| #ifndef _LINUX_SIGNAL_H |
| #define _LINUX_SIGNAL_H |
| |
| #include <linux/bug.h> |
| #include <linux/signal_types.h> |
| |
| struct task_struct; |
| |
| /* for sysctl */ |
| extern int print_fatal_signals; |
| /* |
| * Real Time signals may be queued. |
| */ |
| |
| struct sigqueue { |
| struct list_head list; |
| int flags; |
| siginfo_t info; |
| struct user_struct *user; |
| }; |
| |
| /* flags values. */ |
| #define SIGQUEUE_PREALLOC 1 |
| |
| struct sigpending { |
| struct list_head list; |
| sigset_t signal; |
| }; |
| |
| #ifndef HAVE_ARCH_COPY_SIGINFO |
| |
| #include <linux/string.h> |
| |
| static inline void copy_siginfo(struct siginfo *to, struct siginfo *from) |
| { |
| if (from->si_code < 0) |
| memcpy(to, from, sizeof(*to)); |
| else |
| /* _sigchld is currently the largest know union member */ |
| memcpy(to, from, __ARCH_SI_PREAMBLE_SIZE + sizeof(from->_sifields._sigchld)); |
| } |
| |
| #endif |
| |
| /* |
| * Define some primitives to manipulate sigset_t. |
| */ |
| |
| #ifndef __HAVE_ARCH_SIG_BITOPS |
| #include <linux/bitops.h> |
| |
| /* We don't use <linux/bitops.h> for these because there is no need to |
| be atomic. */ |
| static inline void sigaddset(sigset_t *set, int _sig) |
| { |
| unsigned long sig = _sig - 1; |
| if (_NSIG_WORDS == 1) |
| set->sig[0] |= 1UL << sig; |
| else |
| set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); |
| } |
| |
| static inline void sigdelset(sigset_t *set, int _sig) |
| { |
| unsigned long sig = _sig - 1; |
| if (_NSIG_WORDS == 1) |
| set->sig[0] &= ~(1UL << sig); |
| else |
| set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); |
| } |
| |
| static inline int sigismember(sigset_t *set, int _sig) |
| { |
| unsigned long sig = _sig - 1; |
| if (_NSIG_WORDS == 1) |
| return 1 & (set->sig[0] >> sig); |
| else |
| return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); |
| } |
| |
| #endif /* __HAVE_ARCH_SIG_BITOPS */ |
| |
| static inline int sigisemptyset(sigset_t *set) |
| { |
| switch (_NSIG_WORDS) { |
| case 4: |
| return (set->sig[3] | set->sig[2] | |
| set->sig[1] | set->sig[0]) == 0; |
| case 2: |
| return (set->sig[1] | set->sig[0]) == 0; |
| case 1: |
| return set->sig[0] == 0; |
| default: |
| BUILD_BUG(); |
| return 0; |
| } |
| } |
| |
| static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2) |
| { |
| switch (_NSIG_WORDS) { |
| case 4: |
| return (set1->sig[3] == set2->sig[3]) && |
| (set1->sig[2] == set2->sig[2]) && |
| (set1->sig[1] == set2->sig[1]) && |
| (set1->sig[0] == set2->sig[0]); |
| case 2: |
| return (set1->sig[1] == set2->sig[1]) && |
| (set1->sig[0] == set2->sig[0]); |
| case 1: |
| return set1->sig[0] == set2->sig[0]; |
| } |
| return 0; |
| } |
| |
| #define sigmask(sig) (1UL << ((sig) - 1)) |
| |
| #ifndef __HAVE_ARCH_SIG_SETOPS |
| #include <linux/string.h> |
| |
| #define _SIG_SET_BINOP(name, op) \ |
| static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ |
| { \ |
| unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ |
| \ |
| switch (_NSIG_WORDS) { \ |
| case 4: \ |
| a3 = a->sig[3]; a2 = a->sig[2]; \ |
| b3 = b->sig[3]; b2 = b->sig[2]; \ |
| r->sig[3] = op(a3, b3); \ |
| r->sig[2] = op(a2, b2); \ |
| case 2: \ |
| a1 = a->sig[1]; b1 = b->sig[1]; \ |
| r->sig[1] = op(a1, b1); \ |
| case 1: \ |
| a0 = a->sig[0]; b0 = b->sig[0]; \ |
| r->sig[0] = op(a0, b0); \ |
| break; \ |
| default: \ |
| BUILD_BUG(); \ |
| } \ |
| } |
| |
| #define _sig_or(x,y) ((x) | (y)) |
| _SIG_SET_BINOP(sigorsets, _sig_or) |
| |
| #define _sig_and(x,y) ((x) & (y)) |
| _SIG_SET_BINOP(sigandsets, _sig_and) |
| |
| #define _sig_andn(x,y) ((x) & ~(y)) |
| _SIG_SET_BINOP(sigandnsets, _sig_andn) |
| |
| #undef _SIG_SET_BINOP |
| #undef _sig_or |
| #undef _sig_and |
| #undef _sig_andn |
| |
| #define _SIG_SET_OP(name, op) \ |
| static inline void name(sigset_t *set) \ |
| { \ |
| switch (_NSIG_WORDS) { \ |
| case 4: set->sig[3] = op(set->sig[3]); \ |
| set->sig[2] = op(set->sig[2]); \ |
| case 2: set->sig[1] = op(set->sig[1]); \ |
| case 1: set->sig[0] = op(set->sig[0]); \ |
| break; \ |
| default: \ |
| BUILD_BUG(); \ |
| } \ |
| } |
| |
| #define _sig_not(x) (~(x)) |
| _SIG_SET_OP(signotset, _sig_not) |
| |
| #undef _SIG_SET_OP |
| #undef _sig_not |
| |
| static inline void sigemptyset(sigset_t *set) |
| { |
| switch (_NSIG_WORDS) { |
| default: |
| memset(set, 0, sizeof(sigset_t)); |
| break; |
| case 2: set->sig[1] = 0; |
| case 1: set->sig[0] = 0; |
| break; |
| } |
| } |
| |
| static inline void sigfillset(sigset_t *set) |
| { |
| switch (_NSIG_WORDS) { |
| default: |
| memset(set, -1, sizeof(sigset_t)); |
| break; |
| case 2: set->sig[1] = -1; |
| case 1: set->sig[0] = -1; |
| break; |
| } |
| } |
| |
| /* Some extensions for manipulating the low 32 signals in particular. */ |
| |
| static inline void sigaddsetmask(sigset_t *set, unsigned long mask) |
| { |
| set->sig[0] |= mask; |
| } |
| |
| static inline void sigdelsetmask(sigset_t *set, unsigned long mask) |
| { |
| set->sig[0] &= ~mask; |
| } |
| |
| static inline int sigtestsetmask(sigset_t *set, unsigned long mask) |
| { |
| return (set->sig[0] & mask) != 0; |
| } |
| |
| static inline void siginitset(sigset_t *set, unsigned long mask) |
| { |
| set->sig[0] = mask; |
| switch (_NSIG_WORDS) { |
| default: |
| memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); |
| break; |
| case 2: set->sig[1] = 0; |
| case 1: ; |
| } |
| } |
| |
| static inline void siginitsetinv(sigset_t *set, unsigned long mask) |
| { |
| set->sig[0] = ~mask; |
| switch (_NSIG_WORDS) { |
| default: |
| memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); |
| break; |
| case 2: set->sig[1] = -1; |
| case 1: ; |
| } |
| } |
| |
| #endif /* __HAVE_ARCH_SIG_SETOPS */ |
| |
| static inline void init_sigpending(struct sigpending *sig) |
| { |
| sigemptyset(&sig->signal); |
| INIT_LIST_HEAD(&sig->list); |
| } |
| |
| extern void flush_sigqueue(struct sigpending *queue); |
| |
| /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ |
| static inline int valid_signal(unsigned long sig) |
| { |
| return sig <= _NSIG ? 1 : 0; |
| } |
| |
| struct timespec; |
| struct pt_regs; |
| |
| extern int next_signal(struct sigpending *pending, sigset_t *mask); |
| extern int do_send_sig_info(int sig, struct siginfo *info, |
| struct task_struct *p, bool group); |
| extern int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p); |
| extern int __group_send_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int do_sigtimedwait(const sigset_t *, siginfo_t *, |
| const struct timespec *); |
| extern int sigprocmask(int, sigset_t *, sigset_t *); |
| extern void set_current_blocked(sigset_t *); |
| extern void __set_current_blocked(const sigset_t *); |
| extern int show_unhandled_signals; |
| |
| struct sigaction { |
| #ifndef __ARCH_HAS_IRIX_SIGACTION |
| __sighandler_t sa_handler; |
| unsigned long sa_flags; |
| #else |
| unsigned int sa_flags; |
| __sighandler_t sa_handler; |
| #endif |
| #ifdef __ARCH_HAS_SA_RESTORER |
| __sigrestore_t sa_restorer; |
| #endif |
| sigset_t sa_mask; /* mask last for extensibility */ |
| }; |
| |
| struct k_sigaction { |
| struct sigaction sa; |
| #ifdef __ARCH_HAS_KA_RESTORER |
| __sigrestore_t ka_restorer; |
| #endif |
| }; |
| |
| #ifdef CONFIG_OLD_SIGACTION |
| struct old_sigaction { |
| __sighandler_t sa_handler; |
| old_sigset_t sa_mask; |
| unsigned long sa_flags; |
| __sigrestore_t sa_restorer; |
| }; |
| #endif |
| |
| struct ksignal { |
| struct k_sigaction ka; |
| siginfo_t info; |
| int sig; |
| }; |
| |
| extern int get_signal(struct ksignal *ksig); |
| extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping); |
| extern void exit_signals(struct task_struct *tsk); |
| extern void kernel_sigaction(int, __sighandler_t); |
| |
| static inline void allow_signal(int sig) |
| { |
| /* |
| * Kernel threads handle their own signals. Let the signal code |
| * know it'll be handled, so that they don't get converted to |
| * SIGKILL or just silently dropped. |
| */ |
| kernel_sigaction(sig, (__force __sighandler_t)2); |
| } |
| |
| static inline void disallow_signal(int sig) |
| { |
| kernel_sigaction(sig, SIG_IGN); |
| } |
| |
| extern struct kmem_cache *sighand_cachep; |
| |
| int unhandled_signal(struct task_struct *tsk, int sig); |
| |
| /* |
| * In POSIX a signal is sent either to a specific thread (Linux task) |
| * or to the process as a whole (Linux thread group). How the signal |
| * is sent determines whether it's to one thread or the whole group, |
| * which determines which signal mask(s) are involved in blocking it |
| * from being delivered until later. When the signal is delivered, |
| * either it's caught or ignored by a user handler or it has a default |
| * effect that applies to the whole thread group (POSIX process). |
| * |
| * The possible effects an unblocked signal set to SIG_DFL can have are: |
| * ignore - Nothing Happens |
| * terminate - kill the process, i.e. all threads in the group, |
| * similar to exit_group. The group leader (only) reports |
| * WIFSIGNALED status to its parent. |
| * coredump - write a core dump file describing all threads using |
| * the same mm and then kill all those threads |
| * stop - stop all the threads in the group, i.e. TASK_STOPPED state |
| * |
| * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. |
| * Other signals when not blocked and set to SIG_DFL behaves as follows. |
| * The job control signals also have other special effects. |
| * |
| * +--------------------+------------------+ |
| * | POSIX signal | default action | |
| * +--------------------+------------------+ |
| * | SIGHUP | terminate | |
| * | SIGINT | terminate | |
| * | SIGQUIT | coredump | |
| * | SIGILL | coredump | |
| * | SIGTRAP | coredump | |
| * | SIGABRT/SIGIOT | coredump | |
| * | SIGBUS | coredump | |
| * | SIGFPE | coredump | |
| * | SIGKILL | terminate(+) | |
| * | SIGUSR1 | terminate | |
| * | SIGSEGV | coredump | |
| * | SIGUSR2 | terminate | |
| * | SIGPIPE | terminate | |
| * | SIGALRM | terminate | |
| * | SIGTERM | terminate | |
| * | SIGCHLD | ignore | |
| * | SIGCONT | ignore(*) | |
| * | SIGSTOP | stop(*)(+) | |
| * | SIGTSTP | stop(*) | |
| * | SIGTTIN | stop(*) | |
| * | SIGTTOU | stop(*) | |
| * | SIGURG | ignore | |
| * | SIGXCPU | coredump | |
| * | SIGXFSZ | coredump | |
| * | SIGVTALRM | terminate | |
| * | SIGPROF | terminate | |
| * | SIGPOLL/SIGIO | terminate | |
| * | SIGSYS/SIGUNUSED | coredump | |
| * | SIGSTKFLT | terminate | |
| * | SIGWINCH | ignore | |
| * | SIGPWR | terminate | |
| * | SIGRTMIN-SIGRTMAX | terminate | |
| * +--------------------+------------------+ |
| * | non-POSIX signal | default action | |
| * +--------------------+------------------+ |
| * | SIGEMT | coredump | |
| * +--------------------+------------------+ |
| * |
| * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". |
| * (*) Special job control effects: |
| * When SIGCONT is sent, it resumes the process (all threads in the group) |
| * from TASK_STOPPED state and also clears any pending/queued stop signals |
| * (any of those marked with "stop(*)"). This happens regardless of blocking, |
| * catching, or ignoring SIGCONT. When any stop signal is sent, it clears |
| * any pending/queued SIGCONT signals; this happens regardless of blocking, |
| * catching, or ignored the stop signal, though (except for SIGSTOP) the |
| * default action of stopping the process may happen later or never. |
| */ |
| |
| #ifdef SIGEMT |
| #define SIGEMT_MASK rt_sigmask(SIGEMT) |
| #else |
| #define SIGEMT_MASK 0 |
| #endif |
| |
| #if SIGRTMIN > BITS_PER_LONG |
| #define rt_sigmask(sig) (1ULL << ((sig)-1)) |
| #else |
| #define rt_sigmask(sig) sigmask(sig) |
| #endif |
| |
| #define siginmask(sig, mask) \ |
| ((sig) < SIGRTMIN && (rt_sigmask(sig) & (mask))) |
| |
| #define SIG_KERNEL_ONLY_MASK (\ |
| rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) |
| |
| #define SIG_KERNEL_STOP_MASK (\ |
| rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ |
| rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) |
| |
| #define SIG_KERNEL_COREDUMP_MASK (\ |
| rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ |
| rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ |
| rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ |
| rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ |
| rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ |
| SIGEMT_MASK ) |
| |
| #define SIG_KERNEL_IGNORE_MASK (\ |
| rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ |
| rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) |
| |
| #define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK) |
| #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK) |
| #define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK) |
| #define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK) |
| |
| #define sig_user_defined(t, signr) \ |
| (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ |
| ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) |
| |
| #define sig_fatal(t, signr) \ |
| (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ |
| (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) |
| |
| void signals_init(void); |
| |
| int restore_altstack(const stack_t __user *); |
| int __save_altstack(stack_t __user *, unsigned long); |
| |
| #define save_altstack_ex(uss, sp) do { \ |
| stack_t __user *__uss = uss; \ |
| struct task_struct *t = current; \ |
| put_user_ex((void __user *)t->sas_ss_sp, &__uss->ss_sp); \ |
| put_user_ex(t->sas_ss_flags, &__uss->ss_flags); \ |
| put_user_ex(t->sas_ss_size, &__uss->ss_size); \ |
| if (t->sas_ss_flags & SS_AUTODISARM) \ |
| sas_ss_reset(t); \ |
| } while (0); |
| |
| #ifdef CONFIG_PROC_FS |
| struct seq_file; |
| extern void render_sigset_t(struct seq_file *, const char *, sigset_t *); |
| #endif |
| |
| #endif /* _LINUX_SIGNAL_H */ |