| /* |
| * e100net.c: A network driver for the ETRAX 100LX network controller. |
| * |
| * Copyright (c) 1998-2002 Axis Communications AB. |
| * |
| * The outline of this driver comes from skeleton.c. |
| * |
| */ |
| |
| |
| #include <linux/module.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/interrupt.h> |
| #include <linux/ptrace.h> |
| #include <linux/ioport.h> |
| #include <linux/in.h> |
| #include <linux/string.h> |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| |
| #include <linux/if.h> |
| #include <linux/mii.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/ethtool.h> |
| |
| #include <arch/svinto.h>/* DMA and register descriptions */ |
| #include <asm/io.h> /* CRIS_LED_* I/O functions */ |
| #include <asm/irq.h> |
| #include <asm/dma.h> |
| #include <asm/system.h> |
| #include <asm/ethernet.h> |
| #include <asm/cache.h> |
| #include <arch/io_interface_mux.h> |
| |
| //#define ETHDEBUG |
| #define D(x) |
| |
| /* |
| * The name of the card. Is used for messages and in the requests for |
| * io regions, irqs and dma channels |
| */ |
| |
| static const char* cardname = "ETRAX 100LX built-in ethernet controller"; |
| |
| /* A default ethernet address. Highlevel SW will set the real one later */ |
| |
| static struct sockaddr default_mac = { |
| 0, |
| { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 } |
| }; |
| |
| /* Information that need to be kept for each board. */ |
| struct net_local { |
| struct mii_if_info mii_if; |
| |
| /* Tx control lock. This protects the transmit buffer ring |
| * state along with the "tx full" state of the driver. This |
| * means all netif_queue flow control actions are protected |
| * by this lock as well. |
| */ |
| spinlock_t lock; |
| |
| spinlock_t led_lock; /* Protect LED state */ |
| spinlock_t transceiver_lock; /* Protect transceiver state. */ |
| }; |
| |
| typedef struct etrax_eth_descr |
| { |
| etrax_dma_descr descr; |
| struct sk_buff* skb; |
| } etrax_eth_descr; |
| |
| /* Some transceivers requires special handling */ |
| struct transceiver_ops |
| { |
| unsigned int oui; |
| void (*check_speed)(struct net_device* dev); |
| void (*check_duplex)(struct net_device* dev); |
| }; |
| |
| /* Duplex settings */ |
| enum duplex |
| { |
| half, |
| full, |
| autoneg |
| }; |
| |
| /* Dma descriptors etc. */ |
| |
| #define MAX_MEDIA_DATA_SIZE 1522 |
| |
| #define MIN_PACKET_LEN 46 |
| #define ETHER_HEAD_LEN 14 |
| |
| /* |
| ** MDIO constants. |
| */ |
| #define MDIO_START 0x1 |
| #define MDIO_READ 0x2 |
| #define MDIO_WRITE 0x1 |
| #define MDIO_PREAMBLE 0xfffffffful |
| |
| /* Broadcom specific */ |
| #define MDIO_AUX_CTRL_STATUS_REG 0x18 |
| #define MDIO_BC_FULL_DUPLEX_IND 0x1 |
| #define MDIO_BC_SPEED 0x2 |
| |
| /* TDK specific */ |
| #define MDIO_TDK_DIAGNOSTIC_REG 18 |
| #define MDIO_TDK_DIAGNOSTIC_RATE 0x400 |
| #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800 |
| |
| /*Intel LXT972A specific*/ |
| #define MDIO_INT_STATUS_REG_2 0x0011 |
| #define MDIO_INT_FULL_DUPLEX_IND (1 << 9) |
| #define MDIO_INT_SPEED (1 << 14) |
| |
| /* Network flash constants */ |
| #define NET_FLASH_TIME (HZ/50) /* 20 ms */ |
| #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */ |
| #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */ |
| #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */ |
| |
| #define NO_NETWORK_ACTIVITY 0 |
| #define NETWORK_ACTIVITY 1 |
| |
| #define NBR_OF_RX_DESC 32 |
| #define NBR_OF_TX_DESC 16 |
| |
| /* Large packets are sent directly to upper layers while small packets are */ |
| /* copied (to reduce memory waste). The following constant decides the breakpoint */ |
| #define RX_COPYBREAK 256 |
| |
| /* Due to a chip bug we need to flush the cache when descriptors are returned */ |
| /* to the DMA. To decrease performance impact we return descriptors in chunks. */ |
| /* The following constant determines the number of descriptors to return. */ |
| #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2 |
| |
| #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01) |
| |
| /* Define some macros to access ETRAX 100 registers */ |
| #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \ |
| IO_FIELD_(reg##_, field##_, val) |
| #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \ |
| IO_STATE_(reg##_, field##_, _##val) |
| |
| static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to |
| to be processed */ |
| static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */ |
| |
| static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32))); |
| |
| static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */ |
| static etrax_eth_descr* myLastTxDesc; /* End of send queue */ |
| static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */ |
| static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32))); |
| |
| static unsigned int network_rec_config_shadow = 0; |
| |
| static unsigned int network_tr_ctrl_shadow = 0; |
| |
| /* Network speed indication. */ |
| static DEFINE_TIMER(speed_timer, NULL, 0, 0); |
| static DEFINE_TIMER(clear_led_timer, NULL, 0, 0); |
| static int current_speed; /* Speed read from transceiver */ |
| static int current_speed_selection; /* Speed selected by user */ |
| static unsigned long led_next_time; |
| static int led_active; |
| static int rx_queue_len; |
| |
| /* Duplex */ |
| static DEFINE_TIMER(duplex_timer, NULL, 0, 0); |
| static int full_duplex; |
| static enum duplex current_duplex; |
| |
| /* Index to functions, as function prototypes. */ |
| |
| static int etrax_ethernet_init(void); |
| |
| static int e100_open(struct net_device *dev); |
| static int e100_set_mac_address(struct net_device *dev, void *addr); |
| static int e100_send_packet(struct sk_buff *skb, struct net_device *dev); |
| static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id); |
| static irqreturn_t e100nw_interrupt(int irq, void *dev_id); |
| static void e100_rx(struct net_device *dev); |
| static int e100_close(struct net_device *dev); |
| static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); |
| static int e100_set_config(struct net_device* dev, struct ifmap* map); |
| static void e100_tx_timeout(struct net_device *dev); |
| static struct net_device_stats *e100_get_stats(struct net_device *dev); |
| static void set_multicast_list(struct net_device *dev); |
| static void e100_hardware_send_packet(struct net_local* np, char *buf, int length); |
| static void update_rx_stats(struct net_device_stats *); |
| static void update_tx_stats(struct net_device_stats *); |
| static int e100_probe_transceiver(struct net_device* dev); |
| |
| static void e100_check_speed(unsigned long priv); |
| static void e100_set_speed(struct net_device* dev, unsigned long speed); |
| static void e100_check_duplex(unsigned long priv); |
| static void e100_set_duplex(struct net_device* dev, enum duplex); |
| static void e100_negotiate(struct net_device* dev); |
| |
| static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location); |
| static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value); |
| |
| static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd); |
| static void e100_send_mdio_bit(unsigned char bit); |
| static unsigned char e100_receive_mdio_bit(void); |
| static void e100_reset_transceiver(struct net_device* net); |
| |
| static void e100_clear_network_leds(unsigned long dummy); |
| static void e100_set_network_leds(int active); |
| |
| static const struct ethtool_ops e100_ethtool_ops; |
| #if defined(CONFIG_ETRAX_NO_PHY) |
| static void dummy_check_speed(struct net_device* dev); |
| static void dummy_check_duplex(struct net_device* dev); |
| #else |
| static void broadcom_check_speed(struct net_device* dev); |
| static void broadcom_check_duplex(struct net_device* dev); |
| static void tdk_check_speed(struct net_device* dev); |
| static void tdk_check_duplex(struct net_device* dev); |
| static void intel_check_speed(struct net_device* dev); |
| static void intel_check_duplex(struct net_device* dev); |
| static void generic_check_speed(struct net_device* dev); |
| static void generic_check_duplex(struct net_device* dev); |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void e100_netpoll(struct net_device* dev); |
| #endif |
| |
| static int autoneg_normal = 1; |
| |
| struct transceiver_ops transceivers[] = |
| { |
| #if defined(CONFIG_ETRAX_NO_PHY) |
| {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */ |
| #else |
| {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */ |
| {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */ |
| {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */ |
| {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/ |
| {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */ |
| #endif |
| }; |
| |
| struct transceiver_ops* transceiver = &transceivers[0]; |
| |
| static const struct net_device_ops e100_netdev_ops = { |
| .ndo_open = e100_open, |
| .ndo_stop = e100_close, |
| .ndo_start_xmit = e100_send_packet, |
| .ndo_tx_timeout = e100_tx_timeout, |
| .ndo_get_stats = e100_get_stats, |
| .ndo_set_multicast_list = set_multicast_list, |
| .ndo_do_ioctl = e100_ioctl, |
| .ndo_set_mac_address = e100_set_mac_address, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_change_mtu = eth_change_mtu, |
| .ndo_set_config = e100_set_config, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = e100_netpoll, |
| #endif |
| }; |
| |
| #define tx_done(dev) (*R_DMA_CH0_CMD == 0) |
| |
| /* |
| * Check for a network adaptor of this type, and return '0' if one exists. |
| * If dev->base_addr == 0, probe all likely locations. |
| * If dev->base_addr == 1, always return failure. |
| * If dev->base_addr == 2, allocate space for the device and return success |
| * (detachable devices only). |
| */ |
| |
| static int __init |
| etrax_ethernet_init(void) |
| { |
| struct net_device *dev; |
| struct net_local* np; |
| int i, err; |
| |
| printk(KERN_INFO |
| "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n"); |
| |
| if (cris_request_io_interface(if_eth, cardname)) { |
| printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n"); |
| return -EBUSY; |
| } |
| |
| dev = alloc_etherdev(sizeof(struct net_local)); |
| if (!dev) |
| return -ENOMEM; |
| |
| np = netdev_priv(dev); |
| |
| /* we do our own locking */ |
| dev->features |= NETIF_F_LLTX; |
| |
| dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */ |
| |
| /* now setup our etrax specific stuff */ |
| |
| dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */ |
| dev->dma = NETWORK_RX_DMA_NBR; |
| |
| /* fill in our handlers so the network layer can talk to us in the future */ |
| |
| dev->ethtool_ops = &e100_ethtool_ops; |
| dev->netdev_ops = &e100_netdev_ops; |
| |
| spin_lock_init(&np->lock); |
| spin_lock_init(&np->led_lock); |
| spin_lock_init(&np->transceiver_lock); |
| |
| /* Initialise the list of Etrax DMA-descriptors */ |
| |
| /* Initialise receive descriptors */ |
| |
| for (i = 0; i < NBR_OF_RX_DESC; i++) { |
| /* Allocate two extra cachelines to make sure that buffer used |
| * by DMA does not share cacheline with any other data (to |
| * avoid cache bug) |
| */ |
| RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES); |
| if (!RxDescList[i].skb) |
| return -ENOMEM; |
| RxDescList[i].descr.ctrl = 0; |
| RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE; |
| RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]); |
| RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data)); |
| RxDescList[i].descr.status = 0; |
| RxDescList[i].descr.hw_len = 0; |
| prepare_rx_descriptor(&RxDescList[i].descr); |
| } |
| |
| RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol; |
| RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]); |
| rx_queue_len = 0; |
| |
| /* Initialize transmit descriptors */ |
| for (i = 0; i < NBR_OF_TX_DESC; i++) { |
| TxDescList[i].descr.ctrl = 0; |
| TxDescList[i].descr.sw_len = 0; |
| TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr); |
| TxDescList[i].descr.buf = 0; |
| TxDescList[i].descr.status = 0; |
| TxDescList[i].descr.hw_len = 0; |
| TxDescList[i].skb = 0; |
| } |
| |
| TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol; |
| TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr); |
| |
| /* Initialise initial pointers */ |
| |
| myNextRxDesc = &RxDescList[0]; |
| myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| myFirstTxDesc = &TxDescList[0]; |
| myNextTxDesc = &TxDescList[0]; |
| myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1]; |
| |
| /* Register device */ |
| err = register_netdev(dev); |
| if (err) { |
| free_netdev(dev); |
| return err; |
| } |
| |
| /* set the default MAC address */ |
| |
| e100_set_mac_address(dev, &default_mac); |
| |
| /* Initialize speed indicator stuff. */ |
| |
| current_speed = 10; |
| current_speed_selection = 0; /* Auto */ |
| speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; |
| speed_timer.data = (unsigned long)dev; |
| speed_timer.function = e100_check_speed; |
| |
| clear_led_timer.function = e100_clear_network_leds; |
| clear_led_timer.data = (unsigned long)dev; |
| |
| full_duplex = 0; |
| current_duplex = autoneg; |
| duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL; |
| duplex_timer.data = (unsigned long)dev; |
| duplex_timer.function = e100_check_duplex; |
| |
| /* Initialize mii interface */ |
| np->mii_if.phy_id_mask = 0x1f; |
| np->mii_if.reg_num_mask = 0x1f; |
| np->mii_if.dev = dev; |
| np->mii_if.mdio_read = e100_get_mdio_reg; |
| np->mii_if.mdio_write = e100_set_mdio_reg; |
| |
| /* Initialize group address registers to make sure that no */ |
| /* unwanted addresses are matched */ |
| *R_NETWORK_GA_0 = 0x00000000; |
| *R_NETWORK_GA_1 = 0x00000000; |
| |
| /* Initialize next time the led can flash */ |
| led_next_time = jiffies; |
| return 0; |
| } |
| |
| /* set MAC address of the interface. called from the core after a |
| * SIOCSIFADDR ioctl, and from the bootup above. |
| */ |
| |
| static int |
| e100_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct net_local *np = netdev_priv(dev); |
| struct sockaddr *addr = p; |
| |
| spin_lock(&np->lock); /* preemption protection */ |
| |
| /* remember it */ |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| /* Write it to the hardware. |
| * Note the way the address is wrapped: |
| * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24); |
| * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8); |
| */ |
| |
| *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | |
| (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); |
| *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); |
| *R_NETWORK_SA_2 = 0; |
| |
| /* show it in the log as well */ |
| |
| printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr); |
| |
| spin_unlock(&np->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Open/initialize the board. This is called (in the current kernel) |
| * sometime after booting when the 'ifconfig' program is run. |
| * |
| * This routine should set everything up anew at each open, even |
| * registers that "should" only need to be set once at boot, so that |
| * there is non-reboot way to recover if something goes wrong. |
| */ |
| |
| static int |
| e100_open(struct net_device *dev) |
| { |
| unsigned long flags; |
| |
| /* enable the MDIO output pin */ |
| |
| *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable); |
| |
| *R_IRQ_MASK0_CLR = |
| IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | |
| IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | |
| IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); |
| |
| /* clear dma0 and 1 eop and descr irq masks */ |
| *R_IRQ_MASK2_CLR = |
| IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr); |
| |
| /* Reset and wait for the DMA channels */ |
| |
| RESET_DMA(NETWORK_TX_DMA_NBR); |
| RESET_DMA(NETWORK_RX_DMA_NBR); |
| WAIT_DMA(NETWORK_TX_DMA_NBR); |
| WAIT_DMA(NETWORK_RX_DMA_NBR); |
| |
| /* Initialise the etrax network controller */ |
| |
| /* allocate the irq corresponding to the receiving DMA */ |
| |
| if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname, |
| (void *)dev)) { |
| goto grace_exit0; |
| } |
| |
| /* allocate the irq corresponding to the transmitting DMA */ |
| |
| if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0, |
| cardname, (void *)dev)) { |
| goto grace_exit1; |
| } |
| |
| /* allocate the irq corresponding to the network errors etc */ |
| |
| if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0, |
| cardname, (void *)dev)) { |
| goto grace_exit2; |
| } |
| |
| /* |
| * Always allocate the DMA channels after the IRQ, |
| * and clean up on failure. |
| */ |
| |
| if (cris_request_dma(NETWORK_TX_DMA_NBR, |
| cardname, |
| DMA_VERBOSE_ON_ERROR, |
| dma_eth)) { |
| goto grace_exit3; |
| } |
| |
| if (cris_request_dma(NETWORK_RX_DMA_NBR, |
| cardname, |
| DMA_VERBOSE_ON_ERROR, |
| dma_eth)) { |
| goto grace_exit4; |
| } |
| |
| /* give the HW an idea of what MAC address we want */ |
| |
| *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | |
| (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); |
| *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); |
| *R_NETWORK_SA_2 = 0; |
| |
| #if 0 |
| /* use promiscuous mode for testing */ |
| *R_NETWORK_GA_0 = 0xffffffff; |
| *R_NETWORK_GA_1 = 0xffffffff; |
| |
| *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */ |
| #else |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522); |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive); |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable); |
| SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| #endif |
| |
| *R_NETWORK_GEN_CONFIG = |
| IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | |
| IO_STATE(R_NETWORK_GEN_CONFIG, enable, on); |
| |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable); |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable); |
| *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow; |
| |
| local_irq_save(flags); |
| |
| /* enable the irq's for ethernet DMA */ |
| |
| *R_IRQ_MASK2_SET = |
| IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) | |
| IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set); |
| |
| *R_IRQ_MASK0_SET = |
| IO_STATE(R_IRQ_MASK0_SET, overrun, set) | |
| IO_STATE(R_IRQ_MASK0_SET, underrun, set) | |
| IO_STATE(R_IRQ_MASK0_SET, excessive_col, set); |
| |
| /* make sure the irqs are cleared */ |
| |
| *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do); |
| *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do); |
| |
| /* make sure the rec and transmit error counters are cleared */ |
| |
| (void)*R_REC_COUNTERS; /* dummy read */ |
| (void)*R_TR_COUNTERS; /* dummy read */ |
| |
| /* start the receiving DMA channel so we can receive packets from now on */ |
| |
| *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc); |
| *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start); |
| |
| /* Set up transmit DMA channel so it can be restarted later */ |
| |
| *R_DMA_CH0_FIRST = 0; |
| *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc); |
| netif_start_queue(dev); |
| |
| local_irq_restore(flags); |
| |
| /* Probe for transceiver */ |
| if (e100_probe_transceiver(dev)) |
| goto grace_exit5; |
| |
| /* Start duplex/speed timers */ |
| add_timer(&speed_timer); |
| add_timer(&duplex_timer); |
| |
| /* We are now ready to accept transmit requeusts from |
| * the queueing layer of the networking. |
| */ |
| netif_carrier_on(dev); |
| |
| return 0; |
| |
| grace_exit5: |
| cris_free_dma(NETWORK_RX_DMA_NBR, cardname); |
| grace_exit4: |
| cris_free_dma(NETWORK_TX_DMA_NBR, cardname); |
| grace_exit3: |
| free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev); |
| grace_exit2: |
| free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); |
| grace_exit1: |
| free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); |
| grace_exit0: |
| return -EAGAIN; |
| } |
| |
| #if defined(CONFIG_ETRAX_NO_PHY) |
| static void |
| dummy_check_speed(struct net_device* dev) |
| { |
| current_speed = 100; |
| } |
| #else |
| static void |
| generic_check_speed(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE); |
| if ((data & ADVERTISE_100FULL) || |
| (data & ADVERTISE_100HALF)) |
| current_speed = 100; |
| else |
| current_speed = 10; |
| } |
| |
| static void |
| tdk_check_speed(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_TDK_DIAGNOSTIC_REG); |
| current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10); |
| } |
| |
| static void |
| broadcom_check_speed(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_AUX_CTRL_STATUS_REG); |
| current_speed = (data & MDIO_BC_SPEED ? 100 : 10); |
| } |
| |
| static void |
| intel_check_speed(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_INT_STATUS_REG_2); |
| current_speed = (data & MDIO_INT_SPEED ? 100 : 10); |
| } |
| #endif |
| static void |
| e100_check_speed(unsigned long priv) |
| { |
| struct net_device* dev = (struct net_device*)priv; |
| struct net_local *np = netdev_priv(dev); |
| static int led_initiated = 0; |
| unsigned long data; |
| int old_speed = current_speed; |
| |
| spin_lock(&np->transceiver_lock); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR); |
| if (!(data & BMSR_LSTATUS)) { |
| current_speed = 0; |
| } else { |
| transceiver->check_speed(dev); |
| } |
| |
| spin_lock(&np->led_lock); |
| if ((old_speed != current_speed) || !led_initiated) { |
| led_initiated = 1; |
| e100_set_network_leds(NO_NETWORK_ACTIVITY); |
| if (current_speed) |
| netif_carrier_on(dev); |
| else |
| netif_carrier_off(dev); |
| } |
| spin_unlock(&np->led_lock); |
| |
| /* Reinitialize the timer. */ |
| speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; |
| add_timer(&speed_timer); |
| |
| spin_unlock(&np->transceiver_lock); |
| } |
| |
| static void |
| e100_negotiate(struct net_device* dev) |
| { |
| struct net_local *np = netdev_priv(dev); |
| unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MII_ADVERTISE); |
| |
| /* Discard old speed and duplex settings */ |
| data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL | |
| ADVERTISE_10HALF | ADVERTISE_10FULL); |
| |
| switch (current_speed_selection) { |
| case 10: |
| if (current_duplex == full) |
| data |= ADVERTISE_10FULL; |
| else if (current_duplex == half) |
| data |= ADVERTISE_10HALF; |
| else |
| data |= ADVERTISE_10HALF | ADVERTISE_10FULL; |
| break; |
| |
| case 100: |
| if (current_duplex == full) |
| data |= ADVERTISE_100FULL; |
| else if (current_duplex == half) |
| data |= ADVERTISE_100HALF; |
| else |
| data |= ADVERTISE_100HALF | ADVERTISE_100FULL; |
| break; |
| |
| case 0: /* Auto */ |
| if (current_duplex == full) |
| data |= ADVERTISE_100FULL | ADVERTISE_10FULL; |
| else if (current_duplex == half) |
| data |= ADVERTISE_100HALF | ADVERTISE_10HALF; |
| else |
| data |= ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL; |
| break; |
| |
| default: /* assume autoneg speed and duplex */ |
| data |= ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL; |
| break; |
| } |
| |
| e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR); |
| if (autoneg_normal) { |
| /* Renegotiate with link partner */ |
| data |= BMCR_ANENABLE | BMCR_ANRESTART; |
| } else { |
| /* Don't negotiate speed or duplex */ |
| data &= ~(BMCR_ANENABLE | BMCR_ANRESTART); |
| |
| /* Set speed and duplex static */ |
| if (current_speed_selection == 10) |
| data &= ~BMCR_SPEED100; |
| else |
| data |= BMCR_SPEED100; |
| |
| if (current_duplex != full) |
| data &= ~BMCR_FULLDPLX; |
| else |
| data |= BMCR_FULLDPLX; |
| } |
| e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data); |
| } |
| |
| static void |
| e100_set_speed(struct net_device* dev, unsigned long speed) |
| { |
| struct net_local *np = netdev_priv(dev); |
| |
| spin_lock(&np->transceiver_lock); |
| if (speed != current_speed_selection) { |
| current_speed_selection = speed; |
| e100_negotiate(dev); |
| } |
| spin_unlock(&np->transceiver_lock); |
| } |
| |
| static void |
| e100_check_duplex(unsigned long priv) |
| { |
| struct net_device *dev = (struct net_device *)priv; |
| struct net_local *np = netdev_priv(dev); |
| int old_duplex; |
| |
| spin_lock(&np->transceiver_lock); |
| old_duplex = full_duplex; |
| transceiver->check_duplex(dev); |
| if (old_duplex != full_duplex) { |
| /* Duplex changed */ |
| SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| } |
| |
| /* Reinitialize the timer. */ |
| duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL; |
| add_timer(&duplex_timer); |
| np->mii_if.full_duplex = full_duplex; |
| spin_unlock(&np->transceiver_lock); |
| } |
| #if defined(CONFIG_ETRAX_NO_PHY) |
| static void |
| dummy_check_duplex(struct net_device* dev) |
| { |
| full_duplex = 1; |
| } |
| #else |
| static void |
| generic_check_duplex(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE); |
| if ((data & ADVERTISE_10FULL) || |
| (data & ADVERTISE_100FULL)) |
| full_duplex = 1; |
| else |
| full_duplex = 0; |
| } |
| |
| static void |
| tdk_check_duplex(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_TDK_DIAGNOSTIC_REG); |
| full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0; |
| } |
| |
| static void |
| broadcom_check_duplex(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_AUX_CTRL_STATUS_REG); |
| full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0; |
| } |
| |
| static void |
| intel_check_duplex(struct net_device* dev) |
| { |
| unsigned long data; |
| struct net_local *np = netdev_priv(dev); |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, |
| MDIO_INT_STATUS_REG_2); |
| full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0; |
| } |
| #endif |
| static void |
| e100_set_duplex(struct net_device* dev, enum duplex new_duplex) |
| { |
| struct net_local *np = netdev_priv(dev); |
| |
| spin_lock(&np->transceiver_lock); |
| if (new_duplex != current_duplex) { |
| current_duplex = new_duplex; |
| e100_negotiate(dev); |
| } |
| spin_unlock(&np->transceiver_lock); |
| } |
| |
| static int |
| e100_probe_transceiver(struct net_device* dev) |
| { |
| int ret = 0; |
| |
| #if !defined(CONFIG_ETRAX_NO_PHY) |
| unsigned int phyid_high; |
| unsigned int phyid_low; |
| unsigned int oui; |
| struct transceiver_ops* ops = NULL; |
| struct net_local *np = netdev_priv(dev); |
| |
| spin_lock(&np->transceiver_lock); |
| |
| /* Probe MDIO physical address */ |
| for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31; |
| np->mii_if.phy_id++) { |
| if (e100_get_mdio_reg(dev, |
| np->mii_if.phy_id, MII_BMSR) != 0xffff) |
| break; |
| } |
| if (np->mii_if.phy_id == 32) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| /* Get manufacturer */ |
| phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1); |
| phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2); |
| oui = (phyid_high << 6) | (phyid_low >> 10); |
| |
| for (ops = &transceivers[0]; ops->oui; ops++) { |
| if (ops->oui == oui) |
| break; |
| } |
| transceiver = ops; |
| out: |
| spin_unlock(&np->transceiver_lock); |
| #endif |
| return ret; |
| } |
| |
| static int |
| e100_get_mdio_reg(struct net_device *dev, int phy_id, int location) |
| { |
| unsigned short cmd; /* Data to be sent on MDIO port */ |
| int data; /* Data read from MDIO */ |
| int bitCounter; |
| |
| /* Start of frame, OP Code, Physical Address, Register Address */ |
| cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) | |
| (location << 2); |
| |
| e100_send_mdio_cmd(cmd, 0); |
| |
| data = 0; |
| |
| /* Data... */ |
| for (bitCounter=15; bitCounter>=0 ; bitCounter--) { |
| data |= (e100_receive_mdio_bit() << bitCounter); |
| } |
| |
| return data; |
| } |
| |
| static void |
| e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value) |
| { |
| int bitCounter; |
| unsigned short cmd; |
| |
| cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) | |
| (location << 2); |
| |
| e100_send_mdio_cmd(cmd, 1); |
| |
| /* Data... */ |
| for (bitCounter=15; bitCounter>=0 ; bitCounter--) { |
| e100_send_mdio_bit(GET_BIT(bitCounter, value)); |
| } |
| |
| } |
| |
| static void |
| e100_send_mdio_cmd(unsigned short cmd, int write_cmd) |
| { |
| int bitCounter; |
| unsigned char data = 0x2; |
| |
| /* Preamble */ |
| for (bitCounter = 31; bitCounter>= 0; bitCounter--) |
| e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE)); |
| |
| for (bitCounter = 15; bitCounter >= 2; bitCounter--) |
| e100_send_mdio_bit(GET_BIT(bitCounter, cmd)); |
| |
| /* Turnaround */ |
| for (bitCounter = 1; bitCounter >= 0 ; bitCounter--) |
| if (write_cmd) |
| e100_send_mdio_bit(GET_BIT(bitCounter, data)); |
| else |
| e100_receive_mdio_bit(); |
| } |
| |
| static void |
| e100_send_mdio_bit(unsigned char bit) |
| { |
| *R_NETWORK_MGM_CTRL = |
| IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | |
| IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); |
| udelay(1); |
| *R_NETWORK_MGM_CTRL = |
| IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | |
| IO_MASK(R_NETWORK_MGM_CTRL, mdck) | |
| IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); |
| udelay(1); |
| } |
| |
| static unsigned char |
| e100_receive_mdio_bit() |
| { |
| unsigned char bit; |
| *R_NETWORK_MGM_CTRL = 0; |
| bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT); |
| udelay(1); |
| *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck); |
| udelay(1); |
| return bit; |
| } |
| |
| static void |
| e100_reset_transceiver(struct net_device* dev) |
| { |
| struct net_local *np = netdev_priv(dev); |
| unsigned short cmd; |
| unsigned short data; |
| int bitCounter; |
| |
| data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR); |
| |
| cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2); |
| |
| e100_send_mdio_cmd(cmd, 1); |
| |
| data |= 0x8000; |
| |
| for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) { |
| e100_send_mdio_bit(GET_BIT(bitCounter, data)); |
| } |
| } |
| |
| /* Called by upper layers if they decide it took too long to complete |
| * sending a packet - we need to reset and stuff. |
| */ |
| |
| static void |
| e100_tx_timeout(struct net_device *dev) |
| { |
| struct net_local *np = netdev_priv(dev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&np->lock, flags); |
| |
| printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, |
| tx_done(dev) ? "IRQ problem" : "network cable problem"); |
| |
| /* remember we got an error */ |
| |
| dev->stats.tx_errors++; |
| |
| /* reset the TX DMA in case it has hung on something */ |
| |
| RESET_DMA(NETWORK_TX_DMA_NBR); |
| WAIT_DMA(NETWORK_TX_DMA_NBR); |
| |
| /* Reset the transceiver. */ |
| |
| e100_reset_transceiver(dev); |
| |
| /* and get rid of the packets that never got an interrupt */ |
| while (myFirstTxDesc != myNextTxDesc) { |
| dev_kfree_skb(myFirstTxDesc->skb); |
| myFirstTxDesc->skb = 0; |
| myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next); |
| } |
| |
| /* Set up transmit DMA channel so it can be restarted later */ |
| *R_DMA_CH0_FIRST = 0; |
| *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc); |
| |
| /* tell the upper layers we're ok again */ |
| |
| netif_wake_queue(dev); |
| spin_unlock_irqrestore(&np->lock, flags); |
| } |
| |
| |
| /* This will only be invoked if the driver is _not_ in XOFF state. |
| * What this means is that we need not check it, and that this |
| * invariant will hold if we make sure that the netif_*_queue() |
| * calls are done at the proper times. |
| */ |
| |
| static int |
| e100_send_packet(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct net_local *np = netdev_priv(dev); |
| unsigned char *buf = skb->data; |
| unsigned long flags; |
| |
| #ifdef ETHDEBUG |
| printk("send packet len %d\n", length); |
| #endif |
| spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */ |
| |
| myNextTxDesc->skb = skb; |
| |
| dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */ |
| |
| e100_hardware_send_packet(np, buf, skb->len); |
| |
| myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next); |
| |
| /* Stop queue if full */ |
| if (myNextTxDesc == myFirstTxDesc) { |
| netif_stop_queue(dev); |
| } |
| |
| spin_unlock_irqrestore(&np->lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * The typical workload of the driver: |
| * Handle the network interface interrupts. |
| */ |
| |
| static irqreturn_t |
| e100rxtx_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct net_local *np = netdev_priv(dev); |
| unsigned long irqbits; |
| |
| /* |
| * Note that both rx and tx interrupts are blocked at this point, |
| * regardless of which got us here. |
| */ |
| |
| irqbits = *R_IRQ_MASK2_RD; |
| |
| /* Handle received packets */ |
| if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) { |
| /* acknowledge the eop interrupt */ |
| |
| *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do); |
| |
| /* check if one or more complete packets were indeed received */ |
| |
| while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) && |
| (myNextRxDesc != myLastRxDesc)) { |
| /* Take out the buffer and give it to the OS, then |
| * allocate a new buffer to put a packet in. |
| */ |
| e100_rx(dev); |
| dev->stats.rx_packets++; |
| /* restart/continue on the channel, for safety */ |
| *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart); |
| /* clear dma channel 1 eop/descr irq bits */ |
| *R_DMA_CH1_CLR_INTR = |
| IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) | |
| IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do); |
| |
| /* now, we might have gotten another packet |
| so we have to loop back and check if so */ |
| } |
| } |
| |
| /* Report any packets that have been sent */ |
| while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST && |
| (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) { |
| dev->stats.tx_bytes += myFirstTxDesc->skb->len; |
| dev->stats.tx_packets++; |
| |
| /* dma is ready with the transmission of the data in tx_skb, so now |
| we can release the skb memory */ |
| dev_kfree_skb_irq(myFirstTxDesc->skb); |
| myFirstTxDesc->skb = 0; |
| myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next); |
| /* Wake up queue. */ |
| netif_wake_queue(dev); |
| } |
| |
| if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) { |
| /* acknowledge the eop interrupt. */ |
| *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t |
| e100nw_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| unsigned long irqbits = *R_IRQ_MASK0_RD; |
| |
| /* check for underrun irq */ |
| if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) { |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr); |
| *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow; |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop); |
| dev->stats.tx_errors++; |
| D(printk("ethernet receiver underrun!\n")); |
| } |
| |
| /* check for overrun irq */ |
| if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) { |
| update_rx_stats(&dev->stats); /* this will ack the irq */ |
| D(printk("ethernet receiver overrun!\n")); |
| } |
| /* check for excessive collision irq */ |
| if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) { |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr); |
| *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow; |
| SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop); |
| dev->stats.tx_errors++; |
| D(printk("ethernet excessive collisions!\n")); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* We have a good packet(s), get it/them out of the buffers. */ |
| static void |
| e100_rx(struct net_device *dev) |
| { |
| struct sk_buff *skb; |
| int length = 0; |
| struct net_local *np = netdev_priv(dev); |
| unsigned char *skb_data_ptr; |
| #ifdef ETHDEBUG |
| int i; |
| #endif |
| etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */ |
| spin_lock(&np->led_lock); |
| if (!led_active && time_after(jiffies, led_next_time)) { |
| /* light the network leds depending on the current speed. */ |
| e100_set_network_leds(NETWORK_ACTIVITY); |
| |
| /* Set the earliest time we may clear the LED */ |
| led_next_time = jiffies + NET_FLASH_TIME; |
| led_active = 1; |
| mod_timer(&clear_led_timer, jiffies + HZ/10); |
| } |
| spin_unlock(&np->led_lock); |
| |
| length = myNextRxDesc->descr.hw_len - 4; |
| dev->stats.rx_bytes += length; |
| |
| #ifdef ETHDEBUG |
| printk("Got a packet of length %d:\n", length); |
| /* dump the first bytes in the packet */ |
| skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf); |
| for (i = 0; i < 8; i++) { |
| printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8, |
| skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3], |
| skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]); |
| skb_data_ptr += 8; |
| } |
| #endif |
| |
| if (length < RX_COPYBREAK) { |
| /* Small packet, copy data */ |
| skb = dev_alloc_skb(length - ETHER_HEAD_LEN); |
| if (!skb) { |
| dev->stats.rx_errors++; |
| printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); |
| goto update_nextrxdesc; |
| } |
| |
| skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */ |
| skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */ |
| |
| #ifdef ETHDEBUG |
| printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n", |
| skb->head, skb->data, skb_tail_pointer(skb), |
| skb_end_pointer(skb)); |
| printk("copying packet to 0x%x.\n", skb_data_ptr); |
| #endif |
| |
| memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length); |
| } |
| else { |
| /* Large packet, send directly to upper layers and allocate new |
| * memory (aligned to cache line boundary to avoid bug). |
| * Before sending the skb to upper layers we must make sure |
| * that skb->data points to the aligned start of the packet. |
| */ |
| int align; |
| struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES); |
| if (!new_skb) { |
| dev->stats.rx_errors++; |
| printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); |
| goto update_nextrxdesc; |
| } |
| skb = myNextRxDesc->skb; |
| align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data; |
| skb_put(skb, length + align); |
| skb_pull(skb, align); /* Remove alignment bytes */ |
| myNextRxDesc->skb = new_skb; |
| myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data)); |
| } |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* Send the packet to the upper layers */ |
| netif_rx(skb); |
| |
| update_nextrxdesc: |
| /* Prepare for next packet */ |
| myNextRxDesc->descr.status = 0; |
| prevRxDesc = myNextRxDesc; |
| myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next); |
| |
| rx_queue_len++; |
| |
| /* Check if descriptors should be returned */ |
| if (rx_queue_len == RX_QUEUE_THRESHOLD) { |
| flush_etrax_cache(); |
| prevRxDesc->descr.ctrl |= d_eol; |
| myLastRxDesc->descr.ctrl &= ~d_eol; |
| myLastRxDesc = prevRxDesc; |
| rx_queue_len = 0; |
| } |
| } |
| |
| /* The inverse routine to net_open(). */ |
| static int |
| e100_close(struct net_device *dev) |
| { |
| printk(KERN_INFO "Closing %s.\n", dev->name); |
| |
| netif_stop_queue(dev); |
| |
| *R_IRQ_MASK0_CLR = |
| IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | |
| IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | |
| IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); |
| |
| *R_IRQ_MASK2_CLR = |
| IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | |
| IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr); |
| |
| /* Stop the receiver and the transmitter */ |
| |
| RESET_DMA(NETWORK_TX_DMA_NBR); |
| RESET_DMA(NETWORK_RX_DMA_NBR); |
| |
| /* Flush the Tx and disable Rx here. */ |
| |
| free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); |
| free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); |
| free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev); |
| |
| cris_free_dma(NETWORK_TX_DMA_NBR, cardname); |
| cris_free_dma(NETWORK_RX_DMA_NBR, cardname); |
| |
| /* Update the statistics here. */ |
| |
| update_rx_stats(&dev->stats); |
| update_tx_stats(&dev->stats); |
| |
| /* Stop speed/duplex timers */ |
| del_timer(&speed_timer); |
| del_timer(&duplex_timer); |
| |
| return 0; |
| } |
| |
| static int |
| e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mii_ioctl_data *data = if_mii(ifr); |
| struct net_local *np = netdev_priv(dev); |
| int rc = 0; |
| int old_autoneg; |
| |
| spin_lock(&np->lock); /* Preempt protection */ |
| switch (cmd) { |
| /* The ioctls below should be considered obsolete but are */ |
| /* still present for compatibility with old scripts/apps */ |
| case SET_ETH_SPEED_10: /* 10 Mbps */ |
| e100_set_speed(dev, 10); |
| break; |
| case SET_ETH_SPEED_100: /* 100 Mbps */ |
| e100_set_speed(dev, 100); |
| break; |
| case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */ |
| e100_set_speed(dev, 0); |
| break; |
| case SET_ETH_DUPLEX_HALF: /* Half duplex */ |
| e100_set_duplex(dev, half); |
| break; |
| case SET_ETH_DUPLEX_FULL: /* Full duplex */ |
| e100_set_duplex(dev, full); |
| break; |
| case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */ |
| e100_set_duplex(dev, autoneg); |
| break; |
| case SET_ETH_AUTONEG: |
| old_autoneg = autoneg_normal; |
| autoneg_normal = *(int*)data; |
| if (autoneg_normal != old_autoneg) |
| e100_negotiate(dev); |
| break; |
| default: |
| rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr), |
| cmd, NULL); |
| break; |
| } |
| spin_unlock(&np->lock); |
| return rc; |
| } |
| |
| static int e100_get_settings(struct net_device *dev, |
| struct ethtool_cmd *cmd) |
| { |
| struct net_local *np = netdev_priv(dev); |
| int err; |
| |
| spin_lock_irq(&np->lock); |
| err = mii_ethtool_gset(&np->mii_if, cmd); |
| spin_unlock_irq(&np->lock); |
| |
| /* The PHY may support 1000baseT, but the Etrax100 does not. */ |
| cmd->supported &= ~(SUPPORTED_1000baseT_Half |
| | SUPPORTED_1000baseT_Full); |
| return err; |
| } |
| |
| static int e100_set_settings(struct net_device *dev, |
| struct ethtool_cmd *ecmd) |
| { |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| e100_set_duplex(dev, autoneg); |
| e100_set_speed(dev, 0); |
| } else { |
| e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full); |
| e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100); |
| } |
| |
| return 0; |
| } |
| |
| static void e100_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1); |
| strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1); |
| strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1); |
| strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1); |
| } |
| |
| static int e100_nway_reset(struct net_device *dev) |
| { |
| if (current_duplex == autoneg && current_speed_selection == 0) |
| e100_negotiate(dev); |
| return 0; |
| } |
| |
| static const struct ethtool_ops e100_ethtool_ops = { |
| .get_settings = e100_get_settings, |
| .set_settings = e100_set_settings, |
| .get_drvinfo = e100_get_drvinfo, |
| .nway_reset = e100_nway_reset, |
| .get_link = ethtool_op_get_link, |
| }; |
| |
| static int |
| e100_set_config(struct net_device *dev, struct ifmap *map) |
| { |
| struct net_local *np = netdev_priv(dev); |
| |
| spin_lock(&np->lock); /* Preempt protection */ |
| |
| switch(map->port) { |
| case IF_PORT_UNKNOWN: |
| /* Use autoneg */ |
| e100_set_speed(dev, 0); |
| e100_set_duplex(dev, autoneg); |
| break; |
| case IF_PORT_10BASET: |
| e100_set_speed(dev, 10); |
| e100_set_duplex(dev, autoneg); |
| break; |
| case IF_PORT_100BASET: |
| case IF_PORT_100BASETX: |
| e100_set_speed(dev, 100); |
| e100_set_duplex(dev, autoneg); |
| break; |
| case IF_PORT_100BASEFX: |
| case IF_PORT_10BASE2: |
| case IF_PORT_AUI: |
| spin_unlock(&np->lock); |
| return -EOPNOTSUPP; |
| break; |
| default: |
| printk(KERN_ERR "%s: Invalid media selected", dev->name); |
| spin_unlock(&np->lock); |
| return -EINVAL; |
| } |
| spin_unlock(&np->lock); |
| return 0; |
| } |
| |
| static void |
| update_rx_stats(struct net_device_stats *es) |
| { |
| unsigned long r = *R_REC_COUNTERS; |
| /* update stats relevant to reception errors */ |
| es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r); |
| es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r); |
| es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r); |
| es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r); |
| } |
| |
| static void |
| update_tx_stats(struct net_device_stats *es) |
| { |
| unsigned long r = *R_TR_COUNTERS; |
| /* update stats relevant to transmission errors */ |
| es->collisions += |
| IO_EXTRACT(R_TR_COUNTERS, single_col, r) + |
| IO_EXTRACT(R_TR_COUNTERS, multiple_col, r); |
| } |
| |
| /* |
| * Get the current statistics. |
| * This may be called with the card open or closed. |
| */ |
| static struct net_device_stats * |
| e100_get_stats(struct net_device *dev) |
| { |
| struct net_local *lp = netdev_priv(dev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&lp->lock, flags); |
| |
| update_rx_stats(&dev->stats); |
| update_tx_stats(&dev->stats); |
| |
| spin_unlock_irqrestore(&lp->lock, flags); |
| return &dev->stats; |
| } |
| |
| /* |
| * Set or clear the multicast filter for this adaptor. |
| * num_addrs == -1 Promiscuous mode, receive all packets |
| * num_addrs == 0 Normal mode, clear multicast list |
| * num_addrs > 0 Multicast mode, receive normal and MC packets, |
| * and do best-effort filtering. |
| */ |
| static void |
| set_multicast_list(struct net_device *dev) |
| { |
| struct net_local *lp = netdev_priv(dev); |
| int num_addr = netdev_mc_count(dev); |
| unsigned long int lo_bits; |
| unsigned long int hi_bits; |
| |
| spin_lock(&lp->lock); |
| if (dev->flags & IFF_PROMISC) { |
| /* promiscuous mode */ |
| lo_bits = 0xfffffffful; |
| hi_bits = 0xfffffffful; |
| |
| /* Enable individual receive */ |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| } else if (dev->flags & IFF_ALLMULTI) { |
| /* enable all multicasts */ |
| lo_bits = 0xfffffffful; |
| hi_bits = 0xfffffffful; |
| |
| /* Disable individual receive */ |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| } else if (num_addr == 0) { |
| /* Normal, clear the mc list */ |
| lo_bits = 0x00000000ul; |
| hi_bits = 0x00000000ul; |
| |
| /* Disable individual receive */ |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| } else { |
| /* MC mode, receive normal and MC packets */ |
| char hash_ix; |
| struct netdev_hw_addr *ha; |
| char *baddr; |
| |
| lo_bits = 0x00000000ul; |
| hi_bits = 0x00000000ul; |
| netdev_for_each_mc_addr(ha, dev) { |
| /* Calculate the hash index for the GA registers */ |
| |
| hash_ix = 0; |
| baddr = ha->addr; |
| hash_ix ^= (*baddr) & 0x3f; |
| hash_ix ^= ((*baddr) >> 6) & 0x03; |
| ++baddr; |
| hash_ix ^= ((*baddr) << 2) & 0x03c; |
| hash_ix ^= ((*baddr) >> 4) & 0xf; |
| ++baddr; |
| hash_ix ^= ((*baddr) << 4) & 0x30; |
| hash_ix ^= ((*baddr) >> 2) & 0x3f; |
| ++baddr; |
| hash_ix ^= (*baddr) & 0x3f; |
| hash_ix ^= ((*baddr) >> 6) & 0x03; |
| ++baddr; |
| hash_ix ^= ((*baddr) << 2) & 0x03c; |
| hash_ix ^= ((*baddr) >> 4) & 0xf; |
| ++baddr; |
| hash_ix ^= ((*baddr) << 4) & 0x30; |
| hash_ix ^= ((*baddr) >> 2) & 0x3f; |
| |
| hash_ix &= 0x3f; |
| |
| if (hash_ix >= 32) { |
| hi_bits |= (1 << (hash_ix-32)); |
| } else { |
| lo_bits |= (1 << hash_ix); |
| } |
| } |
| /* Disable individual receive */ |
| SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); |
| *R_NETWORK_REC_CONFIG = network_rec_config_shadow; |
| } |
| *R_NETWORK_GA_0 = lo_bits; |
| *R_NETWORK_GA_1 = hi_bits; |
| spin_unlock(&lp->lock); |
| } |
| |
| void |
| e100_hardware_send_packet(struct net_local *np, char *buf, int length) |
| { |
| D(printk("e100 send pack, buf 0x%x len %d\n", buf, length)); |
| |
| spin_lock(&np->led_lock); |
| if (!led_active && time_after(jiffies, led_next_time)) { |
| /* light the network leds depending on the current speed. */ |
| e100_set_network_leds(NETWORK_ACTIVITY); |
| |
| /* Set the earliest time we may clear the LED */ |
| led_next_time = jiffies + NET_FLASH_TIME; |
| led_active = 1; |
| mod_timer(&clear_led_timer, jiffies + HZ/10); |
| } |
| spin_unlock(&np->led_lock); |
| |
| /* configure the tx dma descriptor */ |
| myNextTxDesc->descr.sw_len = length; |
| myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait; |
| myNextTxDesc->descr.buf = virt_to_phys(buf); |
| |
| /* Move end of list */ |
| myLastTxDesc->descr.ctrl &= ~d_eol; |
| myLastTxDesc = myNextTxDesc; |
| |
| /* Restart DMA channel */ |
| *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart); |
| } |
| |
| static void |
| e100_clear_network_leds(unsigned long dummy) |
| { |
| struct net_device *dev = (struct net_device *)dummy; |
| struct net_local *np = netdev_priv(dev); |
| |
| spin_lock(&np->led_lock); |
| |
| if (led_active && time_after(jiffies, led_next_time)) { |
| e100_set_network_leds(NO_NETWORK_ACTIVITY); |
| |
| /* Set the earliest time we may set the LED */ |
| led_next_time = jiffies + NET_FLASH_PAUSE; |
| led_active = 0; |
| } |
| |
| spin_unlock(&np->led_lock); |
| } |
| |
| static void |
| e100_set_network_leds(int active) |
| { |
| #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK) |
| int light_leds = (active == NO_NETWORK_ACTIVITY); |
| #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY) |
| int light_leds = (active == NETWORK_ACTIVITY); |
| #else |
| #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY" |
| #endif |
| |
| if (!current_speed) { |
| /* Make LED red, link is down */ |
| CRIS_LED_NETWORK_SET(CRIS_LED_OFF); |
| } else if (light_leds) { |
| if (current_speed == 10) { |
| CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE); |
| } else { |
| CRIS_LED_NETWORK_SET(CRIS_LED_GREEN); |
| } |
| } else { |
| CRIS_LED_NETWORK_SET(CRIS_LED_OFF); |
| } |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void |
| e100_netpoll(struct net_device* netdev) |
| { |
| e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL); |
| } |
| #endif |
| |
| static int |
| etrax_init_module(void) |
| { |
| return etrax_ethernet_init(); |
| } |
| |
| static int __init |
| e100_boot_setup(char* str) |
| { |
| struct sockaddr sa = {0}; |
| int i; |
| |
| /* Parse the colon separated Ethernet station address */ |
| for (i = 0; i < ETH_ALEN; i++) { |
| unsigned int tmp; |
| if (sscanf(str + 3*i, "%2x", &tmp) != 1) { |
| printk(KERN_WARNING "Malformed station address"); |
| return 0; |
| } |
| sa.sa_data[i] = (char)tmp; |
| } |
| |
| default_mac = sa; |
| return 1; |
| } |
| |
| __setup("etrax100_eth=", e100_boot_setup); |
| |
| module_init(etrax_init_module); |