| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/fsnotify.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mount.h> |
| #include <linux/namei.h> |
| #include <linux/writeback.h> |
| #include <linux/compat.h> |
| #include <linux/security.h> |
| #include <linux/xattr.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/uuid.h> |
| #include <linux/btrfs.h> |
| #include <linux/uaccess.h> |
| #include <linux/iversion.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "locking.h" |
| #include "inode-map.h" |
| #include "backref.h" |
| #include "rcu-string.h" |
| #include "send.h" |
| #include "dev-replace.h" |
| #include "props.h" |
| #include "sysfs.h" |
| #include "qgroup.h" |
| #include "tree-log.h" |
| #include "compression.h" |
| |
| #ifdef CONFIG_64BIT |
| /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI |
| * structures are incorrect, as the timespec structure from userspace |
| * is 4 bytes too small. We define these alternatives here to teach |
| * the kernel about the 32-bit struct packing. |
| */ |
| struct btrfs_ioctl_timespec_32 { |
| __u64 sec; |
| __u32 nsec; |
| } __attribute__ ((__packed__)); |
| |
| struct btrfs_ioctl_received_subvol_args_32 { |
| char uuid[BTRFS_UUID_SIZE]; /* in */ |
| __u64 stransid; /* in */ |
| __u64 rtransid; /* out */ |
| struct btrfs_ioctl_timespec_32 stime; /* in */ |
| struct btrfs_ioctl_timespec_32 rtime; /* out */ |
| __u64 flags; /* in */ |
| __u64 reserved[16]; /* in */ |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ |
| struct btrfs_ioctl_received_subvol_args_32) |
| #endif |
| |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_send_args_32 { |
| __s64 send_fd; /* in */ |
| __u64 clone_sources_count; /* in */ |
| compat_uptr_t clone_sources; /* in */ |
| __u64 parent_root; /* in */ |
| __u64 flags; /* in */ |
| __u64 reserved[4]; /* in */ |
| } __attribute__ ((__packed__)); |
| |
| #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ |
| struct btrfs_ioctl_send_args_32) |
| #endif |
| |
| static int btrfs_clone(struct inode *src, struct inode *inode, |
| u64 off, u64 olen, u64 olen_aligned, u64 destoff, |
| int no_time_update); |
| |
| /* Mask out flags that are inappropriate for the given type of inode. */ |
| static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, |
| unsigned int flags) |
| { |
| if (S_ISDIR(inode->i_mode)) |
| return flags; |
| else if (S_ISREG(inode->i_mode)) |
| return flags & ~FS_DIRSYNC_FL; |
| else |
| return flags & (FS_NODUMP_FL | FS_NOATIME_FL); |
| } |
| |
| /* |
| * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS |
| * ioctl. |
| */ |
| static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) |
| { |
| unsigned int iflags = 0; |
| |
| if (flags & BTRFS_INODE_SYNC) |
| iflags |= FS_SYNC_FL; |
| if (flags & BTRFS_INODE_IMMUTABLE) |
| iflags |= FS_IMMUTABLE_FL; |
| if (flags & BTRFS_INODE_APPEND) |
| iflags |= FS_APPEND_FL; |
| if (flags & BTRFS_INODE_NODUMP) |
| iflags |= FS_NODUMP_FL; |
| if (flags & BTRFS_INODE_NOATIME) |
| iflags |= FS_NOATIME_FL; |
| if (flags & BTRFS_INODE_DIRSYNC) |
| iflags |= FS_DIRSYNC_FL; |
| if (flags & BTRFS_INODE_NODATACOW) |
| iflags |= FS_NOCOW_FL; |
| |
| if (flags & BTRFS_INODE_NOCOMPRESS) |
| iflags |= FS_NOCOMP_FL; |
| else if (flags & BTRFS_INODE_COMPRESS) |
| iflags |= FS_COMPR_FL; |
| |
| return iflags; |
| } |
| |
| /* |
| * Update inode->i_flags based on the btrfs internal flags. |
| */ |
| void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) |
| { |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| unsigned int new_fl = 0; |
| |
| if (binode->flags & BTRFS_INODE_SYNC) |
| new_fl |= S_SYNC; |
| if (binode->flags & BTRFS_INODE_IMMUTABLE) |
| new_fl |= S_IMMUTABLE; |
| if (binode->flags & BTRFS_INODE_APPEND) |
| new_fl |= S_APPEND; |
| if (binode->flags & BTRFS_INODE_NOATIME) |
| new_fl |= S_NOATIME; |
| if (binode->flags & BTRFS_INODE_DIRSYNC) |
| new_fl |= S_DIRSYNC; |
| |
| set_mask_bits(&inode->i_flags, |
| S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, |
| new_fl); |
| } |
| |
| static int btrfs_ioctl_getflags(struct file *file, void __user *arg) |
| { |
| struct btrfs_inode *binode = BTRFS_I(file_inode(file)); |
| unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); |
| |
| if (copy_to_user(arg, &flags, sizeof(flags))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* Check if @flags are a supported and valid set of FS_*_FL flags */ |
| static int check_fsflags(unsigned int flags) |
| { |
| if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ |
| FS_NOATIME_FL | FS_NODUMP_FL | \ |
| FS_SYNC_FL | FS_DIRSYNC_FL | \ |
| FS_NOCOMP_FL | FS_COMPR_FL | |
| FS_NOCOW_FL)) |
| return -EOPNOTSUPP; |
| |
| if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int btrfs_ioctl_setflags(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| struct btrfs_root *root = binode->root; |
| struct btrfs_trans_handle *trans; |
| unsigned int fsflags, old_fsflags; |
| int ret; |
| u64 old_flags; |
| unsigned int old_i_flags; |
| umode_t mode; |
| |
| if (!inode_owner_or_capable(inode)) |
| return -EPERM; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (copy_from_user(&fsflags, arg, sizeof(fsflags))) |
| return -EFAULT; |
| |
| ret = check_fsflags(fsflags); |
| if (ret) |
| return ret; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| inode_lock(inode); |
| |
| old_flags = binode->flags; |
| old_i_flags = inode->i_flags; |
| mode = inode->i_mode; |
| |
| fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); |
| old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); |
| if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { |
| if (!capable(CAP_LINUX_IMMUTABLE)) { |
| ret = -EPERM; |
| goto out_unlock; |
| } |
| } |
| |
| if (fsflags & FS_SYNC_FL) |
| binode->flags |= BTRFS_INODE_SYNC; |
| else |
| binode->flags &= ~BTRFS_INODE_SYNC; |
| if (fsflags & FS_IMMUTABLE_FL) |
| binode->flags |= BTRFS_INODE_IMMUTABLE; |
| else |
| binode->flags &= ~BTRFS_INODE_IMMUTABLE; |
| if (fsflags & FS_APPEND_FL) |
| binode->flags |= BTRFS_INODE_APPEND; |
| else |
| binode->flags &= ~BTRFS_INODE_APPEND; |
| if (fsflags & FS_NODUMP_FL) |
| binode->flags |= BTRFS_INODE_NODUMP; |
| else |
| binode->flags &= ~BTRFS_INODE_NODUMP; |
| if (fsflags & FS_NOATIME_FL) |
| binode->flags |= BTRFS_INODE_NOATIME; |
| else |
| binode->flags &= ~BTRFS_INODE_NOATIME; |
| if (fsflags & FS_DIRSYNC_FL) |
| binode->flags |= BTRFS_INODE_DIRSYNC; |
| else |
| binode->flags &= ~BTRFS_INODE_DIRSYNC; |
| if (fsflags & FS_NOCOW_FL) { |
| if (S_ISREG(mode)) { |
| /* |
| * It's safe to turn csums off here, no extents exist. |
| * Otherwise we want the flag to reflect the real COW |
| * status of the file and will not set it. |
| */ |
| if (inode->i_size == 0) |
| binode->flags |= BTRFS_INODE_NODATACOW |
| | BTRFS_INODE_NODATASUM; |
| } else { |
| binode->flags |= BTRFS_INODE_NODATACOW; |
| } |
| } else { |
| /* |
| * Revert back under same assumptions as above |
| */ |
| if (S_ISREG(mode)) { |
| if (inode->i_size == 0) |
| binode->flags &= ~(BTRFS_INODE_NODATACOW |
| | BTRFS_INODE_NODATASUM); |
| } else { |
| binode->flags &= ~BTRFS_INODE_NODATACOW; |
| } |
| } |
| |
| /* |
| * The COMPRESS flag can only be changed by users, while the NOCOMPRESS |
| * flag may be changed automatically if compression code won't make |
| * things smaller. |
| */ |
| if (fsflags & FS_NOCOMP_FL) { |
| binode->flags &= ~BTRFS_INODE_COMPRESS; |
| binode->flags |= BTRFS_INODE_NOCOMPRESS; |
| |
| ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); |
| if (ret && ret != -ENODATA) |
| goto out_drop; |
| } else if (fsflags & FS_COMPR_FL) { |
| const char *comp; |
| |
| binode->flags |= BTRFS_INODE_COMPRESS; |
| binode->flags &= ~BTRFS_INODE_NOCOMPRESS; |
| |
| comp = btrfs_compress_type2str(fs_info->compress_type); |
| if (!comp || comp[0] == 0) |
| comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); |
| |
| ret = btrfs_set_prop(inode, "btrfs.compression", |
| comp, strlen(comp), 0); |
| if (ret) |
| goto out_drop; |
| |
| } else { |
| ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); |
| if (ret && ret != -ENODATA) |
| goto out_drop; |
| binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_drop; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| btrfs_end_transaction(trans); |
| out_drop: |
| if (ret) { |
| binode->flags = old_flags; |
| inode->i_flags = old_i_flags; |
| } |
| |
| out_unlock: |
| inode_unlock(inode); |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| /* |
| * Translate btrfs internal inode flags to xflags as expected by the |
| * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are |
| * silently dropped. |
| */ |
| static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) |
| { |
| unsigned int xflags = 0; |
| |
| if (flags & BTRFS_INODE_APPEND) |
| xflags |= FS_XFLAG_APPEND; |
| if (flags & BTRFS_INODE_IMMUTABLE) |
| xflags |= FS_XFLAG_IMMUTABLE; |
| if (flags & BTRFS_INODE_NOATIME) |
| xflags |= FS_XFLAG_NOATIME; |
| if (flags & BTRFS_INODE_NODUMP) |
| xflags |= FS_XFLAG_NODUMP; |
| if (flags & BTRFS_INODE_SYNC) |
| xflags |= FS_XFLAG_SYNC; |
| |
| return xflags; |
| } |
| |
| /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ |
| static int check_xflags(unsigned int flags) |
| { |
| if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | |
| FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) |
| return -EOPNOTSUPP; |
| return 0; |
| } |
| |
| /* |
| * Set the xflags from the internal inode flags. The remaining items of fsxattr |
| * are zeroed. |
| */ |
| static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) |
| { |
| struct btrfs_inode *binode = BTRFS_I(file_inode(file)); |
| struct fsxattr fa; |
| |
| memset(&fa, 0, sizeof(fa)); |
| fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); |
| |
| if (copy_to_user(arg, &fa, sizeof(fa))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| struct btrfs_root *root = binode->root; |
| struct btrfs_trans_handle *trans; |
| struct fsxattr fa; |
| unsigned old_flags; |
| unsigned old_i_flags; |
| int ret = 0; |
| |
| if (!inode_owner_or_capable(inode)) |
| return -EPERM; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| memset(&fa, 0, sizeof(fa)); |
| if (copy_from_user(&fa, arg, sizeof(fa))) |
| return -EFAULT; |
| |
| ret = check_xflags(fa.fsx_xflags); |
| if (ret) |
| return ret; |
| |
| if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) |
| return -EOPNOTSUPP; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| inode_lock(inode); |
| |
| old_flags = binode->flags; |
| old_i_flags = inode->i_flags; |
| |
| /* We need the capabilities to change append-only or immutable inode */ |
| if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || |
| (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && |
| !capable(CAP_LINUX_IMMUTABLE)) { |
| ret = -EPERM; |
| goto out_unlock; |
| } |
| |
| if (fa.fsx_xflags & FS_XFLAG_SYNC) |
| binode->flags |= BTRFS_INODE_SYNC; |
| else |
| binode->flags &= ~BTRFS_INODE_SYNC; |
| if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) |
| binode->flags |= BTRFS_INODE_IMMUTABLE; |
| else |
| binode->flags &= ~BTRFS_INODE_IMMUTABLE; |
| if (fa.fsx_xflags & FS_XFLAG_APPEND) |
| binode->flags |= BTRFS_INODE_APPEND; |
| else |
| binode->flags &= ~BTRFS_INODE_APPEND; |
| if (fa.fsx_xflags & FS_XFLAG_NODUMP) |
| binode->flags |= BTRFS_INODE_NODUMP; |
| else |
| binode->flags &= ~BTRFS_INODE_NODUMP; |
| if (fa.fsx_xflags & FS_XFLAG_NOATIME) |
| binode->flags |= BTRFS_INODE_NOATIME; |
| else |
| binode->flags &= ~BTRFS_INODE_NOATIME; |
| |
| /* 1 item for the inode */ |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_unlock; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| btrfs_end_transaction(trans); |
| |
| out_unlock: |
| if (ret) { |
| binode->flags = old_flags; |
| inode->i_flags = old_i_flags; |
| } |
| |
| inode_unlock(inode); |
| mnt_drop_write_file(file); |
| |
| return ret; |
| } |
| |
| static int btrfs_ioctl_getversion(struct file *file, int __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| |
| return put_user(inode->i_generation, arg); |
| } |
| |
| static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_device *device; |
| struct request_queue *q; |
| struct fstrim_range range; |
| u64 minlen = ULLONG_MAX; |
| u64 num_devices = 0; |
| u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, |
| dev_list) { |
| if (!device->bdev) |
| continue; |
| q = bdev_get_queue(device->bdev); |
| if (blk_queue_discard(q)) { |
| num_devices++; |
| minlen = min_t(u64, q->limits.discard_granularity, |
| minlen); |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (!num_devices) |
| return -EOPNOTSUPP; |
| if (copy_from_user(&range, arg, sizeof(range))) |
| return -EFAULT; |
| if (range.start > total_bytes || |
| range.len < fs_info->sb->s_blocksize) |
| return -EINVAL; |
| |
| range.len = min(range.len, total_bytes - range.start); |
| range.minlen = max(range.minlen, minlen); |
| ret = btrfs_trim_fs(fs_info, &range); |
| if (ret < 0) |
| return ret; |
| |
| if (copy_to_user(arg, &range, sizeof(range))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| int btrfs_is_empty_uuid(u8 *uuid) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_UUID_SIZE; i++) { |
| if (uuid[i]) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static noinline int create_subvol(struct inode *dir, |
| struct dentry *dentry, |
| const char *name, int namelen, |
| u64 *async_transid, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key key; |
| struct btrfs_root_item *root_item; |
| struct btrfs_inode_item *inode_item; |
| struct extent_buffer *leaf; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *new_root; |
| struct btrfs_block_rsv block_rsv; |
| struct timespec64 cur_time = current_time(dir); |
| struct inode *inode; |
| int ret; |
| int err; |
| u64 objectid; |
| u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; |
| u64 index = 0; |
| uuid_le new_uuid; |
| |
| root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); |
| if (!root_item) |
| return -ENOMEM; |
| |
| ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); |
| if (ret) |
| goto fail_free; |
| |
| /* |
| * Don't create subvolume whose level is not zero. Or qgroup will be |
| * screwed up since it assumes subvolume qgroup's level to be 0. |
| */ |
| if (btrfs_qgroup_level(objectid)) { |
| ret = -ENOSPC; |
| goto fail_free; |
| } |
| |
| btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); |
| /* |
| * The same as the snapshot creation, please see the comment |
| * of create_snapshot(). |
| */ |
| ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); |
| if (ret) |
| goto fail_free; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_subvolume_release_metadata(fs_info, &block_rsv); |
| goto fail_free; |
| } |
| trans->block_rsv = &block_rsv; |
| trans->bytes_reserved = block_rsv.size; |
| |
| ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); |
| if (ret) |
| goto fail; |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); |
| if (IS_ERR(leaf)) { |
| ret = PTR_ERR(leaf); |
| goto fail; |
| } |
| |
| btrfs_mark_buffer_dirty(leaf); |
| |
| inode_item = &root_item->inode; |
| btrfs_set_stack_inode_generation(inode_item, 1); |
| btrfs_set_stack_inode_size(inode_item, 3); |
| btrfs_set_stack_inode_nlink(inode_item, 1); |
| btrfs_set_stack_inode_nbytes(inode_item, |
| fs_info->nodesize); |
| btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| |
| btrfs_set_root_flags(root_item, 0); |
| btrfs_set_root_limit(root_item, 0); |
| btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); |
| |
| btrfs_set_root_bytenr(root_item, leaf->start); |
| btrfs_set_root_generation(root_item, trans->transid); |
| btrfs_set_root_level(root_item, 0); |
| btrfs_set_root_refs(root_item, 1); |
| btrfs_set_root_used(root_item, leaf->len); |
| btrfs_set_root_last_snapshot(root_item, 0); |
| |
| btrfs_set_root_generation_v2(root_item, |
| btrfs_root_generation(root_item)); |
| uuid_le_gen(&new_uuid); |
| memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); |
| btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); |
| btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); |
| root_item->ctime = root_item->otime; |
| btrfs_set_root_ctransid(root_item, trans->transid); |
| btrfs_set_root_otransid(root_item, trans->transid); |
| |
| btrfs_tree_unlock(leaf); |
| free_extent_buffer(leaf); |
| leaf = NULL; |
| |
| btrfs_set_root_dirid(root_item, new_dirid); |
| |
| key.objectid = objectid; |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| ret = btrfs_insert_root(trans, fs_info->tree_root, &key, |
| root_item); |
| if (ret) |
| goto fail; |
| |
| key.offset = (u64)-1; |
| new_root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(new_root)) { |
| ret = PTR_ERR(new_root); |
| btrfs_abort_transaction(trans, ret); |
| goto fail; |
| } |
| |
| btrfs_record_root_in_trans(trans, new_root); |
| |
| ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); |
| if (ret) { |
| /* We potentially lose an unused inode item here */ |
| btrfs_abort_transaction(trans, ret); |
| goto fail; |
| } |
| |
| mutex_lock(&new_root->objectid_mutex); |
| new_root->highest_objectid = new_dirid; |
| mutex_unlock(&new_root->objectid_mutex); |
| |
| /* |
| * insert the directory item |
| */ |
| ret = btrfs_set_inode_index(BTRFS_I(dir), &index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto fail; |
| } |
| |
| ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, |
| BTRFS_FT_DIR, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto fail; |
| } |
| |
| btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); |
| ret = btrfs_update_inode(trans, root, dir); |
| BUG_ON(ret); |
| |
| ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, |
| btrfs_ino(BTRFS_I(dir)), index, name, namelen); |
| BUG_ON(ret); |
| |
| ret = btrfs_uuid_tree_add(trans, root_item->uuid, |
| BTRFS_UUID_KEY_SUBVOL, objectid); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| |
| fail: |
| kfree(root_item); |
| trans->block_rsv = NULL; |
| trans->bytes_reserved = 0; |
| btrfs_subvolume_release_metadata(fs_info, &block_rsv); |
| |
| if (async_transid) { |
| *async_transid = trans->transid; |
| err = btrfs_commit_transaction_async(trans, 1); |
| if (err) |
| err = btrfs_commit_transaction(trans); |
| } else { |
| err = btrfs_commit_transaction(trans); |
| } |
| if (err && !ret) |
| ret = err; |
| |
| if (!ret) { |
| inode = btrfs_lookup_dentry(dir, dentry); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| d_instantiate(dentry, inode); |
| } |
| return ret; |
| |
| fail_free: |
| kfree(root_item); |
| return ret; |
| } |
| |
| static int create_snapshot(struct btrfs_root *root, struct inode *dir, |
| struct dentry *dentry, |
| u64 *async_transid, bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct inode *inode; |
| struct btrfs_pending_snapshot *pending_snapshot; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| bool snapshot_force_cow = false; |
| |
| if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) |
| return -EINVAL; |
| |
| pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); |
| if (!pending_snapshot) |
| return -ENOMEM; |
| |
| pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), |
| GFP_KERNEL); |
| pending_snapshot->path = btrfs_alloc_path(); |
| if (!pending_snapshot->root_item || !pending_snapshot->path) { |
| ret = -ENOMEM; |
| goto free_pending; |
| } |
| |
| /* |
| * Force new buffered writes to reserve space even when NOCOW is |
| * possible. This is to avoid later writeback (running dealloc) to |
| * fallback to COW mode and unexpectedly fail with ENOSPC. |
| */ |
| atomic_inc(&root->will_be_snapshotted); |
| smp_mb__after_atomic(); |
| /* wait for no snapshot writes */ |
| wait_event(root->subv_writers->wait, |
| percpu_counter_sum(&root->subv_writers->counter) == 0); |
| |
| ret = btrfs_start_delalloc_inodes(root); |
| if (ret) |
| goto dec_and_free; |
| |
| /* |
| * All previous writes have started writeback in NOCOW mode, so now |
| * we force future writes to fallback to COW mode during snapshot |
| * creation. |
| */ |
| atomic_inc(&root->snapshot_force_cow); |
| snapshot_force_cow = true; |
| |
| btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); |
| |
| btrfs_init_block_rsv(&pending_snapshot->block_rsv, |
| BTRFS_BLOCK_RSV_TEMP); |
| /* |
| * 1 - parent dir inode |
| * 2 - dir entries |
| * 1 - root item |
| * 2 - root ref/backref |
| * 1 - root of snapshot |
| * 1 - UUID item |
| */ |
| ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, |
| &pending_snapshot->block_rsv, 8, |
| false); |
| if (ret) |
| goto dec_and_free; |
| |
| pending_snapshot->dentry = dentry; |
| pending_snapshot->root = root; |
| pending_snapshot->readonly = readonly; |
| pending_snapshot->dir = dir; |
| pending_snapshot->inherit = inherit; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto fail; |
| } |
| |
| spin_lock(&fs_info->trans_lock); |
| list_add(&pending_snapshot->list, |
| &trans->transaction->pending_snapshots); |
| spin_unlock(&fs_info->trans_lock); |
| if (async_transid) { |
| *async_transid = trans->transid; |
| ret = btrfs_commit_transaction_async(trans, 1); |
| if (ret) |
| ret = btrfs_commit_transaction(trans); |
| } else { |
| ret = btrfs_commit_transaction(trans); |
| } |
| if (ret) |
| goto fail; |
| |
| ret = pending_snapshot->error; |
| if (ret) |
| goto fail; |
| |
| ret = btrfs_orphan_cleanup(pending_snapshot->snap); |
| if (ret) |
| goto fail; |
| |
| inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| goto fail; |
| } |
| |
| d_instantiate(dentry, inode); |
| ret = 0; |
| fail: |
| btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); |
| dec_and_free: |
| if (snapshot_force_cow) |
| atomic_dec(&root->snapshot_force_cow); |
| if (atomic_dec_and_test(&root->will_be_snapshotted)) |
| wake_up_var(&root->will_be_snapshotted); |
| free_pending: |
| kfree(pending_snapshot->root_item); |
| btrfs_free_path(pending_snapshot->path); |
| kfree(pending_snapshot); |
| |
| return ret; |
| } |
| |
| /* copy of may_delete in fs/namei.c() |
| * Check whether we can remove a link victim from directory dir, check |
| * whether the type of victim is right. |
| * 1. We can't do it if dir is read-only (done in permission()) |
| * 2. We should have write and exec permissions on dir |
| * 3. We can't remove anything from append-only dir |
| * 4. We can't do anything with immutable dir (done in permission()) |
| * 5. If the sticky bit on dir is set we should either |
| * a. be owner of dir, or |
| * b. be owner of victim, or |
| * c. have CAP_FOWNER capability |
| * 6. If the victim is append-only or immutable we can't do anything with |
| * links pointing to it. |
| * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. |
| * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. |
| * 9. We can't remove a root or mountpoint. |
| * 10. We don't allow removal of NFS sillyrenamed files; it's handled by |
| * nfs_async_unlink(). |
| */ |
| |
| static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) |
| { |
| int error; |
| |
| if (d_really_is_negative(victim)) |
| return -ENOENT; |
| |
| BUG_ON(d_inode(victim->d_parent) != dir); |
| audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); |
| |
| error = inode_permission(dir, MAY_WRITE | MAY_EXEC); |
| if (error) |
| return error; |
| if (IS_APPEND(dir)) |
| return -EPERM; |
| if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || |
| IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) |
| return -EPERM; |
| if (isdir) { |
| if (!d_is_dir(victim)) |
| return -ENOTDIR; |
| if (IS_ROOT(victim)) |
| return -EBUSY; |
| } else if (d_is_dir(victim)) |
| return -EISDIR; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| if (victim->d_flags & DCACHE_NFSFS_RENAMED) |
| return -EBUSY; |
| return 0; |
| } |
| |
| /* copy of may_create in fs/namei.c() */ |
| static inline int btrfs_may_create(struct inode *dir, struct dentry *child) |
| { |
| if (d_really_is_positive(child)) |
| return -EEXIST; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| return inode_permission(dir, MAY_WRITE | MAY_EXEC); |
| } |
| |
| /* |
| * Create a new subvolume below @parent. This is largely modeled after |
| * sys_mkdirat and vfs_mkdir, but we only do a single component lookup |
| * inside this filesystem so it's quite a bit simpler. |
| */ |
| static noinline int btrfs_mksubvol(const struct path *parent, |
| const char *name, int namelen, |
| struct btrfs_root *snap_src, |
| u64 *async_transid, bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| struct inode *dir = d_inode(parent->dentry); |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct dentry *dentry; |
| int error; |
| |
| error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); |
| if (error == -EINTR) |
| return error; |
| |
| dentry = lookup_one_len(name, parent->dentry, namelen); |
| error = PTR_ERR(dentry); |
| if (IS_ERR(dentry)) |
| goto out_unlock; |
| |
| error = btrfs_may_create(dir, dentry); |
| if (error) |
| goto out_dput; |
| |
| /* |
| * even if this name doesn't exist, we may get hash collisions. |
| * check for them now when we can safely fail |
| */ |
| error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, |
| dir->i_ino, name, |
| namelen); |
| if (error) |
| goto out_dput; |
| |
| down_read(&fs_info->subvol_sem); |
| |
| if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) |
| goto out_up_read; |
| |
| if (snap_src) { |
| error = create_snapshot(snap_src, dir, dentry, |
| async_transid, readonly, inherit); |
| } else { |
| error = create_subvol(dir, dentry, name, namelen, |
| async_transid, inherit); |
| } |
| if (!error) |
| fsnotify_mkdir(dir, dentry); |
| out_up_read: |
| up_read(&fs_info->subvol_sem); |
| out_dput: |
| dput(dentry); |
| out_unlock: |
| inode_unlock(dir); |
| return error; |
| } |
| |
| /* |
| * When we're defragging a range, we don't want to kick it off again |
| * if it is really just waiting for delalloc to send it down. |
| * If we find a nice big extent or delalloc range for the bytes in the |
| * file you want to defrag, we return 0 to let you know to skip this |
| * part of the file |
| */ |
| static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) |
| { |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em = NULL; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| u64 end; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); |
| read_unlock(&em_tree->lock); |
| |
| if (em) { |
| end = extent_map_end(em); |
| free_extent_map(em); |
| if (end - offset > thresh) |
| return 0; |
| } |
| /* if we already have a nice delalloc here, just stop */ |
| thresh /= 2; |
| end = count_range_bits(io_tree, &offset, offset + thresh, |
| thresh, EXTENT_DELALLOC, 1); |
| if (end >= thresh) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * helper function to walk through a file and find extents |
| * newer than a specific transid, and smaller than thresh. |
| * |
| * This is used by the defragging code to find new and small |
| * extents |
| */ |
| static int find_new_extents(struct btrfs_root *root, |
| struct inode *inode, u64 newer_than, |
| u64 *off, u32 thresh) |
| { |
| struct btrfs_path *path; |
| struct btrfs_key min_key; |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *extent; |
| int type; |
| int ret; |
| u64 ino = btrfs_ino(BTRFS_I(inode)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| min_key.objectid = ino; |
| min_key.type = BTRFS_EXTENT_DATA_KEY; |
| min_key.offset = *off; |
| |
| while (1) { |
| ret = btrfs_search_forward(root, &min_key, path, newer_than); |
| if (ret != 0) |
| goto none; |
| process_slot: |
| if (min_key.objectid != ino) |
| goto none; |
| if (min_key.type != BTRFS_EXTENT_DATA_KEY) |
| goto none; |
| |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| |
| type = btrfs_file_extent_type(leaf, extent); |
| if (type == BTRFS_FILE_EXTENT_REG && |
| btrfs_file_extent_num_bytes(leaf, extent) < thresh && |
| check_defrag_in_cache(inode, min_key.offset, thresh)) { |
| *off = min_key.offset; |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| path->slots[0]++; |
| if (path->slots[0] < btrfs_header_nritems(leaf)) { |
| btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); |
| goto process_slot; |
| } |
| |
| if (min_key.offset == (u64)-1) |
| goto none; |
| |
| min_key.offset++; |
| btrfs_release_path(path); |
| } |
| none: |
| btrfs_free_path(path); |
| return -ENOENT; |
| } |
| |
| static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) |
| { |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em; |
| u64 len = PAGE_SIZE; |
| |
| /* |
| * hopefully we have this extent in the tree already, try without |
| * the full extent lock |
| */ |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| struct extent_state *cached = NULL; |
| u64 end = start + len - 1; |
| |
| /* get the big lock and read metadata off disk */ |
| lock_extent_bits(io_tree, start, end, &cached); |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); |
| unlock_extent_cached(io_tree, start, end, &cached); |
| |
| if (IS_ERR(em)) |
| return NULL; |
| } |
| |
| return em; |
| } |
| |
| static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) |
| { |
| struct extent_map *next; |
| bool ret = true; |
| |
| /* this is the last extent */ |
| if (em->start + em->len >= i_size_read(inode)) |
| return false; |
| |
| next = defrag_lookup_extent(inode, em->start + em->len); |
| if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) |
| ret = false; |
| else if ((em->block_start + em->block_len == next->block_start) && |
| (em->block_len > SZ_128K && next->block_len > SZ_128K)) |
| ret = false; |
| |
| free_extent_map(next); |
| return ret; |
| } |
| |
| static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, |
| u64 *last_len, u64 *skip, u64 *defrag_end, |
| int compress) |
| { |
| struct extent_map *em; |
| int ret = 1; |
| bool next_mergeable = true; |
| bool prev_mergeable = true; |
| |
| /* |
| * make sure that once we start defragging an extent, we keep on |
| * defragging it |
| */ |
| if (start < *defrag_end) |
| return 1; |
| |
| *skip = 0; |
| |
| em = defrag_lookup_extent(inode, start); |
| if (!em) |
| return 0; |
| |
| /* this will cover holes, and inline extents */ |
| if (em->block_start >= EXTENT_MAP_LAST_BYTE) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (!*defrag_end) |
| prev_mergeable = false; |
| |
| next_mergeable = defrag_check_next_extent(inode, em); |
| /* |
| * we hit a real extent, if it is big or the next extent is not a |
| * real extent, don't bother defragging it |
| */ |
| if (!compress && (*last_len == 0 || *last_len >= thresh) && |
| (em->len >= thresh || (!next_mergeable && !prev_mergeable))) |
| ret = 0; |
| out: |
| /* |
| * last_len ends up being a counter of how many bytes we've defragged. |
| * every time we choose not to defrag an extent, we reset *last_len |
| * so that the next tiny extent will force a defrag. |
| * |
| * The end result of this is that tiny extents before a single big |
| * extent will force at least part of that big extent to be defragged. |
| */ |
| if (ret) { |
| *defrag_end = extent_map_end(em); |
| } else { |
| *last_len = 0; |
| *skip = extent_map_end(em); |
| *defrag_end = 0; |
| } |
| |
| free_extent_map(em); |
| return ret; |
| } |
| |
| /* |
| * it doesn't do much good to defrag one or two pages |
| * at a time. This pulls in a nice chunk of pages |
| * to COW and defrag. |
| * |
| * It also makes sure the delalloc code has enough |
| * dirty data to avoid making new small extents as part |
| * of the defrag |
| * |
| * It's a good idea to start RA on this range |
| * before calling this. |
| */ |
| static int cluster_pages_for_defrag(struct inode *inode, |
| struct page **pages, |
| unsigned long start_index, |
| unsigned long num_pages) |
| { |
| unsigned long file_end; |
| u64 isize = i_size_read(inode); |
| u64 page_start; |
| u64 page_end; |
| u64 page_cnt; |
| int ret; |
| int i; |
| int i_done; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_io_tree *tree; |
| struct extent_changeset *data_reserved = NULL; |
| gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); |
| |
| file_end = (isize - 1) >> PAGE_SHIFT; |
| if (!isize || start_index > file_end) |
| return 0; |
| |
| page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); |
| |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, |
| start_index << PAGE_SHIFT, |
| page_cnt << PAGE_SHIFT); |
| if (ret) |
| return ret; |
| i_done = 0; |
| tree = &BTRFS_I(inode)->io_tree; |
| |
| /* step one, lock all the pages */ |
| for (i = 0; i < page_cnt; i++) { |
| struct page *page; |
| again: |
| page = find_or_create_page(inode->i_mapping, |
| start_index + i, mask); |
| if (!page) |
| break; |
| |
| page_start = page_offset(page); |
| page_end = page_start + PAGE_SIZE - 1; |
| while (1) { |
| lock_extent_bits(tree, page_start, page_end, |
| &cached_state); |
| ordered = btrfs_lookup_ordered_extent(inode, |
| page_start); |
| unlock_extent_cached(tree, page_start, page_end, |
| &cached_state); |
| if (!ordered) |
| break; |
| |
| unlock_page(page); |
| btrfs_start_ordered_extent(inode, ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| lock_page(page); |
| /* |
| * we unlocked the page above, so we need check if |
| * it was released or not. |
| */ |
| if (page->mapping != inode->i_mapping) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| } |
| |
| if (!PageUptodate(page)) { |
| btrfs_readpage(NULL, page); |
| lock_page(page); |
| if (!PageUptodate(page)) { |
| unlock_page(page); |
| put_page(page); |
| ret = -EIO; |
| break; |
| } |
| } |
| |
| if (page->mapping != inode->i_mapping) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| |
| pages[i] = page; |
| i_done++; |
| } |
| if (!i_done || ret) |
| goto out; |
| |
| if (!(inode->i_sb->s_flags & SB_ACTIVE)) |
| goto out; |
| |
| /* |
| * so now we have a nice long stream of locked |
| * and up to date pages, lets wait on them |
| */ |
| for (i = 0; i < i_done; i++) |
| wait_on_page_writeback(pages[i]); |
| |
| page_start = page_offset(pages[0]); |
| page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; |
| |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, |
| page_start, page_end - 1, &cached_state); |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, |
| page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, |
| &cached_state); |
| |
| if (i_done != page_cnt) { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->outstanding_extents++; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| btrfs_delalloc_release_space(inode, data_reserved, |
| start_index << PAGE_SHIFT, |
| (page_cnt - i_done) << PAGE_SHIFT, true); |
| } |
| |
| |
| set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, |
| &cached_state); |
| |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, |
| page_start, page_end - 1, &cached_state); |
| |
| for (i = 0; i < i_done; i++) { |
| clear_page_dirty_for_io(pages[i]); |
| ClearPageChecked(pages[i]); |
| set_page_extent_mapped(pages[i]); |
| set_page_dirty(pages[i]); |
| unlock_page(pages[i]); |
| put_page(pages[i]); |
| } |
| btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, |
| false); |
| extent_changeset_free(data_reserved); |
| return i_done; |
| out: |
| for (i = 0; i < i_done; i++) { |
| unlock_page(pages[i]); |
| put_page(pages[i]); |
| } |
| btrfs_delalloc_release_space(inode, data_reserved, |
| start_index << PAGE_SHIFT, |
| page_cnt << PAGE_SHIFT, true); |
| btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, |
| true); |
| extent_changeset_free(data_reserved); |
| return ret; |
| |
| } |
| |
| int btrfs_defrag_file(struct inode *inode, struct file *file, |
| struct btrfs_ioctl_defrag_range_args *range, |
| u64 newer_than, unsigned long max_to_defrag) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct file_ra_state *ra = NULL; |
| unsigned long last_index; |
| u64 isize = i_size_read(inode); |
| u64 last_len = 0; |
| u64 skip = 0; |
| u64 defrag_end = 0; |
| u64 newer_off = range->start; |
| unsigned long i; |
| unsigned long ra_index = 0; |
| int ret; |
| int defrag_count = 0; |
| int compress_type = BTRFS_COMPRESS_ZLIB; |
| u32 extent_thresh = range->extent_thresh; |
| unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; |
| unsigned long cluster = max_cluster; |
| u64 new_align = ~((u64)SZ_128K - 1); |
| struct page **pages = NULL; |
| bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; |
| |
| if (isize == 0) |
| return 0; |
| |
| if (range->start >= isize) |
| return -EINVAL; |
| |
| if (do_compress) { |
| if (range->compress_type > BTRFS_COMPRESS_TYPES) |
| return -EINVAL; |
| if (range->compress_type) |
| compress_type = range->compress_type; |
| } |
| |
| if (extent_thresh == 0) |
| extent_thresh = SZ_256K; |
| |
| /* |
| * If we were not given a file, allocate a readahead context. As |
| * readahead is just an optimization, defrag will work without it so |
| * we don't error out. |
| */ |
| if (!file) { |
| ra = kzalloc(sizeof(*ra), GFP_KERNEL); |
| if (ra) |
| file_ra_state_init(ra, inode->i_mapping); |
| } else { |
| ra = &file->f_ra; |
| } |
| |
| pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); |
| if (!pages) { |
| ret = -ENOMEM; |
| goto out_ra; |
| } |
| |
| /* find the last page to defrag */ |
| if (range->start + range->len > range->start) { |
| last_index = min_t(u64, isize - 1, |
| range->start + range->len - 1) >> PAGE_SHIFT; |
| } else { |
| last_index = (isize - 1) >> PAGE_SHIFT; |
| } |
| |
| if (newer_than) { |
| ret = find_new_extents(root, inode, newer_than, |
| &newer_off, SZ_64K); |
| if (!ret) { |
| range->start = newer_off; |
| /* |
| * we always align our defrag to help keep |
| * the extents in the file evenly spaced |
| */ |
| i = (newer_off & new_align) >> PAGE_SHIFT; |
| } else |
| goto out_ra; |
| } else { |
| i = range->start >> PAGE_SHIFT; |
| } |
| if (!max_to_defrag) |
| max_to_defrag = last_index - i + 1; |
| |
| /* |
| * make writeback starts from i, so the defrag range can be |
| * written sequentially. |
| */ |
| if (i < inode->i_mapping->writeback_index) |
| inode->i_mapping->writeback_index = i; |
| |
| while (i <= last_index && defrag_count < max_to_defrag && |
| (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { |
| /* |
| * make sure we stop running if someone unmounts |
| * the FS |
| */ |
| if (!(inode->i_sb->s_flags & SB_ACTIVE)) |
| break; |
| |
| if (btrfs_defrag_cancelled(fs_info)) { |
| btrfs_debug(fs_info, "defrag_file cancelled"); |
| ret = -EAGAIN; |
| break; |
| } |
| |
| if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, |
| extent_thresh, &last_len, &skip, |
| &defrag_end, do_compress)){ |
| unsigned long next; |
| /* |
| * the should_defrag function tells us how much to skip |
| * bump our counter by the suggested amount |
| */ |
| next = DIV_ROUND_UP(skip, PAGE_SIZE); |
| i = max(i + 1, next); |
| continue; |
| } |
| |
| if (!newer_than) { |
| cluster = (PAGE_ALIGN(defrag_end) >> |
| PAGE_SHIFT) - i; |
| cluster = min(cluster, max_cluster); |
| } else { |
| cluster = max_cluster; |
| } |
| |
| if (i + cluster > ra_index) { |
| ra_index = max(i, ra_index); |
| if (ra) |
| page_cache_sync_readahead(inode->i_mapping, ra, |
| file, ra_index, cluster); |
| ra_index += cluster; |
| } |
| |
| inode_lock(inode); |
| if (do_compress) |
| BTRFS_I(inode)->defrag_compress = compress_type; |
| ret = cluster_pages_for_defrag(inode, pages, i, cluster); |
| if (ret < 0) { |
| inode_unlock(inode); |
| goto out_ra; |
| } |
| |
| defrag_count += ret; |
| balance_dirty_pages_ratelimited(inode->i_mapping); |
| inode_unlock(inode); |
| |
| if (newer_than) { |
| if (newer_off == (u64)-1) |
| break; |
| |
| if (ret > 0) |
| i += ret; |
| |
| newer_off = max(newer_off + 1, |
| (u64)i << PAGE_SHIFT); |
| |
| ret = find_new_extents(root, inode, newer_than, |
| &newer_off, SZ_64K); |
| if (!ret) { |
| range->start = newer_off; |
| i = (newer_off & new_align) >> PAGE_SHIFT; |
| } else { |
| break; |
| } |
| } else { |
| if (ret > 0) { |
| i += ret; |
| last_len += ret << PAGE_SHIFT; |
| } else { |
| i++; |
| last_len = 0; |
| } |
| } |
| } |
| |
| if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| } |
| |
| if (range->compress_type == BTRFS_COMPRESS_LZO) { |
| btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); |
| } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { |
| btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); |
| } |
| |
| ret = defrag_count; |
| |
| out_ra: |
| if (do_compress) { |
| inode_lock(inode); |
| BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; |
| inode_unlock(inode); |
| } |
| if (!file) |
| kfree(ra); |
| kfree(pages); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_resize(struct file *file, |
| void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| u64 new_size; |
| u64 old_size; |
| u64 devid = 1; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_vol_args *vol_args; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device = NULL; |
| char *sizestr; |
| char *retptr; |
| char *devstr = NULL; |
| int ret = 0; |
| int mod = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { |
| mnt_drop_write_file(file); |
| return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| } |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto out; |
| } |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| |
| sizestr = vol_args->name; |
| devstr = strchr(sizestr, ':'); |
| if (devstr) { |
| sizestr = devstr + 1; |
| *devstr = '\0'; |
| devstr = vol_args->name; |
| ret = kstrtoull(devstr, 10, &devid); |
| if (ret) |
| goto out_free; |
| if (!devid) { |
| ret = -EINVAL; |
| goto out_free; |
| } |
| btrfs_info(fs_info, "resizing devid %llu", devid); |
| } |
| |
| device = btrfs_find_device(fs_info, devid, NULL, NULL); |
| if (!device) { |
| btrfs_info(fs_info, "resizer unable to find device %llu", |
| devid); |
| ret = -ENODEV; |
| goto out_free; |
| } |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| btrfs_info(fs_info, |
| "resizer unable to apply on readonly device %llu", |
| devid); |
| ret = -EPERM; |
| goto out_free; |
| } |
| |
| if (!strcmp(sizestr, "max")) |
| new_size = device->bdev->bd_inode->i_size; |
| else { |
| if (sizestr[0] == '-') { |
| mod = -1; |
| sizestr++; |
| } else if (sizestr[0] == '+') { |
| mod = 1; |
| sizestr++; |
| } |
| new_size = memparse(sizestr, &retptr); |
| if (*retptr != '\0' || new_size == 0) { |
| ret = -EINVAL; |
| goto out_free; |
| } |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = -EPERM; |
| goto out_free; |
| } |
| |
| old_size = btrfs_device_get_total_bytes(device); |
| |
| if (mod < 0) { |
| if (new_size > old_size) { |
| ret = -EINVAL; |
| goto out_free; |
| } |
| new_size = old_size - new_size; |
| } else if (mod > 0) { |
| if (new_size > ULLONG_MAX - old_size) { |
| ret = -ERANGE; |
| goto out_free; |
| } |
| new_size = old_size + new_size; |
| } |
| |
| if (new_size < SZ_256M) { |
| ret = -EINVAL; |
| goto out_free; |
| } |
| if (new_size > device->bdev->bd_inode->i_size) { |
| ret = -EFBIG; |
| goto out_free; |
| } |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| |
| btrfs_info_in_rcu(fs_info, "new size for %s is %llu", |
| rcu_str_deref(device->name), new_size); |
| |
| if (new_size > old_size) { |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_free; |
| } |
| ret = btrfs_grow_device(trans, device, new_size); |
| btrfs_commit_transaction(trans); |
| } else if (new_size < old_size) { |
| ret = btrfs_shrink_device(device, new_size); |
| } /* equal, nothing need to do */ |
| |
| out_free: |
| kfree(vol_args); |
| out: |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_create_transid(struct file *file, |
| const char *name, unsigned long fd, int subvol, |
| u64 *transid, bool readonly, |
| struct btrfs_qgroup_inherit *inherit) |
| { |
| int namelen; |
| int ret = 0; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| namelen = strlen(name); |
| if (strchr(name, '/')) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| if (name[0] == '.' && |
| (namelen == 1 || (name[1] == '.' && namelen == 2))) { |
| ret = -EEXIST; |
| goto out_drop_write; |
| } |
| |
| if (subvol) { |
| ret = btrfs_mksubvol(&file->f_path, name, namelen, |
| NULL, transid, readonly, inherit); |
| } else { |
| struct fd src = fdget(fd); |
| struct inode *src_inode; |
| if (!src.file) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| src_inode = file_inode(src.file); |
| if (src_inode->i_sb != file_inode(file)->i_sb) { |
| btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, |
| "Snapshot src from another FS"); |
| ret = -EXDEV; |
| } else if (!inode_owner_or_capable(src_inode)) { |
| /* |
| * Subvolume creation is not restricted, but snapshots |
| * are limited to own subvolumes only |
| */ |
| ret = -EPERM; |
| } else { |
| ret = btrfs_mksubvol(&file->f_path, name, namelen, |
| BTRFS_I(src_inode)->root, |
| transid, readonly, inherit); |
| } |
| fdput(src); |
| } |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_create(struct file *file, |
| void __user *arg, int subvol) |
| { |
| struct btrfs_ioctl_vol_args *vol_args; |
| int ret; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| |
| ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, |
| vol_args->fd, subvol, |
| NULL, false, NULL); |
| |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_create_v2(struct file *file, |
| void __user *arg, int subvol) |
| { |
| struct btrfs_ioctl_vol_args_v2 *vol_args; |
| int ret; |
| u64 transid = 0; |
| u64 *ptr = NULL; |
| bool readonly = false; |
| struct btrfs_qgroup_inherit *inherit = NULL; |
| |
| if (!S_ISDIR(file_inode(file)->i_mode)) |
| return -ENOTDIR; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; |
| |
| if (vol_args->flags & |
| ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | |
| BTRFS_SUBVOL_QGROUP_INHERIT)) { |
| ret = -EOPNOTSUPP; |
| goto free_args; |
| } |
| |
| if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) |
| ptr = &transid; |
| if (vol_args->flags & BTRFS_SUBVOL_RDONLY) |
| readonly = true; |
| if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { |
| if (vol_args->size > PAGE_SIZE) { |
| ret = -EINVAL; |
| goto free_args; |
| } |
| inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); |
| if (IS_ERR(inherit)) { |
| ret = PTR_ERR(inherit); |
| goto free_args; |
| } |
| } |
| |
| ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, |
| vol_args->fd, subvol, ptr, |
| readonly, inherit); |
| if (ret) |
| goto free_inherit; |
| |
| if (ptr && copy_to_user(arg + |
| offsetof(struct btrfs_ioctl_vol_args_v2, |
| transid), |
| ptr, sizeof(*ptr))) |
| ret = -EFAULT; |
| |
| free_inherit: |
| kfree(inherit); |
| free_args: |
| kfree(vol_args); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_subvol_getflags(struct file *file, |
| void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret = 0; |
| u64 flags = 0; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) |
| return -EINVAL; |
| |
| down_read(&fs_info->subvol_sem); |
| if (btrfs_root_readonly(root)) |
| flags |= BTRFS_SUBVOL_RDONLY; |
| up_read(&fs_info->subvol_sem); |
| |
| if (copy_to_user(arg, &flags, sizeof(flags))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_subvol_setflags(struct file *file, |
| void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| u64 root_flags; |
| u64 flags; |
| int ret = 0; |
| |
| if (!inode_owner_or_capable(inode)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| if (copy_from_user(&flags, arg, sizeof(flags))) { |
| ret = -EFAULT; |
| goto out_drop_write; |
| } |
| |
| if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { |
| ret = -EINVAL; |
| goto out_drop_write; |
| } |
| |
| if (flags & ~BTRFS_SUBVOL_RDONLY) { |
| ret = -EOPNOTSUPP; |
| goto out_drop_write; |
| } |
| |
| down_write(&fs_info->subvol_sem); |
| |
| /* nothing to do */ |
| if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) |
| goto out_drop_sem; |
| |
| root_flags = btrfs_root_flags(&root->root_item); |
| if (flags & BTRFS_SUBVOL_RDONLY) { |
| btrfs_set_root_flags(&root->root_item, |
| root_flags | BTRFS_ROOT_SUBVOL_RDONLY); |
| } else { |
| /* |
| * Block RO -> RW transition if this subvolume is involved in |
| * send |
| */ |
| spin_lock(&root->root_item_lock); |
| if (root->send_in_progress == 0) { |
| btrfs_set_root_flags(&root->root_item, |
| root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); |
| spin_unlock(&root->root_item_lock); |
| } else { |
| spin_unlock(&root->root_item_lock); |
| btrfs_warn(fs_info, |
| "Attempt to set subvolume %llu read-write during send", |
| root->root_key.objectid); |
| ret = -EPERM; |
| goto out_drop_sem; |
| } |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_reset; |
| } |
| |
| ret = btrfs_update_root(trans, fs_info->tree_root, |
| &root->root_key, &root->root_item); |
| if (ret < 0) { |
| btrfs_end_transaction(trans); |
| goto out_reset; |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| out_reset: |
| if (ret) |
| btrfs_set_root_flags(&root->root_item, root_flags); |
| out_drop_sem: |
| up_write(&fs_info->subvol_sem); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| return ret; |
| } |
| |
| static noinline int key_in_sk(struct btrfs_key *key, |
| struct btrfs_ioctl_search_key *sk) |
| { |
| struct btrfs_key test; |
| int ret; |
| |
| test.objectid = sk->min_objectid; |
| test.type = sk->min_type; |
| test.offset = sk->min_offset; |
| |
| ret = btrfs_comp_cpu_keys(key, &test); |
| if (ret < 0) |
| return 0; |
| |
| test.objectid = sk->max_objectid; |
| test.type = sk->max_type; |
| test.offset = sk->max_offset; |
| |
| ret = btrfs_comp_cpu_keys(key, &test); |
| if (ret > 0) |
| return 0; |
| return 1; |
| } |
| |
| static noinline int copy_to_sk(struct btrfs_path *path, |
| struct btrfs_key *key, |
| struct btrfs_ioctl_search_key *sk, |
| size_t *buf_size, |
| char __user *ubuf, |
| unsigned long *sk_offset, |
| int *num_found) |
| { |
| u64 found_transid; |
| struct extent_buffer *leaf; |
| struct btrfs_ioctl_search_header sh; |
| struct btrfs_key test; |
| unsigned long item_off; |
| unsigned long item_len; |
| int nritems; |
| int i; |
| int slot; |
| int ret = 0; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| if (btrfs_header_generation(leaf) > sk->max_transid) { |
| i = nritems; |
| goto advance_key; |
| } |
| found_transid = btrfs_header_generation(leaf); |
| |
| for (i = slot; i < nritems; i++) { |
| item_off = btrfs_item_ptr_offset(leaf, i); |
| item_len = btrfs_item_size_nr(leaf, i); |
| |
| btrfs_item_key_to_cpu(leaf, key, i); |
| if (!key_in_sk(key, sk)) |
| continue; |
| |
| if (sizeof(sh) + item_len > *buf_size) { |
| if (*num_found) { |
| ret = 1; |
| goto out; |
| } |
| |
| /* |
| * return one empty item back for v1, which does not |
| * handle -EOVERFLOW |
| */ |
| |
| *buf_size = sizeof(sh) + item_len; |
| item_len = 0; |
| ret = -EOVERFLOW; |
| } |
| |
| if (sizeof(sh) + item_len + *sk_offset > *buf_size) { |
| ret = 1; |
| goto out; |
| } |
| |
| sh.objectid = key->objectid; |
| sh.offset = key->offset; |
| sh.type = key->type; |
| sh.len = item_len; |
| sh.transid = found_transid; |
| |
| /* copy search result header */ |
| if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| *sk_offset += sizeof(sh); |
| |
| if (item_len) { |
| char __user *up = ubuf + *sk_offset; |
| /* copy the item */ |
| if (read_extent_buffer_to_user(leaf, up, |
| item_off, item_len)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| *sk_offset += item_len; |
| } |
| (*num_found)++; |
| |
| if (ret) /* -EOVERFLOW from above */ |
| goto out; |
| |
| if (*num_found >= sk->nr_items) { |
| ret = 1; |
| goto out; |
| } |
| } |
| advance_key: |
| ret = 0; |
| test.objectid = sk->max_objectid; |
| test.type = sk->max_type; |
| test.offset = sk->max_offset; |
| if (btrfs_comp_cpu_keys(key, &test) >= 0) |
| ret = 1; |
| else if (key->offset < (u64)-1) |
| key->offset++; |
| else if (key->type < (u8)-1) { |
| key->offset = 0; |
| key->type++; |
| } else if (key->objectid < (u64)-1) { |
| key->offset = 0; |
| key->type = 0; |
| key->objectid++; |
| } else |
| ret = 1; |
| out: |
| /* |
| * 0: all items from this leaf copied, continue with next |
| * 1: * more items can be copied, but unused buffer is too small |
| * * all items were found |
| * Either way, it will stops the loop which iterates to the next |
| * leaf |
| * -EOVERFLOW: item was to large for buffer |
| * -EFAULT: could not copy extent buffer back to userspace |
| */ |
| return ret; |
| } |
| |
| static noinline int search_ioctl(struct inode *inode, |
| struct btrfs_ioctl_search_key *sk, |
| size_t *buf_size, |
| char __user *ubuf) |
| { |
| struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| int ret; |
| int num_found = 0; |
| unsigned long sk_offset = 0; |
| |
| if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { |
| *buf_size = sizeof(struct btrfs_ioctl_search_header); |
| return -EOVERFLOW; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| if (sk->tree_id == 0) { |
| /* search the root of the inode that was passed */ |
| root = BTRFS_I(inode)->root; |
| } else { |
| key.objectid = sk->tree_id; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = btrfs_read_fs_root_no_name(info, &key); |
| if (IS_ERR(root)) { |
| btrfs_free_path(path); |
| return PTR_ERR(root); |
| } |
| } |
| |
| key.objectid = sk->min_objectid; |
| key.type = sk->min_type; |
| key.offset = sk->min_offset; |
| |
| while (1) { |
| ret = btrfs_search_forward(root, &key, path, sk->min_transid); |
| if (ret != 0) { |
| if (ret > 0) |
| ret = 0; |
| goto err; |
| } |
| ret = copy_to_sk(path, &key, sk, buf_size, ubuf, |
| &sk_offset, &num_found); |
| btrfs_release_path(path); |
| if (ret) |
| break; |
| |
| } |
| if (ret > 0) |
| ret = 0; |
| err: |
| sk->nr_items = num_found; |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_tree_search(struct file *file, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_search_args __user *uargs; |
| struct btrfs_ioctl_search_key sk; |
| struct inode *inode; |
| int ret; |
| size_t buf_size; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| uargs = (struct btrfs_ioctl_search_args __user *)argp; |
| |
| if (copy_from_user(&sk, &uargs->key, sizeof(sk))) |
| return -EFAULT; |
| |
| buf_size = sizeof(uargs->buf); |
| |
| inode = file_inode(file); |
| ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); |
| |
| /* |
| * In the origin implementation an overflow is handled by returning a |
| * search header with a len of zero, so reset ret. |
| */ |
| if (ret == -EOVERFLOW) |
| ret = 0; |
| |
| if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_tree_search_v2(struct file *file, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_search_args_v2 __user *uarg; |
| struct btrfs_ioctl_search_args_v2 args; |
| struct inode *inode; |
| int ret; |
| size_t buf_size; |
| const size_t buf_limit = SZ_16M; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| /* copy search header and buffer size */ |
| uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; |
| if (copy_from_user(&args, uarg, sizeof(args))) |
| return -EFAULT; |
| |
| buf_size = args.buf_size; |
| |
| /* limit result size to 16MB */ |
| if (buf_size > buf_limit) |
| buf_size = buf_limit; |
| |
| inode = file_inode(file); |
| ret = search_ioctl(inode, &args.key, &buf_size, |
| (char __user *)(&uarg->buf[0])); |
| if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) |
| ret = -EFAULT; |
| else if (ret == -EOVERFLOW && |
| copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| /* |
| * Search INODE_REFs to identify path name of 'dirid' directory |
| * in a 'tree_id' tree. and sets path name to 'name'. |
| */ |
| static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, |
| u64 tree_id, u64 dirid, char *name) |
| { |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| char *ptr; |
| int ret = -1; |
| int slot; |
| int len; |
| int total_len = 0; |
| struct btrfs_inode_ref *iref; |
| struct extent_buffer *l; |
| struct btrfs_path *path; |
| |
| if (dirid == BTRFS_FIRST_FREE_OBJECTID) { |
| name[0]='\0'; |
| return 0; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; |
| |
| key.objectid = tree_id; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = btrfs_read_fs_root_no_name(info, &key); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| |
| key.objectid = dirid; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { |
| ret = btrfs_previous_item(root, path, dirid, |
| BTRFS_INODE_REF_KEY); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); |
| len = btrfs_inode_ref_name_len(l, iref); |
| ptr -= len + 1; |
| total_len += len + 1; |
| if (ptr < name) { |
| ret = -ENAMETOOLONG; |
| goto out; |
| } |
| |
| *(ptr + len) = '/'; |
| read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); |
| |
| if (key.offset == BTRFS_FIRST_FREE_OBJECTID) |
| break; |
| |
| btrfs_release_path(path); |
| key.objectid = key.offset; |
| key.offset = (u64)-1; |
| dirid = key.objectid; |
| } |
| memmove(name, ptr, total_len); |
| name[total_len] = '\0'; |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_search_path_in_tree_user(struct inode *inode, |
| struct btrfs_ioctl_ino_lookup_user_args *args) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct super_block *sb = inode->i_sb; |
| struct btrfs_key upper_limit = BTRFS_I(inode)->location; |
| u64 treeid = BTRFS_I(inode)->root->root_key.objectid; |
| u64 dirid = args->dirid; |
| unsigned long item_off; |
| unsigned long item_len; |
| struct btrfs_inode_ref *iref; |
| struct btrfs_root_ref *rref; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key, key2; |
| struct extent_buffer *leaf; |
| struct inode *temp_inode; |
| char *ptr; |
| int slot; |
| int len; |
| int total_len = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * If the bottom subvolume does not exist directly under upper_limit, |
| * construct the path in from the bottom up. |
| */ |
| if (dirid != upper_limit.objectid) { |
| ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; |
| |
| key.objectid = treeid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| |
| key.objectid = dirid; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = btrfs_previous_item(root, path, dirid, |
| BTRFS_INODE_REF_KEY); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); |
| len = btrfs_inode_ref_name_len(leaf, iref); |
| ptr -= len + 1; |
| total_len += len + 1; |
| if (ptr < args->path) { |
| ret = -ENAMETOOLONG; |
| goto out; |
| } |
| |
| *(ptr + len) = '/'; |
| read_extent_buffer(leaf, ptr, |
| (unsigned long)(iref + 1), len); |
| |
| /* Check the read+exec permission of this directory */ |
| ret = btrfs_previous_item(root, path, dirid, |
| BTRFS_INODE_ITEM_KEY); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key2, slot); |
| if (key2.objectid != dirid) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| temp_inode = btrfs_iget(sb, &key2, root, NULL); |
| if (IS_ERR(temp_inode)) { |
| ret = PTR_ERR(temp_inode); |
| goto out; |
| } |
| ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); |
| iput(temp_inode); |
| if (ret) { |
| ret = -EACCES; |
| goto out; |
| } |
| |
| if (key.offset == upper_limit.objectid) |
| break; |
| if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EACCES; |
| goto out; |
| } |
| |
| btrfs_release_path(path); |
| key.objectid = key.offset; |
| key.offset = (u64)-1; |
| dirid = key.objectid; |
| } |
| |
| memmove(args->path, ptr, total_len); |
| args->path[total_len] = '\0'; |
| btrfs_release_path(path); |
| } |
| |
| /* Get the bottom subvolume's name from ROOT_REF */ |
| root = fs_info->tree_root; |
| key.objectid = treeid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = args->treeid; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| item_off = btrfs_item_ptr_offset(leaf, slot); |
| item_len = btrfs_item_size_nr(leaf, slot); |
| /* Check if dirid in ROOT_REF corresponds to passed dirid */ |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Copy subvolume's name */ |
| item_off += sizeof(struct btrfs_root_ref); |
| item_len -= sizeof(struct btrfs_root_ref); |
| read_extent_buffer(leaf, args->name, item_off, item_len); |
| args->name[item_len] = 0; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_ino_lookup(struct file *file, |
| void __user *argp) |
| { |
| struct btrfs_ioctl_ino_lookup_args *args; |
| struct inode *inode; |
| int ret = 0; |
| |
| args = memdup_user(argp, sizeof(*args)); |
| if (IS_ERR(args)) |
| return PTR_ERR(args); |
| |
| inode = file_inode(file); |
| |
| /* |
| * Unprivileged query to obtain the containing subvolume root id. The |
| * path is reset so it's consistent with btrfs_search_path_in_tree. |
| */ |
| if (args->treeid == 0) |
| args->treeid = BTRFS_I(inode)->root->root_key.objectid; |
| |
| if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { |
| args->name[0] = 0; |
| goto out; |
| } |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, |
| args->treeid, args->objectid, |
| args->name); |
| |
| out: |
| if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) |
| ret = -EFAULT; |
| |
| kfree(args); |
| return ret; |
| } |
| |
| /* |
| * Version of ino_lookup ioctl (unprivileged) |
| * |
| * The main differences from ino_lookup ioctl are: |
| * |
| * 1. Read + Exec permission will be checked using inode_permission() during |
| * path construction. -EACCES will be returned in case of failure. |
| * 2. Path construction will be stopped at the inode number which corresponds |
| * to the fd with which this ioctl is called. If constructed path does not |
| * exist under fd's inode, -EACCES will be returned. |
| * 3. The name of bottom subvolume is also searched and filled. |
| */ |
| static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) |
| { |
| struct btrfs_ioctl_ino_lookup_user_args *args; |
| struct inode *inode; |
| int ret; |
| |
| args = memdup_user(argp, sizeof(*args)); |
| if (IS_ERR(args)) |
| return PTR_ERR(args); |
| |
| inode = file_inode(file); |
| |
| if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && |
| BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { |
| /* |
| * The subvolume does not exist under fd with which this is |
| * called |
| */ |
| kfree(args); |
| return -EACCES; |
| } |
| |
| ret = btrfs_search_path_in_tree_user(inode, args); |
| |
| if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) |
| ret = -EFAULT; |
| |
| kfree(args); |
| return ret; |
| } |
| |
| /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ |
| static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) |
| { |
| struct btrfs_ioctl_get_subvol_info_args *subvol_info; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root_item *root_item; |
| struct btrfs_root_ref *rref; |
| struct extent_buffer *leaf; |
| unsigned long item_off; |
| unsigned long item_len; |
| struct inode *inode; |
| int slot; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); |
| if (!subvol_info) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| inode = file_inode(file); |
| fs_info = BTRFS_I(inode)->root->fs_info; |
| |
| /* Get root_item of inode's subvolume */ |
| key.objectid = BTRFS_I(inode)->root->root_key.objectid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out; |
| } |
| root_item = &root->root_item; |
| |
| subvol_info->treeid = key.objectid; |
| |
| subvol_info->generation = btrfs_root_generation(root_item); |
| subvol_info->flags = btrfs_root_flags(root_item); |
| |
| memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); |
| memcpy(subvol_info->parent_uuid, root_item->parent_uuid, |
| BTRFS_UUID_SIZE); |
| memcpy(subvol_info->received_uuid, root_item->received_uuid, |
| BTRFS_UUID_SIZE); |
| |
| subvol_info->ctransid = btrfs_root_ctransid(root_item); |
| subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); |
| subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); |
| |
| subvol_info->otransid = btrfs_root_otransid(root_item); |
| subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); |
| subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); |
| |
| subvol_info->stransid = btrfs_root_stransid(root_item); |
| subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); |
| subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); |
| |
| subvol_info->rtransid = btrfs_root_rtransid(root_item); |
| subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); |
| subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); |
| |
| if (key.objectid != BTRFS_FS_TREE_OBJECTID) { |
| /* Search root tree for ROOT_BACKREF of this subvolume */ |
| root = fs_info->tree_root; |
| |
| key.type = BTRFS_ROOT_BACKREF_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid == subvol_info->treeid && |
| key.type == BTRFS_ROOT_BACKREF_KEY) { |
| subvol_info->parent_id = key.offset; |
| |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); |
| |
| item_off = btrfs_item_ptr_offset(leaf, slot) |
| + sizeof(struct btrfs_root_ref); |
| item_len = btrfs_item_size_nr(leaf, slot) |
| - sizeof(struct btrfs_root_ref); |
| read_extent_buffer(leaf, subvol_info->name, |
| item_off, item_len); |
| } else { |
| ret = -ENOENT; |
| goto out; |
| } |
| } |
| |
| if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) |
| ret = -EFAULT; |
| |
| out: |
| btrfs_free_path(path); |
| kzfree(subvol_info); |
| return ret; |
| } |
| |
| /* |
| * Return ROOT_REF information of the subvolume containing this inode |
| * except the subvolume name. |
| */ |
| static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) |
| { |
| struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; |
| struct btrfs_root_ref *rref; |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct extent_buffer *leaf; |
| struct inode *inode; |
| u64 objectid; |
| int slot; |
| int ret; |
| u8 found; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| rootrefs = memdup_user(argp, sizeof(*rootrefs)); |
| if (IS_ERR(rootrefs)) { |
| btrfs_free_path(path); |
| return PTR_ERR(rootrefs); |
| } |
| |
| inode = file_inode(file); |
| root = BTRFS_I(inode)->root->fs_info->tree_root; |
| objectid = BTRFS_I(inode)->root->root_key.objectid; |
| |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = rootrefs->min_treeid; |
| found = 0; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { |
| ret = 0; |
| goto out; |
| } |
| |
| if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { |
| ret = -EOVERFLOW; |
| goto out; |
| } |
| |
| rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); |
| rootrefs->rootref[found].treeid = key.offset; |
| rootrefs->rootref[found].dirid = |
| btrfs_root_ref_dirid(leaf, rref); |
| found++; |
| |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| |
| out: |
| if (!ret || ret == -EOVERFLOW) { |
| rootrefs->num_items = found; |
| /* update min_treeid for next search */ |
| if (found) |
| rootrefs->min_treeid = |
| rootrefs->rootref[found - 1].treeid + 1; |
| if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) |
| ret = -EFAULT; |
| } |
| |
| kfree(rootrefs); |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static noinline int btrfs_ioctl_snap_destroy(struct file *file, |
| void __user *arg) |
| { |
| struct dentry *parent = file->f_path.dentry; |
| struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); |
| struct dentry *dentry; |
| struct inode *dir = d_inode(parent); |
| struct inode *inode; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *dest = NULL; |
| struct btrfs_ioctl_vol_args *vol_args; |
| int namelen; |
| int err = 0; |
| |
| if (!S_ISDIR(dir->i_mode)) |
| return -ENOTDIR; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) |
| return PTR_ERR(vol_args); |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| namelen = strlen(vol_args->name); |
| if (strchr(vol_args->name, '/') || |
| strncmp(vol_args->name, "..", namelen) == 0) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = mnt_want_write_file(file); |
| if (err) |
| goto out; |
| |
| |
| err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); |
| if (err == -EINTR) |
| goto out_drop_write; |
| dentry = lookup_one_len(vol_args->name, parent, namelen); |
| if (IS_ERR(dentry)) { |
| err = PTR_ERR(dentry); |
| goto out_unlock_dir; |
| } |
| |
| if (d_really_is_negative(dentry)) { |
| err = -ENOENT; |
| goto out_dput; |
| } |
| |
| inode = d_inode(dentry); |
| dest = BTRFS_I(inode)->root; |
| if (!capable(CAP_SYS_ADMIN)) { |
| /* |
| * Regular user. Only allow this with a special mount |
| * option, when the user has write+exec access to the |
| * subvol root, and when rmdir(2) would have been |
| * allowed. |
| * |
| * Note that this is _not_ check that the subvol is |
| * empty or doesn't contain data that we wouldn't |
| * otherwise be able to delete. |
| * |
| * Users who want to delete empty subvols should try |
| * rmdir(2). |
| */ |
| err = -EPERM; |
| if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) |
| goto out_dput; |
| |
| /* |
| * Do not allow deletion if the parent dir is the same |
| * as the dir to be deleted. That means the ioctl |
| * must be called on the dentry referencing the root |
| * of the subvol, not a random directory contained |
| * within it. |
| */ |
| err = -EINVAL; |
| if (root == dest) |
| goto out_dput; |
| |
| err = inode_permission(inode, MAY_WRITE | MAY_EXEC); |
| if (err) |
| goto out_dput; |
| } |
| |
| /* check if subvolume may be deleted by a user */ |
| err = btrfs_may_delete(dir, dentry, 1); |
| if (err) |
| goto out_dput; |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| err = -EINVAL; |
| goto out_dput; |
| } |
| |
| inode_lock(inode); |
| err = btrfs_delete_subvolume(dir, dentry); |
| inode_unlock(inode); |
| if (!err) |
| d_delete(dentry); |
| |
| out_dput: |
| dput(dentry); |
| out_unlock_dir: |
| inode_unlock(dir); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| out: |
| kfree(vol_args); |
| return err; |
| } |
| |
| static int btrfs_ioctl_defrag(struct file *file, void __user *argp) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_defrag_range_args *range; |
| int ret; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (btrfs_root_readonly(root)) { |
| ret = -EROFS; |
| goto out; |
| } |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFDIR: |
| if (!capable(CAP_SYS_ADMIN)) { |
| ret = -EPERM; |
| goto out; |
| } |
| ret = btrfs_defrag_root(root); |
| break; |
| case S_IFREG: |
| /* |
| * Note that this does not check the file descriptor for write |
| * access. This prevents defragmenting executables that are |
| * running and allows defrag on files open in read-only mode. |
| */ |
| if (!capable(CAP_SYS_ADMIN) && |
| inode_permission(inode, MAY_WRITE)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| range = kzalloc(sizeof(*range), GFP_KERNEL); |
| if (!range) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (argp) { |
| if (copy_from_user(range, argp, |
| sizeof(*range))) { |
| ret = -EFAULT; |
| kfree(range); |
| goto out; |
| } |
| /* compression requires us to start the IO */ |
| if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { |
| range->flags |= BTRFS_DEFRAG_RANGE_START_IO; |
| range->extent_thresh = (u32)-1; |
| } |
| } else { |
| /* the rest are all set to zero by kzalloc */ |
| range->len = (u64)-1; |
| } |
| ret = btrfs_defrag_file(file_inode(file), file, |
| range, BTRFS_OLDEST_GENERATION, 0); |
| if (ret > 0) |
| ret = 0; |
| kfree(range); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| out: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) |
| { |
| struct btrfs_ioctl_vol_args *vol_args; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) |
| return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto out; |
| } |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| ret = btrfs_init_new_device(fs_info, vol_args->name); |
| |
| if (!ret) |
| btrfs_info(fs_info, "disk added %s", vol_args->name); |
| |
| kfree(vol_args); |
| out: |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_vol_args_v2 *vol_args; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto err_drop; |
| } |
| |
| /* Check for compatibility reject unknown flags */ |
| if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| goto out; |
| } |
| |
| if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { |
| ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); |
| } else { |
| vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; |
| ret = btrfs_rm_device(fs_info, vol_args->name, 0); |
| } |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| |
| if (!ret) { |
| if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) |
| btrfs_info(fs_info, "device deleted: id %llu", |
| vol_args->devid); |
| else |
| btrfs_info(fs_info, "device deleted: %s", |
| vol_args->name); |
| } |
| out: |
| kfree(vol_args); |
| err_drop: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_vol_args *vol_args; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| goto out_drop_write; |
| } |
| |
| vol_args = memdup_user(arg, sizeof(*vol_args)); |
| if (IS_ERR(vol_args)) { |
| ret = PTR_ERR(vol_args); |
| goto out; |
| } |
| |
| vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; |
| ret = btrfs_rm_device(fs_info, vol_args->name, 0); |
| |
| if (!ret) |
| btrfs_info(fs_info, "disk deleted %s", vol_args->name); |
| kfree(vol_args); |
| out: |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| |
| return ret; |
| } |
| |
| static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_fs_info_args *fi_args; |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| int ret = 0; |
| |
| fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); |
| if (!fi_args) |
| return -ENOMEM; |
| |
| rcu_read_lock(); |
| fi_args->num_devices = fs_devices->num_devices; |
| |
| list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { |
| if (device->devid > fi_args->max_id) |
| fi_args->max_id = device->devid; |
| } |
| rcu_read_unlock(); |
| |
| memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); |
| fi_args->nodesize = fs_info->nodesize; |
| fi_args->sectorsize = fs_info->sectorsize; |
| fi_args->clone_alignment = fs_info->sectorsize; |
| |
| if (copy_to_user(arg, fi_args, sizeof(*fi_args))) |
| ret = -EFAULT; |
| |
| kfree(fi_args); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_dev_info_args *di_args; |
| struct btrfs_device *dev; |
| int ret = 0; |
| char *s_uuid = NULL; |
| |
| di_args = memdup_user(arg, sizeof(*di_args)); |
| if (IS_ERR(di_args)) |
| return PTR_ERR(di_args); |
| |
| if (!btrfs_is_empty_uuid(di_args->uuid)) |
| s_uuid = di_args->uuid; |
| |
| rcu_read_lock(); |
| dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); |
| |
| if (!dev) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| di_args->devid = dev->devid; |
| di_args->bytes_used = btrfs_device_get_bytes_used(dev); |
| di_args->total_bytes = btrfs_device_get_total_bytes(dev); |
| memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); |
| if (dev->name) { |
| strncpy(di_args->path, rcu_str_deref(dev->name), |
| sizeof(di_args->path) - 1); |
| di_args->path[sizeof(di_args->path) - 1] = 0; |
| } else { |
| di_args->path[0] = '\0'; |
| } |
| |
| out: |
| rcu_read_unlock(); |
| if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) |
| ret = -EFAULT; |
| |
| kfree(di_args); |
| return ret; |
| } |
| |
| static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) |
| { |
| struct page *page; |
| |
| page = grab_cache_page(inode->i_mapping, index); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!PageUptodate(page)) { |
| int ret; |
| |
| ret = btrfs_readpage(NULL, page); |
| if (ret) |
| return ERR_PTR(ret); |
| lock_page(page); |
| if (!PageUptodate(page)) { |
| unlock_page(page); |
| put_page(page); |
| return ERR_PTR(-EIO); |
| } |
| if (page->mapping != inode->i_mapping) { |
| unlock_page(page); |
| put_page(page); |
| return ERR_PTR(-EAGAIN); |
| } |
| } |
| |
| return page; |
| } |
| |
| static int gather_extent_pages(struct inode *inode, struct page **pages, |
| int num_pages, u64 off) |
| { |
| int i; |
| pgoff_t index = off >> PAGE_SHIFT; |
| |
| for (i = 0; i < num_pages; i++) { |
| again: |
| pages[i] = extent_same_get_page(inode, index + i); |
| if (IS_ERR(pages[i])) { |
| int err = PTR_ERR(pages[i]); |
| |
| if (err == -EAGAIN) |
| goto again; |
| pages[i] = NULL; |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static int lock_extent_range(struct inode *inode, u64 off, u64 len, |
| bool retry_range_locking) |
| { |
| /* |
| * Do any pending delalloc/csum calculations on inode, one way or |
| * another, and lock file content. |
| * The locking order is: |
| * |
| * 1) pages |
| * 2) range in the inode's io tree |
| */ |
| while (1) { |
| struct btrfs_ordered_extent *ordered; |
| lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); |
| ordered = btrfs_lookup_first_ordered_extent(inode, |
| off + len - 1); |
| if ((!ordered || |
| ordered->file_offset + ordered->len <= off || |
| ordered->file_offset >= off + len) && |
| !test_range_bit(&BTRFS_I(inode)->io_tree, off, |
| off + len - 1, EXTENT_DELALLOC, 0, NULL)) { |
| if (ordered) |
| btrfs_put_ordered_extent(ordered); |
| break; |
| } |
| unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); |
| if (ordered) |
| btrfs_put_ordered_extent(ordered); |
| if (!retry_range_locking) |
| return -EAGAIN; |
| btrfs_wait_ordered_range(inode, off, len); |
| } |
| return 0; |
| } |
| |
| static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) |
| { |
| inode_unlock(inode1); |
| inode_unlock(inode2); |
| } |
| |
| static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) |
| { |
| if (inode1 < inode2) |
| swap(inode1, inode2); |
| |
| inode_lock_nested(inode1, I_MUTEX_PARENT); |
| inode_lock_nested(inode2, I_MUTEX_CHILD); |
| } |
| |
| static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, |
| struct inode *inode2, u64 loff2, u64 len) |
| { |
| unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); |
| unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); |
| } |
| |
| static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, |
| struct inode *inode2, u64 loff2, u64 len, |
| bool retry_range_locking) |
| { |
| int ret; |
| |
| if (inode1 < inode2) { |
| swap(inode1, inode2); |
| swap(loff1, loff2); |
| } |
| ret = lock_extent_range(inode1, loff1, len, retry_range_locking); |
| if (ret) |
| return ret; |
| ret = lock_extent_range(inode2, loff2, len, retry_range_locking); |
| if (ret) |
| unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, |
| loff1 + len - 1); |
| return ret; |
| } |
| |
| struct cmp_pages { |
| int num_pages; |
| struct page **src_pages; |
| struct page **dst_pages; |
| }; |
| |
| static void btrfs_cmp_data_free(struct cmp_pages *cmp) |
| { |
| int i; |
| struct page *pg; |
| |
| for (i = 0; i < cmp->num_pages; i++) { |
| pg = cmp->src_pages[i]; |
| if (pg) { |
| unlock_page(pg); |
| put_page(pg); |
| cmp->src_pages[i] = NULL; |
| } |
| pg = cmp->dst_pages[i]; |
| if (pg) { |
| unlock_page(pg); |
| put_page(pg); |
| cmp->dst_pages[i] = NULL; |
| } |
| } |
| } |
| |
| static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, |
| struct inode *dst, u64 dst_loff, |
| u64 len, struct cmp_pages *cmp) |
| { |
| int ret; |
| int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; |
| |
| cmp->num_pages = num_pages; |
| |
| ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff); |
| if (ret) |
| goto out; |
| |
| ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff); |
| |
| out: |
| if (ret) |
| btrfs_cmp_data_free(cmp); |
| return ret; |
| } |
| |
| static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) |
| { |
| int ret = 0; |
| int i; |
| struct page *src_page, *dst_page; |
| unsigned int cmp_len = PAGE_SIZE; |
| void *addr, *dst_addr; |
| |
| i = 0; |
| while (len) { |
| if (len < PAGE_SIZE) |
| cmp_len = len; |
| |
| BUG_ON(i >= cmp->num_pages); |
| |
| src_page = cmp->src_pages[i]; |
| dst_page = cmp->dst_pages[i]; |
| ASSERT(PageLocked(src_page)); |
| ASSERT(PageLocked(dst_page)); |
| |
| addr = kmap_atomic(src_page); |
| dst_addr = kmap_atomic(dst_page); |
| |
| flush_dcache_page(src_page); |
| flush_dcache_page(dst_page); |
| |
| if (memcmp(addr, dst_addr, cmp_len)) |
| ret = -EBADE; |
| |
| kunmap_atomic(addr); |
| kunmap_atomic(dst_addr); |
| |
| if (ret) |
| break; |
| |
| len -= cmp_len; |
| i++; |
| } |
| |
| return ret; |
| } |
| |
| static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, |
| u64 olen) |
| { |
| u64 len = *plen; |
| u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; |
| |
| if (off + olen > inode->i_size || off + olen < off) |
| return -EINVAL; |
| |
| /* if we extend to eof, continue to block boundary */ |
| if (off + len == inode->i_size) |
| *plen = len = ALIGN(inode->i_size, bs) - off; |
| |
| /* Check that we are block aligned - btrfs_clone() requires this */ |
| if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen, |
| struct inode *dst, u64 dst_loff, |
| struct cmp_pages *cmp) |
| { |
| int ret; |
| u64 len = olen; |
| bool same_inode = (src == dst); |
| u64 same_lock_start = 0; |
| u64 same_lock_len = 0; |
| |
| ret = extent_same_check_offsets(src, loff, &len, olen); |
| if (ret) |
| return ret; |
| |
| ret = extent_same_check_offsets(dst, dst_loff, &len, olen); |
| if (ret) |
| return ret; |
| |
| if (same_inode) { |
| /* |
| * Single inode case wants the same checks, except we |
| * don't want our length pushed out past i_size as |
| * comparing that data range makes no sense. |
| * |
| * extent_same_check_offsets() will do this for an |
| * unaligned length at i_size, so catch it here and |
| * reject the request. |
| * |
| * This effectively means we require aligned extents |
| * for the single-inode case, whereas the other cases |
| * allow an unaligned length so long as it ends at |
| * i_size. |
| */ |
| if (len != olen) |
| return -EINVAL; |
| |
| /* Check for overlapping ranges */ |
| if (dst_loff + len > loff && dst_loff < loff + len) |
| return -EINVAL; |
| |
| same_lock_start = min_t(u64, loff, dst_loff); |
| same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; |
| } else { |
| /* |
| * If the source and destination inodes are different, the |
| * source's range end offset matches the source's i_size, that |
| * i_size is not a multiple of the sector size, and the |
| * destination range does not go past the destination's i_size, |
| * we must round down the length to the nearest sector size |
| * multiple. If we don't do this adjustment we end replacing |
| * with zeroes the bytes in the range that starts at the |
| * deduplication range's end offset and ends at the next sector |
| * size multiple. |
| */ |
| if (loff + olen == i_size_read(src) && |
| dst_loff + len < i_size_read(dst)) { |
| const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize; |
| |
| len = round_down(i_size_read(src), sz) - loff; |
| olen = len; |
| } |
| } |
| |
| again: |
| ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp); |
| if (ret) |
| return ret; |
| |
| if (same_inode) |
| ret = lock_extent_range(src, same_lock_start, same_lock_len, |
| false); |
| else |
| ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, |
| false); |
| /* |
| * If one of the inodes has dirty pages in the respective range or |
| * ordered extents, we need to flush dellaloc and wait for all ordered |
| * extents in the range. We must unlock the pages and the ranges in the |
| * io trees to avoid deadlocks when flushing delalloc (requires locking |
| * pages) and when waiting for ordered extents to complete (they require |
| * range locking). |
| */ |
| if (ret == -EAGAIN) { |
| /* |
| * Ranges in the io trees already unlocked. Now unlock all |
| * pages before waiting for all IO to complete. |
| */ |
| btrfs_cmp_data_free(cmp); |
| if (same_inode) { |
| btrfs_wait_ordered_range(src, same_lock_start, |
| same_lock_len); |
| } else { |
| btrfs_wait_ordered_range(src, loff, len); |
| btrfs_wait_ordered_range(dst, dst_loff, len); |
| } |
| goto again; |
| } |
| ASSERT(ret == 0); |
| if (WARN_ON(ret)) { |
| /* ranges in the io trees already unlocked */ |
| btrfs_cmp_data_free(cmp); |
| return ret; |
| } |
| |
| /* pass original length for comparison so we stay within i_size */ |
| ret = btrfs_cmp_data(olen, cmp); |
| if (ret == 0) |
| ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); |
| |
| if (same_inode) |
| unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, |
| same_lock_start + same_lock_len - 1); |
| else |
| btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); |
| |
| btrfs_cmp_data_free(cmp); |
| |
| return ret; |
| } |
| |
| #define BTRFS_MAX_DEDUPE_LEN SZ_16M |
| |
| static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, |
| struct inode *dst, u64 dst_loff) |
| { |
| int ret; |
| struct cmp_pages cmp; |
| int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT; |
| bool same_inode = (src == dst); |
| u64 i, tail_len, chunk_count; |
| |
| if (olen == 0) |
| return 0; |
| |
| if (same_inode) |
| inode_lock(src); |
| else |
| btrfs_double_inode_lock(src, dst); |
| |
| /* don't make the dst file partly checksummed */ |
| if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != |
| (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| tail_len = olen % BTRFS_MAX_DEDUPE_LEN; |
| chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); |
| if (chunk_count == 0) |
| num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT; |
| |
| /* |
| * If deduping ranges in the same inode, locking rules make it |
| * mandatory to always lock pages in ascending order to avoid deadlocks |
| * with concurrent tasks (such as starting writeback/delalloc). |
| */ |
| if (same_inode && dst_loff < loff) |
| swap(loff, dst_loff); |
| |
| /* |
| * We must gather up all the pages before we initiate our extent |
| * locking. We use an array for the page pointers. Size of the array is |
| * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN. |
| */ |
| cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *), |
| GFP_KERNEL | __GFP_ZERO); |
| cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *), |
| GFP_KERNEL | __GFP_ZERO); |
| if (!cmp.src_pages || !cmp.dst_pages) { |
| ret = -ENOMEM; |
| goto out_free; |
| } |
| |
| for (i = 0; i < chunk_count; i++) { |
| ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, |
| dst, dst_loff, &cmp); |
| if (ret) |
| goto out_free; |
| |
| loff += BTRFS_MAX_DEDUPE_LEN; |
| dst_loff += BTRFS_MAX_DEDUPE_LEN; |
| } |
| |
| if (tail_len > 0) |
| ret = btrfs_extent_same_range(src, loff, tail_len, dst, |
| dst_loff, &cmp); |
| |
| out_free: |
| kvfree(cmp.src_pages); |
| kvfree(cmp.dst_pages); |
| |
| out_unlock: |
| if (same_inode) |
| inode_unlock(src); |
| else |
| btrfs_double_inode_unlock(src, dst); |
| |
| return ret; |
| } |
| |
| int btrfs_dedupe_file_range(struct file *src_file, loff_t src_loff, |
| struct file *dst_file, loff_t dst_loff, |
| u64 olen) |
| { |
| struct inode *src = file_inode(src_file); |
| struct inode *dst = file_inode(dst_file); |
| u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; |
| |
| if (WARN_ON_ONCE(bs < PAGE_SIZE)) { |
| /* |
| * Btrfs does not support blocksize < page_size. As a |
| * result, btrfs_cmp_data() won't correctly handle |
| * this situation without an update. |
| */ |
| return -EINVAL; |
| } |
| |
| return btrfs_extent_same(src, src_loff, olen, dst, dst_loff); |
| } |
| |
| static int clone_finish_inode_update(struct btrfs_trans_handle *trans, |
| struct inode *inode, |
| u64 endoff, |
| const u64 destoff, |
| const u64 olen, |
| int no_time_update) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| |
| inode_inc_iversion(inode); |
| if (!no_time_update) |
| inode->i_mtime = inode->i_ctime = current_time(inode); |
| /* |
| * We round up to the block size at eof when determining which |
| * extents to clone above, but shouldn't round up the file size. |
| */ |
| if (endoff > destoff + olen) |
| endoff = destoff + olen; |
| if (endoff > inode->i_size) |
| btrfs_i_size_write(BTRFS_I(inode), endoff); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| ret = btrfs_end_transaction(trans); |
| out: |
| return ret; |
| } |
| |
| static void clone_update_extent_map(struct btrfs_inode *inode, |
| const struct btrfs_trans_handle *trans, |
| const struct btrfs_path *path, |
| const u64 hole_offset, |
| const u64 hole_len) |
| { |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| int ret; |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); |
| return; |
| } |
| |
| if (path) { |
| struct btrfs_file_extent_item *fi; |
| |
| fi = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_extent_item_to_extent_map(inode, path, fi, false, em); |
| em->generation = -1; |
| if (btrfs_file_extent_type(path->nodes[0], fi) == |
| BTRFS_FILE_EXTENT_INLINE) |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags); |
| } else { |
| em->start = hole_offset; |
| em->len = hole_len; |
| em->ram_bytes = em->len; |
| em->orig_start = hole_offset; |
| em->block_start = EXTENT_MAP_HOLE; |
| em->block_len = 0; |
| em->orig_block_len = 0; |
| em->compress_type = BTRFS_COMPRESS_NONE; |
| em->generation = trans->transid; |
| } |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) { |
| free_extent_map(em); |
| break; |
| } |
| btrfs_drop_extent_cache(inode, em->start, |
| em->start + em->len - 1, 0); |
| } |
| |
| if (ret) |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); |
| } |
| |
| /* |
| * Make sure we do not end up inserting an inline extent into a file that has |
| * already other (non-inline) extents. If a file has an inline extent it can |
| * not have any other extents and the (single) inline extent must start at the |
| * file offset 0. Failing to respect these rules will lead to file corruption, |
| * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc |
| * |
| * We can have extents that have been already written to disk or we can have |
| * dirty ranges still in delalloc, in which case the extent maps and items are |
| * created only when we run delalloc, and the delalloc ranges might fall outside |
| * the range we are currently locking in the inode's io tree. So we check the |
| * inode's i_size because of that (i_size updates are done while holding the |
| * i_mutex, which we are holding here). |
| * We also check to see if the inode has a size not greater than "datal" but has |
| * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are |
| * protected against such concurrent fallocate calls by the i_mutex). |
| * |
| * If the file has no extents but a size greater than datal, do not allow the |
| * copy because we would need turn the inline extent into a non-inline one (even |
| * with NO_HOLES enabled). If we find our destination inode only has one inline |
| * extent, just overwrite it with the source inline extent if its size is less |
| * than the source extent's size, or we could copy the source inline extent's |
| * data into the destination inode's inline extent if the later is greater then |
| * the former. |
| */ |
| static int clone_copy_inline_extent(struct inode *dst, |
| struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_key *new_key, |
| const u64 drop_start, |
| const u64 datal, |
| const u64 skip, |
| const u64 size, |
| char *inline_data) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); |
| struct btrfs_root *root = BTRFS_I(dst)->root; |
| const u64 aligned_end = ALIGN(new_key->offset + datal, |
| fs_info->sectorsize); |
| int ret; |
| struct btrfs_key key; |
| |
| if (new_key->offset > 0) |
| return -EOPNOTSUPP; |
| |
| key.objectid = btrfs_ino(BTRFS_I(dst)); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| goto copy_inline_extent; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid == btrfs_ino(BTRFS_I(dst)) && |
| key.type == BTRFS_EXTENT_DATA_KEY) { |
| ASSERT(key.offset > 0); |
| return -EOPNOTSUPP; |
| } |
| } else if (i_size_read(dst) <= datal) { |
| struct btrfs_file_extent_item *ei; |
| u64 ext_len; |
| |
| /* |
| * If the file size is <= datal, make sure there are no other |
| * extents following (can happen do to an fallocate call with |
| * the flag FALLOC_FL_KEEP_SIZE). |
| */ |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_file_extent_item); |
| /* |
| * If it's an inline extent, it can not have other extents |
| * following it. |
| */ |
| if (btrfs_file_extent_type(path->nodes[0], ei) == |
| BTRFS_FILE_EXTENT_INLINE) |
| goto copy_inline_extent; |
| |
| ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); |
| if (ext_len > aligned_end) |
| return -EOPNOTSUPP; |
| |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) { |
| return ret; |
| } else if (ret == 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid == btrfs_ino(BTRFS_I(dst)) && |
| key.type == BTRFS_EXTENT_DATA_KEY) |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| copy_inline_extent: |
| /* |
| * We have no extent items, or we have an extent at offset 0 which may |
| * or may not be inlined. All these cases are dealt the same way. |
| */ |
| if (i_size_read(dst) > datal) { |
| /* |
| * If the destination inode has an inline extent... |
| * This would require copying the data from the source inline |
| * extent into the beginning of the destination's inline extent. |
| * But this is really complex, both extents can be compressed |
| * or just one of them, which would require decompressing and |
| * re-compressing data (which could increase the new compressed |
| * size, not allowing the compressed data to fit anymore in an |
| * inline extent). |
| * So just don't support this case for now (it should be rare, |
| * we are not really saving space when cloning inline extents). |
| */ |
| return -EOPNOTSUPP; |
| } |
| |
| btrfs_release_path(path); |
| ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); |
| if (ret) |
| return ret; |
| ret = btrfs_insert_empty_item(trans, root, path, new_key, size); |
| if (ret) |
| return ret; |
| |
| if (skip) { |
| const u32 start = btrfs_file_extent_calc_inline_size(0); |
| |
| memmove(inline_data + start, inline_data + start + skip, datal); |
| } |
| |
| write_extent_buffer(path->nodes[0], inline_data, |
| btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]), |
| size); |
| inode_add_bytes(dst, datal); |
| |
| return 0; |
| } |
| |
| /** |
| * btrfs_clone() - clone a range from inode file to another |
| * |
| * @src: Inode to clone from |
| * @inode: Inode to clone to |
| * @off: Offset within source to start clone from |
| * @olen: Original length, passed by user, of range to clone |
| * @olen_aligned: Block-aligned value of olen |
| * @destoff: Offset within @inode to start clone |
| * @no_time_update: Whether to update mtime/ctime on the target inode |
| */ |
| static int btrfs_clone(struct inode *src, struct inode *inode, |
| const u64 off, const u64 olen, const u64 olen_aligned, |
| const u64 destoff, int no_time_update) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_path *path = NULL; |
| struct extent_buffer *leaf; |
| struct btrfs_trans_handle *trans; |
| char *buf = NULL; |
| struct btrfs_key key; |
| u32 nritems; |
| int slot; |
| int ret; |
| const u64 len = olen_aligned; |
| u64 last_dest_end = destoff; |
| |
| ret = -ENOMEM; |
| buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); |
| if (!buf) |
| return ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| kvfree(buf); |
| return ret; |
| } |
| |
| path->reada = READA_FORWARD; |
| /* clone data */ |
| key.objectid = btrfs_ino(BTRFS_I(src)); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = off; |
| |
| while (1) { |
| u64 next_key_min_offset = key.offset + 1; |
| |
| /* |
| * note the key will change type as we walk through the |
| * tree. |
| */ |
| path->leave_spinning = 1; |
| ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, |
| 0, 0); |
| if (ret < 0) |
| goto out; |
| /* |
| * First search, if no extent item that starts at offset off was |
| * found but the previous item is an extent item, it's possible |
| * it might overlap our target range, therefore process it. |
| */ |
| if (key.offset == off && ret > 0 && path->slots[0] > 0) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0] - 1); |
| if (key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| process_slot: |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(BTRFS_I(src)->root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| break; |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| } |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.type > BTRFS_EXTENT_DATA_KEY || |
| key.objectid != btrfs_ino(BTRFS_I(src))) |
| break; |
| |
| if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| struct btrfs_file_extent_item *extent; |
| int type; |
| u32 size; |
| struct btrfs_key new_key; |
| u64 disko = 0, diskl = 0; |
| u64 datao = 0, datal = 0; |
| u8 comp; |
| u64 drop_start; |
| |
| extent = btrfs_item_ptr(leaf, slot, |
| struct btrfs_file_extent_item); |
| comp = btrfs_file_extent_compression(leaf, extent); |
| type = btrfs_file_extent_type(leaf, extent); |
| if (type == BTRFS_FILE_EXTENT_REG || |
| type == BTRFS_FILE_EXTENT_PREALLOC) { |
| disko = btrfs_file_extent_disk_bytenr(leaf, |
| extent); |
| diskl = btrfs_file_extent_disk_num_bytes(leaf, |
| extent); |
| datao = btrfs_file_extent_offset(leaf, extent); |
| datal = btrfs_file_extent_num_bytes(leaf, |
| extent); |
| } else if (type == BTRFS_FILE_EXTENT_INLINE) { |
| /* take upper bound, may be compressed */ |
| datal = btrfs_file_extent_ram_bytes(leaf, |
| extent); |
| } |
| |
| /* |
| * The first search might have left us at an extent |
| * item that ends before our target range's start, can |
| * happen if we have holes and NO_HOLES feature enabled. |
| */ |
| if (key.offset + datal <= off) { |
| path->slots[0]++; |
| goto process_slot; |
| } else if (key.offset >= off + len) { |
| break; |
| } |
| next_key_min_offset = key.offset + datal; |
| size = btrfs_item_size_nr(leaf, slot); |
| read_extent_buffer(leaf, buf, |
| btrfs_item_ptr_offset(leaf, slot), |
| size); |
| |
| btrfs_release_path(path); |
| path->leave_spinning = 0; |
| |
| memcpy(&new_key, &key, sizeof(new_key)); |
| new_key.objectid = btrfs_ino(BTRFS_I(inode)); |
| if (off <= key.offset) |
| new_key.offset = key.offset + destoff - off; |
| else |
| new_key.offset = destoff; |
| |
| /* |
| * Deal with a hole that doesn't have an extent item |
| * that represents it (NO_HOLES feature enabled). |
| * This hole is either in the middle of the cloning |
| * range or at the beginning (fully overlaps it or |
| * partially overlaps it). |
| */ |
| if (new_key.offset != last_dest_end) |
| drop_start = last_dest_end; |
| else |
| drop_start = new_key.offset; |
| |
| /* |
| * 1 - adjusting old extent (we may have to split it) |
| * 1 - add new extent |
| * 1 - inode update |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| if (type == BTRFS_FILE_EXTENT_REG || |
| type == BTRFS_FILE_EXTENT_PREALLOC) { |
| /* |
| * a | --- range to clone ---| b |
| * | ------------- extent ------------- | |
| */ |
| |
| /* subtract range b */ |
| if (key.offset + datal > off + len) |
| datal = off + len - key.offset; |
| |
| /* subtract range a */ |
| if (off > key.offset) { |
| datao += off - key.offset; |
| datal -= off - key.offset; |
| } |
| |
| ret = btrfs_drop_extents(trans, root, inode, |
| drop_start, |
| new_key.offset + datal, |
| 1); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) |
| btrfs_abort_transaction(trans, |
| ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| |
| ret = btrfs_insert_empty_item(trans, root, path, |
| &new_key, size); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| write_extent_buffer(leaf, buf, |
| btrfs_item_ptr_offset(leaf, slot), |
| size); |
| |
| extent = btrfs_item_ptr(leaf, slot, |
| struct btrfs_file_extent_item); |
| |
| /* disko == 0 means it's a hole */ |
| if (!disko) |
| datao = 0; |
| |
| btrfs_set_file_extent_offset(leaf, extent, |
| datao); |
| btrfs_set_file_extent_num_bytes(leaf, extent, |
| datal); |
| |
| if (disko) { |
| inode_add_bytes(inode, datal); |
| ret = btrfs_inc_extent_ref(trans, |
| root, |
| disko, diskl, 0, |
| root->root_key.objectid, |
| btrfs_ino(BTRFS_I(inode)), |
| new_key.offset - datao); |
| if (ret) { |
| btrfs_abort_transaction(trans, |
| ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| |
| } |
| } |
| } else if (type == BTRFS_FILE_EXTENT_INLINE) { |
| u64 skip = 0; |
| u64 trim = 0; |
| |
| if (off > key.offset) { |
| skip = off - key.offset; |
| new_key.offset += skip; |
| } |
| |
| if (key.offset + datal > off + len) |
| trim = key.offset + datal - (off + len); |
| |
| if (comp && (skip || trim)) { |
| ret = -EINVAL; |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| size -= skip + trim; |
| datal -= skip + trim; |
| |
| ret = clone_copy_inline_extent(inode, |
| trans, path, |
| &new_key, |
| drop_start, |
| datal, |
| skip, size, buf); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) |
| btrfs_abort_transaction(trans, |
| ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| } |
| |
| /* If we have an implicit hole (NO_HOLES feature). */ |
| if (drop_start < new_key.offset) |
| clone_update_extent_map(BTRFS_I(inode), trans, |
| NULL, drop_start, |
| new_key.offset - drop_start); |
| |
| clone_update_extent_map(BTRFS_I(inode), trans, |
| path, 0, 0); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| last_dest_end = ALIGN(new_key.offset + datal, |
| fs_info->sectorsize); |
| ret = clone_finish_inode_update(trans, inode, |
| last_dest_end, |
| destoff, olen, |
| no_time_update); |
| if (ret) |
| goto out; |
| if (new_key.offset + datal >= destoff + len) |
| break; |
| } |
| btrfs_release_path(path); |
| key.offset = next_key_min_offset; |
| |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| goto out; |
| } |
| } |
| ret = 0; |
| |
| if (last_dest_end < destoff + len) { |
| /* |
| * We have an implicit hole (NO_HOLES feature is enabled) that |
| * fully or partially overlaps our cloning range at its end. |
| */ |
| btrfs_release_path(path); |
| |
| /* |
| * 1 - remove extent(s) |
| * 1 - inode update |
| */ |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| ret = btrfs_drop_extents(trans, root, inode, |
| last_dest_end, destoff + len, 1); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| clone_update_extent_map(BTRFS_I(inode), trans, NULL, |
| last_dest_end, |
| destoff + len - last_dest_end); |
| ret = clone_finish_inode_update(trans, inode, destoff + len, |
| destoff, olen, no_time_update); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| kvfree(buf); |
| return ret; |
| } |
| |
| static noinline int btrfs_clone_files(struct file *file, struct file *file_src, |
| u64 off, u64 olen, u64 destoff) |
| { |
| struct inode *inode = file_inode(file); |
| struct inode *src = file_inode(file_src); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int ret; |
| u64 len = olen; |
| u64 bs = fs_info->sb->s_blocksize; |
| int same_inode = src == inode; |
| |
| /* |
| * TODO: |
| * - split compressed inline extents. annoying: we need to |
| * decompress into destination's address_space (the file offset |
| * may change, so source mapping won't do), then recompress (or |
| * otherwise reinsert) a subrange. |
| * |
| * - split destination inode's inline extents. The inline extents can |
| * be either compressed or non-compressed. |
| */ |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (file_src->f_path.mnt != file->f_path.mnt || |
| src->i_sb != inode->i_sb) |
| return -EXDEV; |
| |
| if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) |
| return -EISDIR; |
| |
| if (!same_inode) { |
| btrfs_double_inode_lock(src, inode); |
| } else { |
| inode_lock(src); |
| } |
| |
| /* don't make the dst file partly checksummed */ |
| if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != |
| (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* determine range to clone */ |
| ret = -EINVAL; |
| if (off + len > src->i_size || off + len < off) |
| goto out_unlock; |
| if (len == 0) |
| olen = len = src->i_size - off; |
| /* if we extend to eof, continue to block boundary */ |
| if (off + len == src->i_size) |
| len = ALIGN(src->i_size, bs) - off; |
| |
| if (len == 0) { |
| ret = 0; |
| goto out_unlock; |
| } |
| |
| /* verify the end result is block aligned */ |
| if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || |
| !IS_ALIGNED(destoff, bs)) |
| goto out_unlock; |
| |
| /* verify if ranges are overlapped within the same file */ |
| if (same_inode) { |
| if (destoff + len > off && destoff < off + len) |
| goto out_unlock; |
| } |
| |
| if (destoff > inode->i_size) { |
| ret = btrfs_cont_expand(inode, inode->i_size, destoff); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| /* |
| * Lock the target range too. Right after we replace the file extent |
| * items in the fs tree (which now point to the cloned data), we might |
| * have a worker replace them with extent items relative to a write |
| * operation that was issued before this clone operation (i.e. confront |
| * with inode.c:btrfs_finish_ordered_io). |
| */ |
| if (same_inode) { |
| u64 lock_start = min_t(u64, off, destoff); |
| u64 lock_len = max_t(u64, off, destoff) + len - lock_start; |
| |
| ret = lock_extent_range(src, lock_start, lock_len, true); |
| } else { |
| ret = btrfs_double_extent_lock(src, off, inode, destoff, len, |
| true); |
| } |
| ASSERT(ret == 0); |
| if (WARN_ON(ret)) { |
| /* ranges in the io trees already unlocked */ |
| goto out_unlock; |
| } |
| |
| ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); |
| |
| if (same_inode) { |
| u64 lock_start = min_t(u64, off, destoff); |
| u64 lock_end = max_t(u64, off, destoff) + len - 1; |
| |
| unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); |
| } else { |
| btrfs_double_extent_unlock(src, off, inode, destoff, len); |
| } |
| /* |
| * Truncate page cache pages so that future reads will see the cloned |
| * data immediately and not the previous data. |
| */ |
| truncate_inode_pages_range(&inode->i_data, |
| round_down(destoff, PAGE_SIZE), |
| round_up(destoff + len, PAGE_SIZE) - 1); |
| out_unlock: |
| if (!same_inode) |
| btrfs_double_inode_unlock(src, inode); |
| else |
| inode_unlock(src); |
| return ret; |
| } |
| |
| int btrfs_clone_file_range(struct file *src_file, loff_t off, |
| struct file *dst_file, loff_t destoff, u64 len) |
| { |
| return btrfs_clone_files(dst_file, src_file, off, len, destoff); |
| } |
| |
| static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_root *new_root; |
| struct btrfs_dir_item *di; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_key location; |
| struct btrfs_disk_key disk_key; |
| u64 objectid = 0; |
| u64 dir_id; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| if (copy_from_user(&objectid, argp, sizeof(objectid))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| if (!objectid) |
| objectid = BTRFS_FS_TREE_OBJECTID; |
| |
| location.objectid = objectid; |
| location.type = BTRFS_ROOT_ITEM_KEY; |
| location.offset = (u64)-1; |
| |
| new_root = btrfs_read_fs_root_no_name(fs_info, &location); |
| if (IS_ERR(new_root)) { |
| ret = PTR_ERR(new_root); |
| goto out; |
| } |
| if (!is_fstree(new_root->root_key.objectid)) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| path->leave_spinning = 1; |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| dir_id = btrfs_super_root_dir(fs_info->super_copy); |
| di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, |
| dir_id, "default", 7, 1); |
| if (IS_ERR_OR_NULL(di)) { |
| btrfs_free_path(path); |
| btrfs_end_transaction(trans); |
| btrfs_err(fs_info, |
| "Umm, you don't have the default diritem, this isn't going to work"); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); |
| btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); |
| btrfs_end_transaction(trans); |
| out: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static void get_block_group_info(struct list_head *groups_list, |
| struct btrfs_ioctl_space_info *space) |
| { |
| struct btrfs_block_group_cache *block_group; |
| |
| space->total_bytes = 0; |
| space->used_bytes = 0; |
| space->flags = 0; |
| list_for_each_entry(block_group, groups_list, list) { |
| space->flags = block_group->flags; |
| space->total_bytes += block_group->key.offset; |
| space->used_bytes += |
| btrfs_block_group_used(&block_group->item); |
| } |
| } |
| |
| static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_space_args space_args; |
| struct btrfs_ioctl_space_info space; |
| struct btrfs_ioctl_space_info *dest; |
| struct btrfs_ioctl_space_info *dest_orig; |
| struct btrfs_ioctl_space_info __user *user_dest; |
| struct btrfs_space_info *info; |
| static const u64 types[] = { |
| BTRFS_BLOCK_GROUP_DATA, |
| BTRFS_BLOCK_GROUP_SYSTEM, |
| BTRFS_BLOCK_GROUP_METADATA, |
| BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA |
| }; |
| int num_types = 4; |
| int alloc_size; |
| int ret = 0; |
| u64 slot_count = 0; |
| int i, c; |
| |
| if (copy_from_user(&space_args, |
| (struct btrfs_ioctl_space_args __user *)arg, |
| sizeof(space_args))) |
| return -EFAULT; |
| |
| for (i = 0; i < num_types; i++) { |
| struct btrfs_space_info *tmp; |
| |
| info = NULL; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(tmp, &fs_info->space_info, |
| list) { |
| if (tmp->flags == types[i]) { |
| info = tmp; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (!info) |
| continue; |
| |
| down_read(&info->groups_sem); |
| for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { |
| if (!list_empty(&info->block_groups[c])) |
| slot_count++; |
| } |
| up_read(&info->groups_sem); |
| } |
| |
| /* |
| * Global block reserve, exported as a space_info |
| */ |
| slot_count++; |
| |
| /* space_slots == 0 means they are asking for a count */ |
| if (space_args.space_slots == 0) { |
| space_args.total_spaces = slot_count; |
| goto out; |
| } |
| |
| slot_count = min_t(u64, space_args.space_slots, slot_count); |
| |
| alloc_size = sizeof(*dest) * slot_count; |
| |
| /* we generally have at most 6 or so space infos, one for each raid |
| * level. So, a whole page should be more than enough for everyone |
| */ |
| if (alloc_size > PAGE_SIZE) |
| return -ENOMEM; |
| |
| space_args.total_spaces = 0; |
| dest = kmalloc(alloc_size, GFP_KERNEL); |
| if (!dest) |
| return -ENOMEM; |
| dest_orig = dest; |
| |
| /* now we have a buffer to copy into */ |
| for (i = 0; i < num_types; i++) { |
| struct btrfs_space_info *tmp; |
| |
| if (!slot_count) |
| break; |
| |
| info = NULL; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(tmp, &fs_info->space_info, |
| list) { |
| if (tmp->flags == types[i]) { |
| info = tmp; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (!info) |
| continue; |
| down_read(&info->groups_sem); |
| for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { |
| if (!list_empty(&info->block_groups[c])) { |
| get_block_group_info(&info->block_groups[c], |
| &space); |
| memcpy(dest, &space, sizeof(space)); |
| dest++; |
| space_args.total_spaces++; |
| slot_count--; |
| } |
| if (!slot_count) |
| break; |
| } |
| up_read(&info->groups_sem); |
| } |
| |
| /* |
| * Add global block reserve |
| */ |
| if (slot_count) { |
| struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| |
| spin_lock(&block_rsv->lock); |
| space.total_bytes = block_rsv->size; |
| space.used_bytes = block_rsv->size - block_rsv->reserved; |
| spin_unlock(&block_rsv->lock); |
| space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; |
| memcpy(dest, &space, sizeof(space)); |
| space_args.total_spaces++; |
| } |
| |
| user_dest = (struct btrfs_ioctl_space_info __user *) |
| (arg + sizeof(struct btrfs_ioctl_space_args)); |
| |
| if (copy_to_user(user_dest, dest_orig, alloc_size)) |
| ret = -EFAULT; |
| |
| kfree(dest_orig); |
| out: |
| if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) |
| ret = -EFAULT; |
| |
| return ret; |
| } |
| |
| static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, |
| void __user *argp) |
| { |
| struct btrfs_trans_handle *trans; |
| u64 transid; |
| int ret; |
| |
| trans = btrfs_attach_transaction_barrier(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT) |
| return PTR_ERR(trans); |
| |
| /* No running transaction, don't bother */ |
| transid = root->fs_info->last_trans_committed; |
| goto out; |
| } |
| transid = trans->transid; |
| ret = btrfs_commit_transaction_async(trans, 0); |
| if (ret) { |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| out: |
| if (argp) |
| if (copy_to_user(argp, &transid, sizeof(transid))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, |
| void __user *argp) |
| { |
| u64 transid; |
| |
| if (argp) { |
| if (copy_from_user(&transid, argp, sizeof(transid))) |
| return -EFAULT; |
| } else { |
| transid = 0; /* current trans */ |
| } |
| return btrfs_wait_for_commit(fs_info, transid); |
| } |
| |
| static long btrfs_ioctl_scrub(struct file *file, void __user *arg) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); |
| struct btrfs_ioctl_scrub_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| if (!(sa->flags & BTRFS_SCRUB_READONLY)) { |
| ret = mnt_want_write_file(file); |
| if (ret) |
| goto out; |
| } |
| |
| ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, |
| &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, |
| 0); |
| |
| if (copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| if (!(sa->flags & BTRFS_SCRUB_READONLY)) |
| mnt_drop_write_file(file); |
| out: |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) |
| { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| return btrfs_scrub_cancel(fs_info); |
| } |
| |
| static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_scrub_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); |
| |
| if (copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_get_dev_stats *sa; |
| int ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { |
| kfree(sa); |
| return -EPERM; |
| } |
| |
| ret = btrfs_get_dev_stats(fs_info, sa); |
| |
| if (copy_to_user(arg, sa, sizeof(*sa))) |
| ret = -EFAULT; |
| |
| kfree(sa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_dev_replace_args *p; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| p = memdup_user(arg, sizeof(*p)); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| switch (p->cmd) { |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_START: |
| if (sb_rdonly(fs_info->sb)) { |
| ret = -EROFS; |
| goto out; |
| } |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| } else { |
| ret = btrfs_dev_replace_by_ioctl(fs_info, p); |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| } |
| break; |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: |
| btrfs_dev_replace_status(fs_info, p); |
| ret = 0; |
| break; |
| case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: |
| p->result = btrfs_dev_replace_cancel(fs_info); |
| ret = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (copy_to_user(arg, p, sizeof(*p))) |
| ret = -EFAULT; |
| out: |
| kfree(p); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) |
| { |
| int ret = 0; |
| int i; |
| u64 rel_ptr; |
| int size; |
| struct btrfs_ioctl_ino_path_args *ipa = NULL; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_path *path; |
| |
| if (!capable(CAP_DAC_READ_SEARCH)) |
| return -EPERM; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ipa = memdup_user(arg, sizeof(*ipa)); |
| if (IS_ERR(ipa)) { |
| ret = PTR_ERR(ipa); |
| ipa = NULL; |
| goto out; |
| } |
| |
| size = min_t(u32, ipa->size, 4096); |
| ipath = init_ipath(size, root, path); |
| if (IS_ERR(ipath)) { |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto out; |
| } |
| |
| ret = paths_from_inode(ipa->inum, ipath); |
| if (ret < 0) |
| goto out; |
| |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) { |
| rel_ptr = ipath->fspath->val[i] - |
| (u64)(unsigned long)ipath->fspath->val; |
| ipath->fspath->val[i] = rel_ptr; |
| } |
| |
| ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, |
| ipath->fspath, size); |
| if (ret) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| out: |
| btrfs_free_path(path); |
| free_ipath(ipath); |
| kfree(ipa); |
| |
| return ret; |
| } |
| |
| static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) |
| { |
| struct btrfs_data_container *inodes = ctx; |
| const size_t c = 3 * sizeof(u64); |
| |
| if (inodes->bytes_left >= c) { |
| inodes->bytes_left -= c; |
| inodes->val[inodes->elem_cnt] = inum; |
| inodes->val[inodes->elem_cnt + 1] = offset; |
| inodes->val[inodes->elem_cnt + 2] = root; |
| inodes->elem_cnt += 3; |
| } else { |
| inodes->bytes_missing += c - inodes->bytes_left; |
| inodes->bytes_left = 0; |
| inodes->elem_missed += 3; |
| } |
| |
| return 0; |
| } |
| |
| static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, |
| void __user *arg, int version) |
| { |
| int ret = 0; |
| int size; |
| struct btrfs_ioctl_logical_ino_args *loi; |
| struct btrfs_data_container *inodes = NULL; |
| struct btrfs_path *path = NULL; |
| bool ignore_offset; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| loi = memdup_user(arg, sizeof(*loi)); |
| if (IS_ERR(loi)) |
| return PTR_ERR(loi); |
| |
| if (version == 1) { |
| ignore_offset = false; |
| size = min_t(u32, loi->size, SZ_64K); |
| } else { |
| /* All reserved bits must be 0 for now */ |
| if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { |
| ret = -EINVAL; |
| goto out_loi; |
| } |
| /* Only accept flags we have defined so far */ |
| if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { |
| ret = -EINVAL; |
| goto out_loi; |
| } |
| ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; |
| size = min_t(u32, loi->size, SZ_16M); |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| inodes = init_data_container(size); |
| if (IS_ERR(inodes)) { |
| ret = PTR_ERR(inodes); |
| inodes = NULL; |
| goto out; |
| } |
| |
| ret = iterate_inodes_from_logical(loi->logical, fs_info, path, |
| build_ino_list, inodes, ignore_offset); |
| if (ret == -EINVAL) |
| ret = -ENOENT; |
| if (ret < 0) |
| goto out; |
| |
| ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, |
| size); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| btrfs_free_path(path); |
| kvfree(inodes); |
| out_loi: |
| kfree(loi); |
| |
| return ret; |
| } |
| |
| void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, |
| struct btrfs_ioctl_balance_args *bargs) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| |
| bargs->flags = bctl->flags; |
| |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) |
| bargs->state |= BTRFS_BALANCE_STATE_RUNNING; |
| if (atomic_read(&fs_info->balance_pause_req)) |
| bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; |
| if (atomic_read(&fs_info->balance_cancel_req)) |
| bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; |
| |
| memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); |
| memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); |
| memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); |
| |
| spin_lock(&fs_info->balance_lock); |
| memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| static long btrfs_ioctl_balance(struct file *file, void __user *arg) |
| { |
| struct btrfs_root *root = BTRFS_I(file_inode(file))->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_ioctl_balance_args *bargs; |
| struct btrfs_balance_control *bctl; |
| bool need_unlock; /* for mut. excl. ops lock */ |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| again: |
| if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { |
| mutex_lock(&fs_info->balance_mutex); |
| need_unlock = true; |
| goto locked; |
| } |
| |
| /* |
| * mut. excl. ops lock is locked. Three possibilities: |
| * (1) some other op is running |
| * (2) balance is running |
| * (3) balance is paused -- special case (think resume) |
| */ |
| mutex_lock(&fs_info->balance_mutex); |
| if (fs_info->balance_ctl) { |
| /* this is either (2) or (3) */ |
| if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| mutex_unlock(&fs_info->balance_mutex); |
| /* |
| * Lock released to allow other waiters to continue, |
| * we'll reexamine the status again. |
| */ |
| mutex_lock(&fs_info->balance_mutex); |
| |
| if (fs_info->balance_ctl && |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| /* this is (3) */ |
| need_unlock = false; |
| goto locked; |
| } |
| |
| mutex_unlock(&fs_info->balance_mutex); |
| goto again; |
| } else { |
| /* this is (2) */ |
| mutex_unlock(&fs_info->balance_mutex); |
| ret = -EINPROGRESS; |
| goto out; |
| } |
| } else { |
| /* this is (1) */ |
| mutex_unlock(&fs_info->balance_mutex); |
| ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; |
| goto out; |
| } |
| |
| locked: |
| BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); |
| |
| if (arg) { |
| bargs = memdup_user(arg, sizeof(*bargs)); |
| if (IS_ERR(bargs)) { |
| ret = PTR_ERR(bargs); |
| goto out_unlock; |
| } |
| |
| if (bargs->flags & BTRFS_BALANCE_RESUME) { |
| if (!fs_info->balance_ctl) { |
| ret = -ENOTCONN; |
| goto out_bargs; |
| } |
| |
| bctl = fs_info->balance_ctl; |
| spin_lock(&fs_info->balance_lock); |
| bctl->flags |= BTRFS_BALANCE_RESUME; |
| spin_unlock(&fs_info->balance_lock); |
| |
| goto do_balance; |
| } |
| } else { |
| bargs = NULL; |
| } |
| |
| if (fs_info->balance_ctl) { |
| ret = -EINPROGRESS; |
| goto out_bargs; |
| } |
| |
| bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); |
| if (!bctl) { |
| ret = -ENOMEM; |
| goto out_bargs; |
| } |
| |
| if (arg) { |
| memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); |
| memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); |
| memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); |
| |
| bctl->flags = bargs->flags; |
| } else { |
| /* balance everything - no filters */ |
| bctl->flags |= BTRFS_BALANCE_TYPE_MASK; |
| } |
| |
| if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { |
| ret = -EINVAL; |
| goto out_bctl; |
| } |
| |
| do_balance: |
| /* |
| * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to |
| * btrfs_balance. bctl is freed in reset_balance_state, or, if |
| * restriper was paused all the way until unmount, in free_fs_info. |
| * The flag should be cleared after reset_balance_state. |
| */ |
| need_unlock = false; |
| |
| ret = btrfs_balance(fs_info, bctl, bargs); |
| bctl = NULL; |
| |
| if (arg) { |
| if (copy_to_user(arg, bargs, sizeof(*bargs))) |
| ret = -EFAULT; |
| } |
| |
| out_bctl: |
| kfree(bctl); |
| out_bargs: |
| kfree(bargs); |
| out_unlock: |
| mutex_unlock(&fs_info->balance_mutex); |
| if (need_unlock) |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| out: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) |
| { |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| switch (cmd) { |
| case BTRFS_BALANCE_CTL_PAUSE: |
| return btrfs_pause_balance(fs_info); |
| case BTRFS_BALANCE_CTL_CANCEL: |
| return btrfs_cancel_balance(fs_info); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_balance_args *bargs; |
| int ret = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| ret = -ENOTCONN; |
| goto out; |
| } |
| |
| bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); |
| if (!bargs) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| btrfs_update_ioctl_balance_args(fs_info, bargs); |
| |
| if (copy_to_user(arg, bargs, sizeof(*bargs))) |
| ret = -EFAULT; |
| |
| kfree(bargs); |
| out: |
| mutex_unlock(&fs_info->balance_mutex); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_quota_ctl_args *sa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| down_write(&fs_info->subvol_sem); |
| |
| switch (sa->cmd) { |
| case BTRFS_QUOTA_CTL_ENABLE: |
| ret = btrfs_quota_enable(fs_info); |
| break; |
| case BTRFS_QUOTA_CTL_DISABLE: |
| ret = btrfs_quota_disable(fs_info); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| kfree(sa); |
| up_write(&fs_info->subvol_sem); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_assign_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| if (sa->assign) { |
| ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); |
| } else { |
| ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); |
| } |
| |
| /* update qgroup status and info */ |
| err = btrfs_run_qgroups(trans); |
| if (err < 0) |
| btrfs_handle_fs_error(fs_info, err, |
| "failed to update qgroup status and info"); |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_create_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| if (!sa->qgroupid) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| if (sa->create) { |
| ret = btrfs_create_qgroup(trans, sa->qgroupid); |
| } else { |
| ret = btrfs_remove_qgroup(trans, sa->qgroupid); |
| } |
| |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_ioctl_qgroup_limit_args *sa; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| int err; |
| u64 qgroupid; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) { |
| ret = PTR_ERR(sa); |
| goto drop_write; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| qgroupid = sa->qgroupid; |
| if (!qgroupid) { |
| /* take the current subvol as qgroup */ |
| qgroupid = root->root_key.objectid; |
| } |
| |
| ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); |
| |
| err = btrfs_end_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| |
| out: |
| kfree(sa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_quota_rescan_args *qsa; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| qsa = memdup_user(arg, sizeof(*qsa)); |
| if (IS_ERR(qsa)) { |
| ret = PTR_ERR(qsa); |
| goto drop_write; |
| } |
| |
| if (qsa->flags) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = btrfs_qgroup_rescan(fs_info); |
| |
| out: |
| kfree(qsa); |
| drop_write: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_ioctl_quota_rescan_args *qsa; |
| int ret = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); |
| if (!qsa) |
| return -ENOMEM; |
| |
| if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { |
| qsa->flags = 1; |
| qsa->progress = fs_info->qgroup_rescan_progress.objectid; |
| } |
| |
| if (copy_to_user(arg, qsa, sizeof(*qsa))) |
| ret = -EFAULT; |
| |
| kfree(qsa); |
| return ret; |
| } |
| |
| static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| return btrfs_qgroup_wait_for_completion(fs_info, true); |
| } |
| |
| static long _btrfs_ioctl_set_received_subvol(struct file *file, |
| struct btrfs_ioctl_received_subvol_args *sa) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_root_item *root_item = &root->root_item; |
| struct btrfs_trans_handle *trans; |
| struct timespec64 ct = current_time(inode); |
| int ret = 0; |
| int received_uuid_changed; |
| |
| if (!inode_owner_or_capable(inode)) |
| return -EPERM; |
| |
| ret = mnt_want_write_file(file); |
| if (ret < 0) |
| return ret; |
| |
| down_write(&fs_info->subvol_sem); |
| |
| if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (btrfs_root_readonly(root)) { |
| ret = -EROFS; |
| goto out; |
| } |
| |
| /* |
| * 1 - root item |
| * 2 - uuid items (received uuid + subvol uuid) |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| |
| sa->rtransid = trans->transid; |
| sa->rtime.sec = ct.tv_sec; |
| sa->rtime.nsec = ct.tv_nsec; |
| |
| received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, |
| BTRFS_UUID_SIZE); |
| if (received_uuid_changed && |
| !btrfs_is_empty_uuid(root_item->received_uuid)) { |
| ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| root->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| } |
| memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); |
| btrfs_set_root_stransid(root_item, sa->stransid); |
| btrfs_set_root_rtransid(root_item, sa->rtransid); |
| btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); |
| btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); |
| btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); |
| btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); |
| |
| ret = btrfs_update_root(trans, fs_info->tree_root, |
| &root->root_key, &root->root_item); |
| if (ret < 0) { |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { |
| ret = btrfs_uuid_tree_add(trans, sa->uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| root->root_key.objectid); |
| if (ret < 0 && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| } |
| ret = btrfs_commit_transaction(trans); |
| out: |
| up_write(&fs_info->subvol_sem); |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| #ifdef CONFIG_64BIT |
| static long btrfs_ioctl_set_received_subvol_32(struct file *file, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; |
| struct btrfs_ioctl_received_subvol_args *args64 = NULL; |
| int ret = 0; |
| |
| args32 = memdup_user(arg, sizeof(*args32)); |
| if (IS_ERR(args32)) |
| return PTR_ERR(args32); |
| |
| args64 = kmalloc(sizeof(*args64), GFP_KERNEL); |
| if (!args64) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); |
| args64->stransid = args32->stransid; |
| args64->rtransid = args32->rtransid; |
| args64->stime.sec = args32->stime.sec; |
| args64->stime.nsec = args32->stime.nsec; |
| args64->rtime.sec = args32->rtime.sec; |
| args64->rtime.nsec = args32->rtime.nsec; |
| args64->flags = args32->flags; |
| |
| ret = _btrfs_ioctl_set_received_subvol(file, args64); |
| if (ret) |
| goto out; |
| |
| memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); |
| args32->stransid = args64->stransid; |
| args32->rtransid = args64->rtransid; |
| args32->stime.sec = args64->stime.sec; |
| args32->stime.nsec = args64->stime.nsec; |
| args32->rtime.sec = args64->rtime.sec; |
| args32->rtime.nsec = args64->rtime.nsec; |
| args32->flags = args64->flags; |
| |
| ret = copy_to_user(arg, args32, sizeof(*args32)); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| kfree(args32); |
| kfree(args64); |
| return ret; |
| } |
| #endif |
| |
| static long btrfs_ioctl_set_received_subvol(struct file *file, |
| void __user *arg) |
| { |
| struct btrfs_ioctl_received_subvol_args *sa = NULL; |
| int ret = 0; |
| |
| sa = memdup_user(arg, sizeof(*sa)); |
| if (IS_ERR(sa)) |
| return PTR_ERR(sa); |
| |
| ret = _btrfs_ioctl_set_received_subvol(file, sa); |
| |
| if (ret) |
| goto out; |
| |
| ret = copy_to_user(arg, sa, sizeof(*sa)); |
| if (ret) |
| ret = -EFAULT; |
| |
| out: |
| kfree(sa); |
| return ret; |
| } |
| |
| static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| size_t len; |
| int ret; |
| char label[BTRFS_LABEL_SIZE]; |
| |
| spin_lock(&fs_info->super_lock); |
| memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); |
| spin_unlock(&fs_info->super_lock); |
| |
| len = strnlen(label, BTRFS_LABEL_SIZE); |
| |
| if (len == BTRFS_LABEL_SIZE) { |
| btrfs_warn(fs_info, |
| "label is too long, return the first %zu bytes", |
| --len); |
| } |
| |
| ret = copy_to_user(arg, label, len); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_trans_handle *trans; |
| char label[BTRFS_LABEL_SIZE]; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(label, arg, sizeof(label))) |
| return -EFAULT; |
| |
| if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { |
| btrfs_err(fs_info, |
| "unable to set label with more than %d bytes", |
| BTRFS_LABEL_SIZE - 1); |
| return -EINVAL; |
| } |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_unlock; |
| } |
| |
| spin_lock(&fs_info->super_lock); |
| strcpy(super_block->label, label); |
| spin_unlock(&fs_info->super_lock); |
| ret = btrfs_commit_transaction(trans); |
| |
| out_unlock: |
| mnt_drop_write_file(file); |
| return ret; |
| } |
| |
| #define INIT_FEATURE_FLAGS(suffix) \ |
| { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ |
| .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ |
| .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } |
| |
| int btrfs_ioctl_get_supported_features(void __user *arg) |
| { |
| static const struct btrfs_ioctl_feature_flags features[3] = { |
| INIT_FEATURE_FLAGS(SUPP), |
| INIT_FEATURE_FLAGS(SAFE_SET), |
| INIT_FEATURE_FLAGS(SAFE_CLEAR) |
| }; |
| |
| if (copy_to_user(arg, &features, sizeof(features))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int btrfs_ioctl_get_features(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_ioctl_feature_flags features; |
| |
| features.compat_flags = btrfs_super_compat_flags(super_block); |
| features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); |
| features.incompat_flags = btrfs_super_incompat_flags(super_block); |
| |
| if (copy_to_user(arg, &features, sizeof(features))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int check_feature_bits(struct btrfs_fs_info *fs_info, |
| enum btrfs_feature_set set, |
| u64 change_mask, u64 flags, u64 supported_flags, |
| u64 safe_set, u64 safe_clear) |
| { |
| const char *type = btrfs_feature_set_names[set]; |
| char *names; |
| u64 disallowed, unsupported; |
| u64 set_mask = flags & change_mask; |
| u64 clear_mask = ~flags & change_mask; |
| |
| unsupported = set_mask & ~supported_flags; |
| if (unsupported) { |
| names = btrfs_printable_features(set, unsupported); |
| if (names) { |
| btrfs_warn(fs_info, |
| "this kernel does not support the %s feature bit%s", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "this kernel does not support %s bits 0x%llx", |
| type, unsupported); |
| return -EOPNOTSUPP; |
| } |
| |
| disallowed = set_mask & ~safe_set; |
| if (disallowed) { |
| names = btrfs_printable_features(set, disallowed); |
| if (names) { |
| btrfs_warn(fs_info, |
| "can't set the %s feature bit%s while mounted", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "can't set %s bits 0x%llx while mounted", |
| type, disallowed); |
| return -EPERM; |
| } |
| |
| disallowed = clear_mask & ~safe_clear; |
| if (disallowed) { |
| names = btrfs_printable_features(set, disallowed); |
| if (names) { |
| btrfs_warn(fs_info, |
| "can't clear the %s feature bit%s while mounted", |
| names, strchr(names, ',') ? "s" : ""); |
| kfree(names); |
| } else |
| btrfs_warn(fs_info, |
| "can't clear %s bits 0x%llx while mounted", |
| type, disallowed); |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| #define check_feature(fs_info, change_mask, flags, mask_base) \ |
| check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ |
| BTRFS_FEATURE_ ## mask_base ## _SUPP, \ |
| BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ |
| BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) |
| |
| static int btrfs_ioctl_set_features(struct file *file, void __user *arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_super_block *super_block = fs_info->super_copy; |
| struct btrfs_ioctl_feature_flags flags[2]; |
| struct btrfs_trans_handle *trans; |
| u64 newflags; |
| int ret; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(flags, arg, sizeof(flags))) |
| return -EFAULT; |
| |
| /* Nothing to do */ |
| if (!flags[0].compat_flags && !flags[0].compat_ro_flags && |
| !flags[0].incompat_flags) |
| return 0; |
| |
| ret = check_feature(fs_info, flags[0].compat_flags, |
| flags[1].compat_flags, COMPAT); |
| if (ret) |
| return ret; |
| |
| ret = check_feature(fs_info, flags[0].compat_ro_flags, |
| flags[1].compat_ro_flags, COMPAT_RO); |
| if (ret) |
| return ret; |
| |
| ret = check_feature(fs_info, flags[0].incompat_flags, |
| flags[1].incompat_flags, INCOMPAT); |
| if (ret) |
| return ret; |
| |
| ret = mnt_want_write_file(file); |
| if (ret) |
| return ret; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_drop_write; |
| } |
| |
| spin_lock(&fs_info->super_lock); |
| newflags = btrfs_super_compat_flags(super_block); |
| newflags |= flags[0].compat_flags & flags[1].compat_flags; |
| newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); |
| btrfs_set_super_compat_flags(super_block, newflags); |
| |
| newflags = btrfs_super_compat_ro_flags(super_block); |
| newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; |
| newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); |
| btrfs_set_super_compat_ro_flags(super_block, newflags); |
| |
| newflags = btrfs_super_incompat_flags(super_block); |
| newflags |= flags[0].incompat_flags & flags[1].incompat_flags; |
| newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); |
| btrfs_set_super_incompat_flags(super_block, newflags); |
| spin_unlock(&fs_info->super_lock); |
| |
| ret = btrfs_commit_transaction(trans); |
| out_drop_write: |
| mnt_drop_write_file(file); |
| |
| return ret; |
| } |
| |
| static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) |
| { |
| struct btrfs_ioctl_send_args *arg; |
| int ret; |
| |
| if (compat) { |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| struct btrfs_ioctl_send_args_32 args32; |
| |
| ret = copy_from_user(&args32, argp, sizeof(args32)); |
| if (ret) |
| return -EFAULT; |
| arg = kzalloc(sizeof(*arg), GFP_KERNEL); |
| if (!arg) |
| return -ENOMEM; |
| arg->send_fd = args32.send_fd; |
| arg->clone_sources_count = args32.clone_sources_count; |
| arg->clone_sources = compat_ptr(args32.clone_sources); |
| arg->parent_root = args32.parent_root; |
| arg->flags = args32.flags; |
| memcpy(arg->reserved, args32.reserved, |
| sizeof(args32.reserved)); |
| #else |
| return -ENOTTY; |
| #endif |
| } else { |
| arg = memdup_user(argp, sizeof(*arg)); |
| if (IS_ERR(arg)) |
| return PTR_ERR(arg); |
| } |
| ret = btrfs_ioctl_send(file, arg); |
| kfree(arg); |
| return ret; |
| } |
| |
| long btrfs_ioctl(struct file *file, unsigned int |
| cmd, unsigned long arg) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| void __user *argp = (void __user *)arg; |
| |
| switch (cmd) { |
| case FS_IOC_GETFLAGS: |
| return btrfs_ioctl_getflags(file, argp); |
| case FS_IOC_SETFLAGS: |
| return btrfs_ioctl_setflags(file, argp); |
| case FS_IOC_GETVERSION: |
| return btrfs_ioctl_getversion(file, argp); |
| case FITRIM: |
| return btrfs_ioctl_fitrim(file, argp); |
| case BTRFS_IOC_SNAP_CREATE: |
| return btrfs_ioctl_snap_create(file, argp, 0); |
| case BTRFS_IOC_SNAP_CREATE_V2: |
| return btrfs_ioctl_snap_create_v2(file, argp, 0); |
| case BTRFS_IOC_SUBVOL_CREATE: |
| return btrfs_ioctl_snap_create(file, argp, 1); |
| case BTRFS_IOC_SUBVOL_CREATE_V2: |
| return btrfs_ioctl_snap_create_v2(file, argp, 1); |
| case BTRFS_IOC_SNAP_DESTROY: |
| return btrfs_ioctl_snap_destroy(file, argp); |
| case BTRFS_IOC_SUBVOL_GETFLAGS: |
| return btrfs_ioctl_subvol_getflags(file, argp); |
| case BTRFS_IOC_SUBVOL_SETFLAGS: |
| return btrfs_ioctl_subvol_setflags(file, argp); |
| case BTRFS_IOC_DEFAULT_SUBVOL: |
| return btrfs_ioctl_default_subvol(file, argp); |
| case BTRFS_IOC_DEFRAG: |
| return btrfs_ioctl_defrag(file, NULL); |
| case BTRFS_IOC_DEFRAG_RANGE: |
| return btrfs_ioctl_defrag(file, argp); |
| case BTRFS_IOC_RESIZE: |
| return btrfs_ioctl_resize(file, argp); |
| case BTRFS_IOC_ADD_DEV: |
| return btrfs_ioctl_add_dev(fs_info, argp); |
| case BTRFS_IOC_RM_DEV: |
| return btrfs_ioctl_rm_dev(file, argp); |
| case BTRFS_IOC_RM_DEV_V2: |
| return btrfs_ioctl_rm_dev_v2(file, argp); |
| case BTRFS_IOC_FS_INFO: |
| return btrfs_ioctl_fs_info(fs_info, argp); |
| case BTRFS_IOC_DEV_INFO: |
| return btrfs_ioctl_dev_info(fs_info, argp); |
| case BTRFS_IOC_BALANCE: |
| return btrfs_ioctl_balance(file, NULL); |
| case BTRFS_IOC_TREE_SEARCH: |
| return btrfs_ioctl_tree_search(file, argp); |
| case BTRFS_IOC_TREE_SEARCH_V2: |
| return btrfs_ioctl_tree_search_v2(file, argp); |
| case BTRFS_IOC_INO_LOOKUP: |
| return btrfs_ioctl_ino_lookup(file, argp); |
| case BTRFS_IOC_INO_PATHS: |
| return btrfs_ioctl_ino_to_path(root, argp); |
| case BTRFS_IOC_LOGICAL_INO: |
| return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); |
| case BTRFS_IOC_LOGICAL_INO_V2: |
| return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); |
| case BTRFS_IOC_SPACE_INFO: |
| return btrfs_ioctl_space_info(fs_info, argp); |
| case BTRFS_IOC_SYNC: { |
| int ret; |
| |
| ret = btrfs_start_delalloc_roots(fs_info, -1); |
| if (ret) |
| return ret; |
| ret = btrfs_sync_fs(inode->i_sb, 1); |
| /* |
| * The transaction thread may want to do more work, |
| * namely it pokes the cleaner kthread that will start |
| * processing uncleaned subvols. |
| */ |
| wake_up_process(fs_info->transaction_kthread); |
| return ret; |
| } |
| case BTRFS_IOC_START_SYNC: |
| return btrfs_ioctl_start_sync(root, argp); |
| case BTRFS_IOC_WAIT_SYNC: |
| return btrfs_ioctl_wait_sync(fs_info, argp); |
| case BTRFS_IOC_SCRUB: |
| return btrfs_ioctl_scrub(file, argp); |
| case BTRFS_IOC_SCRUB_CANCEL: |
| return btrfs_ioctl_scrub_cancel(fs_info); |
| case BTRFS_IOC_SCRUB_PROGRESS: |
| return btrfs_ioctl_scrub_progress(fs_info, argp); |
| case BTRFS_IOC_BALANCE_V2: |
| return btrfs_ioctl_balance(file, argp); |
| case BTRFS_IOC_BALANCE_CTL: |
| return btrfs_ioctl_balance_ctl(fs_info, arg); |
| case BTRFS_IOC_BALANCE_PROGRESS: |
| return btrfs_ioctl_balance_progress(fs_info, argp); |
| case BTRFS_IOC_SET_RECEIVED_SUBVOL: |
| return btrfs_ioctl_set_received_subvol(file, argp); |
| #ifdef CONFIG_64BIT |
| case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: |
| return btrfs_ioctl_set_received_subvol_32(file, argp); |
| #endif |
| case BTRFS_IOC_SEND: |
| return _btrfs_ioctl_send(file, argp, false); |
| #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) |
| case BTRFS_IOC_SEND_32: |
| return _btrfs_ioctl_send(file, argp, true); |
| #endif |
| case BTRFS_IOC_GET_DEV_STATS: |
| return btrfs_ioctl_get_dev_stats(fs_info, argp); |
| case BTRFS_IOC_QUOTA_CTL: |
| return btrfs_ioctl_quota_ctl(file, argp); |
| case BTRFS_IOC_QGROUP_ASSIGN: |
| return btrfs_ioctl_qgroup_assign(file, argp); |
| case BTRFS_IOC_QGROUP_CREATE: |
| return btrfs_ioctl_qgroup_create(file, argp); |
| case BTRFS_IOC_QGROUP_LIMIT: |
| return btrfs_ioctl_qgroup_limit(file, argp); |
| case BTRFS_IOC_QUOTA_RESCAN: |
| return btrfs_ioctl_quota_rescan(file, argp); |
| case BTRFS_IOC_QUOTA_RESCAN_STATUS: |
| return btrfs_ioctl_quota_rescan_status(file, argp); |
| case BTRFS_IOC_QUOTA_RESCAN_WAIT: |
| return btrfs_ioctl_quota_rescan_wait(file, argp); |
| case BTRFS_IOC_DEV_REPLACE: |
| return btrfs_ioctl_dev_replace(fs_info, argp); |
| case BTRFS_IOC_GET_FSLABEL: |
| return btrfs_ioctl_get_fslabel(file, argp); |
| case BTRFS_IOC_SET_FSLABEL: |
| return btrfs_ioctl_set_fslabel(file, argp); |
| case BTRFS_IOC_GET_SUPPORTED_FEATURES: |
| return btrfs_ioctl_get_supported_features(argp); |
| case BTRFS_IOC_GET_FEATURES: |
| return btrfs_ioctl_get_features(file, argp); |
| case BTRFS_IOC_SET_FEATURES: |
| return btrfs_ioctl_set_features(file, argp); |
| case FS_IOC_FSGETXATTR: |
| return btrfs_ioctl_fsgetxattr(file, argp); |
| case FS_IOC_FSSETXATTR: |
| return btrfs_ioctl_fssetxattr(file, argp); |
| case BTRFS_IOC_GET_SUBVOL_INFO: |
| return btrfs_ioctl_get_subvol_info(file, argp); |
| case BTRFS_IOC_GET_SUBVOL_ROOTREF: |
| return btrfs_ioctl_get_subvol_rootref(file, argp); |
| case BTRFS_IOC_INO_LOOKUP_USER: |
| return btrfs_ioctl_ino_lookup_user(file, argp); |
| } |
| |
| return -ENOTTY; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| /* |
| * These all access 32-bit values anyway so no further |
| * handling is necessary. |
| */ |
| switch (cmd) { |
| case FS_IOC32_GETFLAGS: |
| cmd = FS_IOC_GETFLAGS; |
| break; |
| case FS_IOC32_SETFLAGS: |
| cmd = FS_IOC_SETFLAGS; |
| break; |
| case FS_IOC32_GETVERSION: |
| cmd = FS_IOC_GETVERSION; |
| break; |
| } |
| |
| return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); |
| } |
| #endif |