
| USB_MAXCHILDREN); |
| xhci->num_usb2_ports = USB_MAXCHILDREN; |
| } |
| |
| /* |
| * Note we could have all USB 3.0 ports, or all USB 2.0 ports. |
| * Not sure how the USB core will handle a hub with no ports... |
| */ |
| if (xhci->num_usb2_ports) { |
| xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* |
| xhci->num_usb2_ports, flags); |
| if (!xhci->usb2_ports) |
| return -ENOMEM; |
| |
| port_index = 0; |
| for (i = 0; i < num_ports; i++) { |
| if (xhci->port_array[i] == 0x03 || |
| xhci->port_array[i] == 0 || |
| xhci->port_array[i] == DUPLICATE_ENTRY) |
| continue; |
| |
| xhci->usb2_ports[port_index] = |
| &xhci->op_regs->port_status_base + |
| NUM_PORT_REGS*i; |
| xhci_dbg(xhci, "USB 2.0 port at index %u, " |
| "addr = %p\n", i, |
| xhci->usb2_ports[port_index]); |
| port_index++; |
| if (port_index == xhci->num_usb2_ports) |
| break; |
| } |
| } |
| if (xhci->num_usb3_ports) { |
| xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* |
| xhci->num_usb3_ports, flags); |
| if (!xhci->usb3_ports) |
| return -ENOMEM; |
| |
| port_index = 0; |
| for (i = 0; i < num_ports; i++) |
| if (xhci->port_array[i] == 0x03) { |
| xhci->usb3_ports[port_index] = |
| &xhci->op_regs->port_status_base + |
| NUM_PORT_REGS*i; |
| xhci_dbg(xhci, "USB 3.0 port at index %u, " |
| "addr = %p\n", i, |
| xhci->usb3_ports[port_index]); |
| port_index++; |
| if (port_index == xhci->num_usb3_ports) |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) |
| { |
| dma_addr_t dma; |
| struct device *dev = xhci_to_hcd(xhci)->self.controller; |
| unsigned int val, val2; |
| u64 val_64; |
| struct xhci_segment *seg; |
| u32 page_size, temp; |
| int i; |
| |
| INIT_LIST_HEAD(&xhci->lpm_failed_devs); |
| INIT_LIST_HEAD(&xhci->cancel_cmd_list); |
| |
| page_size = xhci_readl(xhci, &xhci->op_regs->page_size); |
| xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); |
| for (i = 0; i < 16; i++) { |
| if ((0x1 & page_size) != 0) |
| break; |
| page_size = page_size >> 1; |
| } |
| if (i < 16) |
| xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); |
| else |
| xhci_warn(xhci, "WARN: no supported page size\n"); |
| /* Use 4K pages, since that's common and the minimum the HC supports */ |
| xhci->page_shift = 12; |
| xhci->page_size = 1 << xhci->page_shift; |
| xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); |
| |
| /* |
| * Program the Number of Device Slots Enabled field in the CONFIG |
| * register with the max value of slots the HC can handle. |
| */ |
| val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); |
| xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", |
| (unsigned int) val); |
| val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); |
| val |= (val2 & ~HCS_SLOTS_MASK); |
| xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", |
| (unsigned int) val); |
| xhci_writel(xhci, val, &xhci->op_regs->config_reg); |
| |
| /* |
| * Section 5.4.8 - doorbell array must be |
| * "physically contiguous and 64-byte (cache line) aligned". |
| */ |
| xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, |
| GFP_KERNEL); |
| if (!xhci->dcbaa) |
| goto fail; |
| memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); |
| xhci->dcbaa->dma = dma; |
| xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", |
| (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); |
| xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); |
| |
| /* |
| * Initialize the ring segment pool. The ring must be a contiguous |
| * structure comprised of TRBs. The TRBs must be 16 byte aligned, |
| * however, the command ring segment needs 64-byte aligned segments, |
| * so we pick the greater alignment need. |
| */ |
| xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, |
| TRB_SEGMENT_SIZE, 64, xhci->page_size); |
| |
| /* See Table 46 and Note on Figure 55 */ |
| xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, |
| 2112, 64, xhci->page_size); |
| if (!xhci->segment_pool || !xhci->device_pool) |
| goto fail; |
| |
| /* Linear stream context arrays don't have any boundary restrictions, |
| * and only need to be 16-byte aligned. |
| */ |
| xhci->small_streams_pool = |
| dma_pool_create("xHCI 256 byte stream ctx arrays", |
| dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); |
| xhci->medium_streams_pool = |
| dma_pool_create("xHCI 1KB stream ctx arrays", |
| dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); |
| /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE |
| * will be allocated with dma_alloc_coherent() |
| */ |
| |
| if (!xhci->small_streams_pool || !xhci->medium_streams_pool) |
| goto fail; |
| |
| /* Set up the command ring to have one segments for now. */ |
| xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); |
| if (!xhci->cmd_ring) |
| goto fail; |
| xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); |
| xhci_dbg(xhci, "First segment DMA is 0x%llx\n", |
| (unsigned long long)xhci->cmd_ring->first_seg->dma); |
| |
| /* Set the address in the Command Ring Control register */ |
| val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); |
| val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
| (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | |
| xhci->cmd_ring->cycle_state; |
| xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); |
| xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); |
| xhci_dbg_cmd_ptrs(xhci); |
| |
| xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); |
| if (!xhci->lpm_command) |
| goto fail; |
| |
| /* Reserve one command ring TRB for disabling LPM. |
| * Since the USB core grabs the shared usb_bus bandwidth mutex before |
| * disabling LPM, we only need to reserve one TRB for all devices. |
| */ |
| xhci->cmd_ring_reserved_trbs++; |
| |
| val = xhci_readl(xhci, &xhci->cap_regs->db_off); |
| val &= DBOFF_MASK; |
| xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" |
| " from cap regs base addr\n", val); |
| xhci->dba = (void __iomem *) xhci->cap_regs + val; |
| xhci_dbg_regs(xhci); |
| xhci_print_run_regs(xhci); |
| /* Set ir_set to interrupt register set 0 */ |
| xhci->ir_set = &xhci->run_regs->ir_set[0]; |
| |
| /* |
| * Event ring setup: Allocate a normal ring, but also setup |
| * the event ring segment table (ERST). Section 4.9.3. |
| */ |
| xhci_dbg(xhci, "// Allocating event ring\n"); |
| xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, |
| flags); |
| if (!xhci->event_ring) |
| goto fail; |
| if (xhci_check_trb_in_td_math(xhci, flags) < 0) |
| goto fail; |
| |
| xhci->erst.entries = dma_alloc_coherent(dev, |
| sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, |
| GFP_KERNEL); |
| if (!xhci->erst.entries) |
| goto fail; |
| xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", |
| (unsigned long long)dma); |
| |
| memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); |
| xhci->erst.num_entries = ERST_NUM_SEGS; |
| xhci->erst.erst_dma_addr = dma; |
| xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", |
| xhci->erst.num_entries, |
| xhci->erst.entries, |
| (unsigned long long)xhci->erst.erst_dma_addr); |
| |
| /* set ring base address and size for each segment table entry */ |
| for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { |
| struct xhci_erst_entry *entry = &xhci->erst.entries[val]; |
| entry->seg_addr = cpu_to_le64(seg->dma); |
| entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| entry->rsvd = 0; |
| seg = seg->next; |
| } |
| |
| /* set ERST count with the number of entries in the segment table */ |
| val = xhci_readl(xhci, &xhci->ir_set->erst_size); |
| val &= ERST_SIZE_MASK; |
| val |= ERST_NUM_SEGS; |
| xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", |
| val); |
| xhci_writel(xhci, val, &xhci->ir_set->erst_size); |
| |
| xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); |
| /* set the segment table base address */ |
| xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", |
| (unsigned long long)xhci->erst.erst_dma_addr); |
| val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); |
| val_64 &= ERST_PTR_MASK; |
| val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); |
| xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); |
| |
| /* Set the event ring dequeue address */ |
| xhci_set_hc_event_deq(xhci); |
| xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); |
| xhci_print_ir_set(xhci, 0); |
| |
| /* |
| * XXX: Might need to set the Interrupter Moderation Register to |
| * something other than the default (~1ms minimum between interrupts). |
| * See section 5.5.1.2. |
| */ |
| init_completion(&xhci->addr_dev); |
| for (i = 0; i < MAX_HC_SLOTS; ++i) |
| xhci->devs[i] = NULL; |
| for (i = 0; i < USB_MAXCHILDREN; ++i) { |
| xhci->bus_state[0].resume_done[i] = 0; |
| xhci->bus_state[1].resume_done[i] = 0; |
| } |
| |
| if (scratchpad_alloc(xhci, flags)) |
| goto fail; |
| if (xhci_setup_port_arrays(xhci, flags)) |
| goto fail; |
| |
| /* Enable USB 3.0 device notifications for function remote wake, which |
| * is necessary for allowing USB 3.0 devices to do remote wakeup from |
| * U3 (device suspend). |
| */ |
| temp = xhci_readl(xhci, &xhci->op_regs->dev_notification); |
| temp &= ~DEV_NOTE_MASK; |
| temp |= DEV_NOTE_FWAKE; |
| xhci_writel(xhci, temp, &xhci->op_regs->dev_notification); |
| |
| return 0; |
| |
| fail: |
| xhci_warn(xhci, "Couldn't initialize memory\n"); |
| xhci_halt(xhci); |
| xhci_reset(xhci); |
| xhci_mem_cleanup(xhci); |
| return -ENOMEM; |
| } |