| #include <linux/gfp.h> |
| #include <linux/initrd.h> |
| #include <linux/ioport.h> |
| #include <linux/swap.h> |
| #include <linux/memblock.h> |
| #include <linux/bootmem.h> /* for max_low_pfn */ |
| |
| #include <asm/cacheflush.h> |
| #include <asm/e820.h> |
| #include <asm/init.h> |
| #include <asm/page.h> |
| #include <asm/page_types.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> /* for MAX_DMA_PFN */ |
| |
| unsigned long __initdata pgt_buf_start; |
| unsigned long __meminitdata pgt_buf_end; |
| unsigned long __meminitdata pgt_buf_top; |
| |
| int after_bootmem; |
| |
| int direct_gbpages |
| #ifdef CONFIG_DIRECT_GBPAGES |
| = 1 |
| #endif |
| ; |
| |
| struct map_range { |
| unsigned long start; |
| unsigned long end; |
| unsigned page_size_mask; |
| }; |
| |
| static int page_size_mask; |
| /* |
| * First calculate space needed for kernel direct mapping page tables to cover |
| * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB |
| * pages. Then find enough contiguous space for those page tables. |
| */ |
| static void __init find_early_table_space(struct map_range *mr, int nr_range) |
| { |
| int i; |
| unsigned long puds = 0, pmds = 0, ptes = 0, tables; |
| unsigned long start = 0, good_end; |
| phys_addr_t base; |
| |
| for (i = 0; i < nr_range; i++) { |
| unsigned long range, extra; |
| |
| range = mr[i].end - mr[i].start; |
| puds += (range + PUD_SIZE - 1) >> PUD_SHIFT; |
| |
| if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) { |
| extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT); |
| pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT; |
| } else { |
| pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT; |
| } |
| |
| if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) { |
| extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT); |
| #ifdef CONFIG_X86_32 |
| extra += PMD_SIZE; |
| #endif |
| ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| } else { |
| ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| } |
| } |
| |
| tables = roundup(puds * sizeof(pud_t), PAGE_SIZE); |
| tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE); |
| tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE); |
| |
| #ifdef CONFIG_X86_32 |
| /* for fixmap */ |
| tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE); |
| #endif |
| good_end = max_pfn_mapped << PAGE_SHIFT; |
| |
| base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE); |
| if (!base) |
| panic("Cannot find space for the kernel page tables"); |
| |
| pgt_buf_start = base >> PAGE_SHIFT; |
| pgt_buf_end = pgt_buf_start; |
| pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); |
| |
| printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n", |
| mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT, |
| (pgt_buf_top << PAGE_SHIFT) - 1); |
| } |
| |
| void probe_page_size_mask(void) |
| { |
| #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK) |
| /* |
| * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. |
| * This will simplify cpa(), which otherwise needs to support splitting |
| * large pages into small in interrupt context, etc. |
| */ |
| if (direct_gbpages) |
| page_size_mask |= 1 << PG_LEVEL_1G; |
| if (cpu_has_pse) |
| page_size_mask |= 1 << PG_LEVEL_2M; |
| #endif |
| |
| /* Enable PSE if available */ |
| if (cpu_has_pse) |
| set_in_cr4(X86_CR4_PSE); |
| |
| /* Enable PGE if available */ |
| if (cpu_has_pge) { |
| set_in_cr4(X86_CR4_PGE); |
| __supported_pte_mask |= _PAGE_GLOBAL; |
| } |
| } |
| void __init native_pagetable_reserve(u64 start, u64 end) |
| { |
| memblock_reserve(start, end - start); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| #define NR_RANGE_MR 3 |
| #else /* CONFIG_X86_64 */ |
| #define NR_RANGE_MR 5 |
| #endif |
| |
| static int __meminit save_mr(struct map_range *mr, int nr_range, |
| unsigned long start_pfn, unsigned long end_pfn, |
| unsigned long page_size_mask) |
| { |
| if (start_pfn < end_pfn) { |
| if (nr_range >= NR_RANGE_MR) |
| panic("run out of range for init_memory_mapping\n"); |
| mr[nr_range].start = start_pfn<<PAGE_SHIFT; |
| mr[nr_range].end = end_pfn<<PAGE_SHIFT; |
| mr[nr_range].page_size_mask = page_size_mask; |
| nr_range++; |
| } |
| |
| return nr_range; |
| } |
| |
| static int __meminit split_mem_range(struct map_range *mr, int nr_range, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long start_pfn, end_pfn; |
| unsigned long pos; |
| int i; |
| |
| /* head if not big page alignment ? */ |
| start_pfn = start >> PAGE_SHIFT; |
| pos = start_pfn << PAGE_SHIFT; |
| #ifdef CONFIG_X86_32 |
| /* |
| * Don't use a large page for the first 2/4MB of memory |
| * because there are often fixed size MTRRs in there |
| * and overlapping MTRRs into large pages can cause |
| * slowdowns. |
| */ |
| if (pos == 0) |
| end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT); |
| else |
| end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #endif |
| if (end_pfn > (end >> PAGE_SHIFT)) |
| end_pfn = end >> PAGE_SHIFT; |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| /* big page (2M) range */ |
| start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| #ifdef CONFIG_X86_32 |
| end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); |
| #else /* CONFIG_X86_64 */ |
| end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) |
| << (PUD_SHIFT - PAGE_SHIFT); |
| if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) |
| end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); |
| #endif |
| |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* big page (1G) range */ |
| start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) |
| << (PUD_SHIFT - PAGE_SHIFT); |
| end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & |
| ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| |
| /* tail is not big page (1G) alignment */ |
| start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) |
| << (PMD_SHIFT - PAGE_SHIFT); |
| end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); |
| if (start_pfn < end_pfn) { |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, |
| page_size_mask & (1<<PG_LEVEL_2M)); |
| pos = end_pfn << PAGE_SHIFT; |
| } |
| #endif |
| |
| /* tail is not big page (2M) alignment */ |
| start_pfn = pos>>PAGE_SHIFT; |
| end_pfn = end>>PAGE_SHIFT; |
| nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); |
| |
| /* try to merge same page size and continuous */ |
| for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { |
| unsigned long old_start; |
| if (mr[i].end != mr[i+1].start || |
| mr[i].page_size_mask != mr[i+1].page_size_mask) |
| continue; |
| /* move it */ |
| old_start = mr[i].start; |
| memmove(&mr[i], &mr[i+1], |
| (nr_range - 1 - i) * sizeof(struct map_range)); |
| mr[i--].start = old_start; |
| nr_range--; |
| } |
| |
| for (i = 0; i < nr_range; i++) |
| printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", |
| mr[i].start, mr[i].end - 1, |
| (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( |
| (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); |
| |
| return nr_range; |
| } |
| |
| /* |
| * Setup the direct mapping of the physical memory at PAGE_OFFSET. |
| * This runs before bootmem is initialized and gets pages directly from |
| * the physical memory. To access them they are temporarily mapped. |
| */ |
| unsigned long __init_refok init_memory_mapping(unsigned long start, |
| unsigned long end) |
| { |
| struct map_range mr[NR_RANGE_MR]; |
| unsigned long ret = 0; |
| int nr_range, i; |
| |
| pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n", |
| start, end - 1); |
| |
| memset(mr, 0, sizeof(mr)); |
| nr_range = split_mem_range(mr, 0, start, end); |
| |
| /* |
| * Find space for the kernel direct mapping tables. |
| * |
| * Later we should allocate these tables in the local node of the |
| * memory mapped. Unfortunately this is done currently before the |
| * nodes are discovered. |
| */ |
| if (!after_bootmem) |
| find_early_table_space(mr, nr_range); |
| |
| for (i = 0; i < nr_range; i++) |
| ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, |
| mr[i].page_size_mask); |
| |
| #ifdef CONFIG_X86_32 |
| early_ioremap_page_table_range_init(); |
| |
| load_cr3(swapper_pg_dir); |
| #endif |
| |
| __flush_tlb_all(); |
| |
| /* |
| * Reserve the kernel pagetable pages we used (pgt_buf_start - |
| * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top) |
| * so that they can be reused for other purposes. |
| * |
| * On native it just means calling memblock_reserve, on Xen it also |
| * means marking RW the pagetable pages that we allocated before |
| * but that haven't been used. |
| * |
| * In fact on xen we mark RO the whole range pgt_buf_start - |
| * pgt_buf_top, because we have to make sure that when |
| * init_memory_mapping reaches the pagetable pages area, it maps |
| * RO all the pagetable pages, including the ones that are beyond |
| * pgt_buf_end at that time. |
| */ |
| if (!after_bootmem && pgt_buf_end > pgt_buf_start) |
| x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start), |
| PFN_PHYS(pgt_buf_end)); |
| |
| if (!after_bootmem) |
| early_memtest(start, end); |
| |
| return ret >> PAGE_SHIFT; |
| } |
| |
| |
| /* |
| * devmem_is_allowed() checks to see if /dev/mem access to a certain address |
| * is valid. The argument is a physical page number. |
| * |
| * |
| * On x86, access has to be given to the first megabyte of ram because that area |
| * contains bios code and data regions used by X and dosemu and similar apps. |
| * Access has to be given to non-kernel-ram areas as well, these contain the PCI |
| * mmio resources as well as potential bios/acpi data regions. |
| */ |
| int devmem_is_allowed(unsigned long pagenr) |
| { |
| if (pagenr < 256) |
| return 1; |
| if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) |
| return 0; |
| if (!page_is_ram(pagenr)) |
| return 1; |
| return 0; |
| } |
| |
| void free_init_pages(char *what, unsigned long begin, unsigned long end) |
| { |
| unsigned long addr; |
| unsigned long begin_aligned, end_aligned; |
| |
| /* Make sure boundaries are page aligned */ |
| begin_aligned = PAGE_ALIGN(begin); |
| end_aligned = end & PAGE_MASK; |
| |
| if (WARN_ON(begin_aligned != begin || end_aligned != end)) { |
| begin = begin_aligned; |
| end = end_aligned; |
| } |
| |
| if (begin >= end) |
| return; |
| |
| addr = begin; |
| |
| /* |
| * If debugging page accesses then do not free this memory but |
| * mark them not present - any buggy init-section access will |
| * create a kernel page fault: |
| */ |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", |
| begin, end - 1); |
| set_memory_np(begin, (end - begin) >> PAGE_SHIFT); |
| #else |
| /* |
| * We just marked the kernel text read only above, now that |
| * we are going to free part of that, we need to make that |
| * writeable and non-executable first. |
| */ |
| set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); |
| set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); |
| |
| printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(addr)); |
| init_page_count(virt_to_page(addr)); |
| memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); |
| free_page(addr); |
| totalram_pages++; |
| } |
| #endif |
| } |
| |
| void free_initmem(void) |
| { |
| free_init_pages("unused kernel memory", |
| (unsigned long)(&__init_begin), |
| (unsigned long)(&__init_end)); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void __init free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| /* |
| * end could be not aligned, and We can not align that, |
| * decompresser could be confused by aligned initrd_end |
| * We already reserve the end partial page before in |
| * - i386_start_kernel() |
| * - x86_64_start_kernel() |
| * - relocate_initrd() |
| * So here We can do PAGE_ALIGN() safely to get partial page to be freed |
| */ |
| free_init_pages("initrd memory", start, PAGE_ALIGN(end)); |
| } |
| #endif |
| |
| void __init zone_sizes_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| |
| #ifdef CONFIG_ZONE_DMA |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_HIGHMEM] = max_pfn; |
| #endif |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |