| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/stackprotector.h> |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/utsname.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ptrace.h> |
| #include <linux/random.h> |
| #include <linux/personality.h> |
| #include <linux/tick.h> |
| #include <linux/percpu.h> |
| #include <linux/prctl.h> |
| #include <linux/dmi.h> |
| #include <linux/ftrace.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/i387.h> |
| #include <asm/desc.h> |
| #ifdef CONFIG_MATH_EMULATION |
| #include <asm/math_emu.h> |
| #endif |
| |
| #include <linux/err.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cpu.h> |
| #include <asm/idle.h> |
| #include <asm/syscalls.h> |
| #include <asm/ds.h> |
| |
| asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); |
| |
| DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; |
| EXPORT_PER_CPU_SYMBOL(current_task); |
| |
| /* |
| * Return saved PC of a blocked thread. |
| */ |
| unsigned long thread_saved_pc(struct task_struct *tsk) |
| { |
| return ((unsigned long *)tsk->thread.sp)[3]; |
| } |
| |
| #ifndef CONFIG_SMP |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif |
| |
| /* |
| * The idle thread. There's no useful work to be |
| * done, so just try to conserve power and have a |
| * low exit latency (ie sit in a loop waiting for |
| * somebody to say that they'd like to reschedule) |
| */ |
| void cpu_idle(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * If we're the non-boot CPU, nothing set the stack canary up |
| * for us. CPU0 already has it initialized but no harm in |
| * doing it again. This is a good place for updating it, as |
| * we wont ever return from this function (so the invalid |
| * canaries already on the stack wont ever trigger). |
| */ |
| boot_init_stack_canary(); |
| |
| current_thread_info()->status |= TS_POLLING; |
| |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| tick_nohz_stop_sched_tick(1); |
| while (!need_resched()) { |
| |
| check_pgt_cache(); |
| rmb(); |
| |
| if (rcu_pending(cpu)) |
| rcu_check_callbacks(cpu, 0); |
| |
| if (cpu_is_offline(cpu)) |
| play_dead(); |
| |
| local_irq_disable(); |
| /* Don't trace irqs off for idle */ |
| stop_critical_timings(); |
| pm_idle(); |
| start_critical_timings(); |
| } |
| tick_nohz_restart_sched_tick(); |
| preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| } |
| |
| void __show_regs(struct pt_regs *regs, int all) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned long sp; |
| unsigned short ss, gs; |
| const char *board; |
| |
| if (user_mode_vm(regs)) { |
| sp = regs->sp; |
| ss = regs->ss & 0xffff; |
| gs = get_user_gs(regs); |
| } else { |
| sp = (unsigned long) (®s->sp); |
| savesegment(ss, ss); |
| savesegment(gs, gs); |
| } |
| |
| printk("\n"); |
| |
| board = dmi_get_system_info(DMI_PRODUCT_NAME); |
| if (!board) |
| board = ""; |
| printk("Pid: %d, comm: %s %s (%s %.*s) %s\n", |
| task_pid_nr(current), current->comm, |
| print_tainted(), init_utsname()->release, |
| (int)strcspn(init_utsname()->version, " "), |
| init_utsname()->version, board); |
| |
| printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", |
| (u16)regs->cs, regs->ip, regs->flags, |
| smp_processor_id()); |
| print_symbol("EIP is at %s\n", regs->ip); |
| |
| printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", |
| regs->ax, regs->bx, regs->cx, regs->dx); |
| printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", |
| regs->si, regs->di, regs->bp, sp); |
| printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", |
| (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); |
| |
| if (!all) |
| return; |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = read_cr3(); |
| cr4 = read_cr4_safe(); |
| printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", |
| cr0, cr2, cr3, cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", |
| d0, d1, d2, d3); |
| |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| printk("DR6: %08lx DR7: %08lx\n", |
| d6, d7); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| __show_regs(regs, 1); |
| show_trace(NULL, regs, ®s->sp, regs->bp); |
| } |
| |
| /* |
| * This gets run with %bx containing the |
| * function to call, and %dx containing |
| * the "args". |
| */ |
| extern void kernel_thread_helper(void); |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| regs.bx = (unsigned long) fn; |
| regs.dx = (unsigned long) arg; |
| |
| regs.ds = __USER_DS; |
| regs.es = __USER_DS; |
| regs.fs = __KERNEL_PERCPU; |
| regs.gs = __KERNEL_STACK_CANARY; |
| regs.orig_ax = -1; |
| regs.ip = (unsigned long) kernel_thread_helper; |
| regs.cs = __KERNEL_CS | get_kernel_rpl(); |
| regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| /* The process may have allocated an io port bitmap... nuke it. */ |
| if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { |
| struct task_struct *tsk = current; |
| struct thread_struct *t = &tsk->thread; |
| int cpu = get_cpu(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| kfree(t->io_bitmap_ptr); |
| t->io_bitmap_ptr = NULL; |
| clear_thread_flag(TIF_IO_BITMAP); |
| /* |
| * Careful, clear this in the TSS too: |
| */ |
| memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); |
| t->io_bitmap_max = 0; |
| tss->io_bitmap_owner = NULL; |
| tss->io_bitmap_max = 0; |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| put_cpu(); |
| } |
| |
| ds_exit_thread(current); |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| tsk->thread.debugreg0 = 0; |
| tsk->thread.debugreg1 = 0; |
| tsk->thread.debugreg2 = 0; |
| tsk->thread.debugreg3 = 0; |
| tsk->thread.debugreg6 = 0; |
| tsk->thread.debugreg7 = 0; |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| clear_tsk_thread_flag(tsk, TIF_DEBUG); |
| /* |
| * Forget coprocessor state.. |
| */ |
| tsk->fpu_counter = 0; |
| clear_fpu(tsk); |
| clear_used_math(); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| BUG_ON(dead_task->mm); |
| release_vm86_irqs(dead_task); |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| unlazy_fpu(tsk); |
| } |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs; |
| struct task_struct *tsk; |
| int err; |
| |
| childregs = task_pt_regs(p); |
| *childregs = *regs; |
| childregs->ax = 0; |
| childregs->sp = sp; |
| |
| p->thread.sp = (unsigned long) childregs; |
| p->thread.sp0 = (unsigned long) (childregs+1); |
| |
| p->thread.ip = (unsigned long) ret_from_fork; |
| |
| task_user_gs(p) = get_user_gs(regs); |
| |
| tsk = current; |
| if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { |
| p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| } |
| |
| err = 0; |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) |
| err = do_set_thread_area(p, -1, |
| (struct user_desc __user *)childregs->si, 0); |
| |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| |
| ds_copy_thread(p, current); |
| |
| clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR); |
| p->thread.debugctlmsr = 0; |
| |
| return err; |
| } |
| |
| void |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| { |
| set_user_gs(regs, 0); |
| regs->fs = 0; |
| set_fs(USER_DS); |
| regs->ds = __USER_DS; |
| regs->es = __USER_DS; |
| regs->ss = __USER_DS; |
| regs->cs = __USER_CS; |
| regs->ip = new_ip; |
| regs->sp = new_sp; |
| /* |
| * Free the old FP and other extended state |
| */ |
| free_thread_xstate(current); |
| } |
| EXPORT_SYMBOL_GPL(start_thread); |
| |
| static void hard_disable_TSC(void) |
| { |
| write_cr4(read_cr4() | X86_CR4_TSD); |
| } |
| |
| void disable_TSC(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_disable_TSC(); |
| preempt_enable(); |
| } |
| |
| static void hard_enable_TSC(void) |
| { |
| write_cr4(read_cr4() & ~X86_CR4_TSD); |
| } |
| |
| static void enable_TSC(void) |
| { |
| preempt_disable(); |
| if (test_and_clear_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_enable_TSC(); |
| preempt_enable(); |
| } |
| |
| int get_tsc_mode(unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (test_thread_flag(TIF_NOTSC)) |
| val = PR_TSC_SIGSEGV; |
| else |
| val = PR_TSC_ENABLE; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_tsc_mode(unsigned int val) |
| { |
| if (val == PR_TSC_SIGSEGV) |
| disable_TSC(); |
| else if (val == PR_TSC_ENABLE) |
| enable_TSC(); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static noinline void |
| __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, |
| struct tss_struct *tss) |
| { |
| struct thread_struct *prev, *next; |
| |
| prev = &prev_p->thread; |
| next = &next_p->thread; |
| |
| if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || |
| test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) |
| ds_switch_to(prev_p, next_p); |
| else if (next->debugctlmsr != prev->debugctlmsr) |
| update_debugctlmsr(next->debugctlmsr); |
| |
| if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { |
| set_debugreg(next->debugreg0, 0); |
| set_debugreg(next->debugreg1, 1); |
| set_debugreg(next->debugreg2, 2); |
| set_debugreg(next->debugreg3, 3); |
| /* no 4 and 5 */ |
| set_debugreg(next->debugreg6, 6); |
| set_debugreg(next->debugreg7, 7); |
| } |
| |
| if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ |
| test_tsk_thread_flag(next_p, TIF_NOTSC)) { |
| /* prev and next are different */ |
| if (test_tsk_thread_flag(next_p, TIF_NOTSC)) |
| hard_disable_TSC(); |
| else |
| hard_enable_TSC(); |
| } |
| |
| if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { |
| /* |
| * Disable the bitmap via an invalid offset. We still cache |
| * the previous bitmap owner and the IO bitmap contents: |
| */ |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; |
| return; |
| } |
| |
| if (likely(next == tss->io_bitmap_owner)) { |
| /* |
| * Previous owner of the bitmap (hence the bitmap content) |
| * matches the next task, we dont have to do anything but |
| * to set a valid offset in the TSS: |
| */ |
| tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; |
| return; |
| } |
| /* |
| * Lazy TSS's I/O bitmap copy. We set an invalid offset here |
| * and we let the task to get a GPF in case an I/O instruction |
| * is performed. The handler of the GPF will verify that the |
| * faulting task has a valid I/O bitmap and, it true, does the |
| * real copy and restart the instruction. This will save us |
| * redundant copies when the currently switched task does not |
| * perform any I/O during its timeslice. |
| */ |
| tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; |
| } |
| |
| /* |
| * switch_to(x,yn) should switch tasks from x to y. |
| * |
| * We fsave/fwait so that an exception goes off at the right time |
| * (as a call from the fsave or fwait in effect) rather than to |
| * the wrong process. Lazy FP saving no longer makes any sense |
| * with modern CPU's, and this simplifies a lot of things (SMP |
| * and UP become the same). |
| * |
| * NOTE! We used to use the x86 hardware context switching. The |
| * reason for not using it any more becomes apparent when you |
| * try to recover gracefully from saved state that is no longer |
| * valid (stale segment register values in particular). With the |
| * hardware task-switch, there is no way to fix up bad state in |
| * a reasonable manner. |
| * |
| * The fact that Intel documents the hardware task-switching to |
| * be slow is a fairly red herring - this code is not noticeably |
| * faster. However, there _is_ some room for improvement here, |
| * so the performance issues may eventually be a valid point. |
| * More important, however, is the fact that this allows us much |
| * more flexibility. |
| * |
| * The return value (in %ax) will be the "prev" task after |
| * the task-switch, and shows up in ret_from_fork in entry.S, |
| * for example. |
| */ |
| __notrace_funcgraph struct task_struct * |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| int cpu = smp_processor_id(); |
| struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| |
| /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ |
| |
| __unlazy_fpu(prev_p); |
| |
| |
| /* we're going to use this soon, after a few expensive things */ |
| if (next_p->fpu_counter > 5) |
| prefetch(next->xstate); |
| |
| /* |
| * Reload esp0. |
| */ |
| load_sp0(tss, next); |
| |
| /* |
| * Save away %gs. No need to save %fs, as it was saved on the |
| * stack on entry. No need to save %es and %ds, as those are |
| * always kernel segments while inside the kernel. Doing this |
| * before setting the new TLS descriptors avoids the situation |
| * where we temporarily have non-reloadable segments in %fs |
| * and %gs. This could be an issue if the NMI handler ever |
| * used %fs or %gs (it does not today), or if the kernel is |
| * running inside of a hypervisor layer. |
| */ |
| lazy_save_gs(prev->gs); |
| |
| /* |
| * Load the per-thread Thread-Local Storage descriptor. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Restore IOPL if needed. In normal use, the flags restore |
| * in the switch assembly will handle this. But if the kernel |
| * is running virtualized at a non-zero CPL, the popf will |
| * not restore flags, so it must be done in a separate step. |
| */ |
| if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) |
| set_iopl_mask(next->iopl); |
| |
| /* |
| * Now maybe handle debug registers and/or IO bitmaps |
| */ |
| if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || |
| task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) |
| __switch_to_xtra(prev_p, next_p, tss); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. |
| * This must be done before restoring TLS segments so |
| * the GDT and LDT are properly updated, and must be |
| * done before math_state_restore, so the TS bit is up |
| * to date. |
| */ |
| arch_leave_lazy_cpu_mode(); |
| |
| /* If the task has used fpu the last 5 timeslices, just do a full |
| * restore of the math state immediately to avoid the trap; the |
| * chances of needing FPU soon are obviously high now |
| * |
| * tsk_used_math() checks prevent calling math_state_restore(), |
| * which can sleep in the case of !tsk_used_math() |
| */ |
| if (tsk_used_math(next_p) && next_p->fpu_counter > 5) |
| math_state_restore(); |
| |
| /* |
| * Restore %gs if needed (which is common) |
| */ |
| if (prev->gs | next->gs) |
| lazy_load_gs(next->gs); |
| |
| percpu_write(current_task, next_p); |
| |
| return prev_p; |
| } |
| |
| int sys_fork(struct pt_regs *regs) |
| { |
| return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
| } |
| |
| int sys_clone(struct pt_regs *regs) |
| { |
| unsigned long clone_flags; |
| unsigned long newsp; |
| int __user *parent_tidptr, *child_tidptr; |
| |
| clone_flags = regs->bx; |
| newsp = regs->cx; |
| parent_tidptr = (int __user *)regs->dx; |
| child_tidptr = (int __user *)regs->di; |
| if (!newsp) |
| newsp = regs->sp; |
| return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| int sys_vfork(struct pt_regs *regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| int sys_execve(struct pt_regs *regs) |
| { |
| int error; |
| char *filename; |
| |
| filename = getname((char __user *) regs->bx); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| error = do_execve(filename, |
| (char __user * __user *) regs->cx, |
| (char __user * __user *) regs->dx, |
| regs); |
| if (error == 0) { |
| /* Make sure we don't return using sysenter.. */ |
| set_thread_flag(TIF_IRET); |
| } |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #define top_esp (THREAD_SIZE - sizeof(unsigned long)) |
| #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long bp, sp, ip; |
| unsigned long stack_page; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| stack_page = (unsigned long)task_stack_page(p); |
| sp = p->thread.sp; |
| if (!stack_page || sp < stack_page || sp > top_esp+stack_page) |
| return 0; |
| /* include/asm-i386/system.h:switch_to() pushes bp last. */ |
| bp = *(unsigned long *) sp; |
| do { |
| if (bp < stack_page || bp > top_ebp+stack_page) |
| return 0; |
| ip = *(unsigned long *) (bp+4); |
| if (!in_sched_functions(ip)) |
| return ip; |
| bp = *(unsigned long *) bp; |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| unsigned long range_end = mm->brk + 0x02000000; |
| return randomize_range(mm->brk, range_end, 0) ? : mm->brk; |
| } |